55
NEVADA ACADEMIC CONTENT STANDARDS IN SCIENCE…. OR AS YOU KNOW THEM – THE NEXT GENERATION SCIENCE STANDARDS David T Crowther Professor Science Education Director Raggio Research Center for STEM Education University of Nevada, Reno

David T Crowther Professor Science Education Director Raggio Research Center for STEM Education

Embed Size (px)

DESCRIPTION

Nevada Academic Content Standards in Science…. Or as you know them – The Next Generation Science Standards. David T Crowther Professor Science Education Director Raggio Research Center for STEM Education University of Nevada, Reno. History of Science Standards. - PowerPoint PPT Presentation

Citation preview

Page 1: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

NEVADA ACADEMIC CONTENT STANDARDS IN SCIENCE….

OR AS YOU KNOW THEM –

THE NEXT GENERATION SCIENCE STANDARDS

David T Crowther

Professor Science Education

Director Raggio Research Center for STEM Education

University of Nevada, Reno

Page 2: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

History of Science StandardsHistory of Science Standards

• 1920 ~ John Dewey contended that “traditional” science teaching gave too much emphasis to the accumulation of information and not enough to science as a way of thinking and an attitude of mind.

• 1957 – Sputnik – which led to major Science Education reform

• 1920 ~ John Dewey contended that “traditional” science teaching gave too much emphasis to the accumulation of information and not enough to science as a way of thinking and an attitude of mind.

• 1957 – Sputnik – which led to major Science Education reform

Page 3: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

History of Science StandardsHistory of Science Standards

• 1960’s ~ 1970’s • Science Curriculum Improvement Study (SCIS) • Elementary Science Study (ESS) • The basic tenants of constructivist ideology that

drove the reform efforts are still the foundation that current hands-on inquiry based curriculum

• E.g. Full Option Science System (FOSS) and Science and Technology Concepts (STC).

• 1960’s ~ 1970’s • Science Curriculum Improvement Study (SCIS) • Elementary Science Study (ESS) • The basic tenants of constructivist ideology that

drove the reform efforts are still the foundation that current hands-on inquiry based curriculum

• E.g. Full Option Science System (FOSS) and Science and Technology Concepts (STC).

Page 4: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

History of Science StandardsThree pinnacle documents leading to

Science Standards:

History of Science StandardsThree pinnacle documents leading to

Science Standards:

• Science for All Americans (AAAS, 1989) which defined the problem within science education and gave some broad stroke guidelines.

• Content Core / Scope, Sequence, and Coordination of the National Science Education Standards (NSTA, 1992) allowed for the first scope and sequence of content and process skills in science to be proposed.

• Benchmarks for Science Literacy (AAAS, 1993) which provided a comprehensive guide of what students should know and be able to do in science, mathematics, and technology by the end of 2,5,8, and 12th benchmark grades.

• Science for All Americans (AAAS, 1989) which defined the problem within science education and gave some broad stroke guidelines.

• Content Core / Scope, Sequence, and Coordination of the National Science Education Standards (NSTA, 1992) allowed for the first scope and sequence of content and process skills in science to be proposed.

• Benchmarks for Science Literacy (AAAS, 1993) which provided a comprehensive guide of what students should know and be able to do in science, mathematics, and technology by the end of 2,5,8, and 12th benchmark grades.

Page 5: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

NACS / NGSS

“The overall goal of the Framework and the NGSS is to help all learners in our nation develop the science and engineering understanding that they need to live successful, informed, and productive lives that will help them create a sustainable planet for future generations" Joe Krajcik

Page 6: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Benchmarks for Scientific Literacy and Atlas of Science Literacy

National Science Education Standards

2009 NAEP Science Framework(National Assessment of Educational Progress)

College Board Standards for College in Science

NSTA’s Science Anchors project

RESOURCES FOR THE FRAMEWORK

Page 7: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

How People Learn

Taking Science to School

Ready, Set, Science

NATIONAL RESEARCH COUNCIL REPORTS

Page 8: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Nevada State Science Standards vs.Next Generation Science Standards

NSSS• Life Science• Physical Science• Earth & Space Science• None• Nature of Science (History of

Science, Technology, Process Skills & Inquiry)

• Grade Bands (K-2, 3-5, 6-8, 9-12)

• Mile Wide/Inch Deep

NGSS• Life Sciences• Physical Sciences• Earth & Space Sciences• Engineering & Technology

Applications to Science• Science Practices • Grade Levels (K, 1, 2, 3, 4, 5, 6-8,

9-12)• In-depth Coverage of Fewer

Concepts

Page 9: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

THREE DIMENSIONS (3-D) OF THE NGSS

Cross Cutting Concepts (CCC)

Disciplinary Core Ideas (DCI)

Practices of Science and Engineering (PSE)

Page 10: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

NGSS FOLDABLE WITH THE THREE DIMENSIONS:

Page 11: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

CROSS CUTTING CONCEPTS (CCC)

Crosscutting concepts have application across all domains of science. As such, they are a way of linking the different domains of science. They include: Patterns, similarity, and diversity; Cause and effect; Scale, proportion and quantity; Systems and system models; Energy and matter; Structure and function; Stability and change. The Framework emphasizes that these concepts need to be made explicit for students because they provide an organizational schema for interrelating knowledge from various science fields into a coherent and scientifically-based view of the world.

Page 12: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

1. Patterns

2. Cause and effect: Mechanism and explanation

3. Scale, proportion, and quantity

4. Systems and system models

5. Energy and matter: Flows, cycles, and

conservation

6. Structure and function

7. Stability and change

12

Crosscutting Concepts

Page 13: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

THE 7 CROSSCUTTING CONCEPTS(CCC)

1. Patterns: Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.

2. Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.

3. Scale, proportion, and quantity: In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system’s structure or performance.

Page 14: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

THE 7 CROSSCUTTING CONCEPTS(CCC)

4 Systems and system models: Defining the system under study—specifying its boundaries and making explicit a model of that system—provides tools for understanding and testing ideas that are applicable throughout science and engineering.

5. Energy and matter: Flows, cycles, and conservation. Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems’ possibilities and limitations.

6. Structure and function: The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.

7. Stability and change: For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.

Page 15: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

DISCIPLINARY CORE IDEAS (DCI) Disciplinary ideas are grouped in four domains:

physical sciences; life sciences; earth and space sciences; engineering, technology and applications of science.

Disciplinary core ideas have the power to focus K–12 science curriculum, instruction and assessments on the most important aspects of science. To be considered core, the ideas should meet at least two of the following criteria and ideally all four:

Have broad importance across multiple  sciences or engineering disciplines or be a key organizing concept of a single discipline; 

Provide a key tool for understanding or investigating more complex ideas and solving problems;

Relate to the interests and life experiences of students or be connected to societal or personal concerns that require scientific or technological knowledge;

Be teachable and learnable over multiple grades at increasing levels of depth and sophistication.

Page 16: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Life Science Physical ScienceLS1: From Molecules to Organisms:

Structures and Processes

LS2: Ecosystems: Interactions, Energy, and Dynamics

LS3: Heredity: Inheritance and Variation of Traits

LS4: Biological Evolution: Unity and Diversity

PS1: Matter and Its Interactions

PS2: Motion and Stability: Forces and Interactions

PS3: Energy

PS4: Waves and Their Applications in Technologies for Information Transfer

Earth & Space Science Engineering & TechnologyESS1: Earth’s Place in the Universe

ESS2: Earth’s Systems

ESS3: Earth and Human Activity

ETS1: Engineering Design

ETS2: Links Among Engineering, Technology, Science, and Society

16

Disciplinary Core Ideas

Page 17: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Life Science Earth & Space Science Physical Science Engineering & Technology LS1: From Molecules to Organisms:

Structures and ProcessesLS1.A: Structure and FunctionLS1.B: Growth and Development of 

OrganismsLS1.C: Organization for Matter and Energy 

Flow in OrganismsLS1.D: Information Processing 

LS2: Ecosystems: Interactions, Energy, and Dynamics

LS2.A: Interdependent Relationships in Ecosystems

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems

LS2.C: Ecosystem Dynamics, Functioning, and Resilience

LS2.D: Social Interactions and Group Behavior

 

LS3: Heredity: Inheritance and Variation of Traits

LS3.A: Inheritance of TraitsLS3.B: Variation of Traits 

LS4: Biological Evolution: Unity and Diversity

LS4.A: Evidence of Common Ancestry and Diversity

LS4.B: Natural SelectionLS4.C: AdaptationLS4.D: Biodiversity and Humans

ESS1: Earth’s Place in the UniverseESS1.A: The Universe and Its StarsESS1.B: Earth and the Solar SystemESS1.C: The History of Planet Earth 

ESS2: Earth’s SystemsESS2.A: Earth Materials and SystemsESS2.B: Plate Tectonics and Large-

Scale System InteractionsESS2.C: The Roles of Water in Earth’s 

Surface ProcessesESS2.D: Weather and ClimateESS2.E: Biogeology 

ESS3: Earth and Human ActivityESS3.A: Natural ResourcesESS3.B: Natural HazardsESS3.C: Human Impacts on Earth 

SystemsESS3.D: Global Climate Change

 PS1: Matter and Its InteractionsPS1.A: Structure and Properties of 

MatterPS1.B: Chemical ReactionsPS1.C: Nuclear Processes 

PS2: Motion and Stability: Forces and Interactions

PS2.A: Forces and MotionPS2.B: Types of InteractionsPS2.C: Stability and Instability in 

Physical Systems 

PS3: EnergyPS3.A:Definitions of EnergyPS3.B: Conservation of Energy and 

Energy TransferPS3.C: Relationship Between Energy 

and ForcesPS3.D:Energy in Chemical Processes 

and Everyday Life 

PS4: Waves and Their Applications in Technologies for Information Transfer

PS4.A:Wave PropertiesPS4.B: Electromagnetic RadiationPS4.C: Information Technologies 

and Instrumentation

 ETS1: Engineering DesignETS1.A: Defining and Delimiting an 

Engineering ProblemETS1.B: Developing Possible SolutionsETS1.C: Optimizing the Design Solution 

ETS2: Links Among Engineering, Technology, Science, and Society

ETS2.A: Interdependence of Science, Engineering, and Technology

ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World

Note: In NGSS, the core ideas for Engineering, Technology, and the Application of Science are integrated with the Life Science, Earth & Space Science, and Physical Science core ideas

Core and Component Ideas

Page 18: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICES OF SCIENCE AND ENGINEERING (PSE)The practices describe behaviors that scientists engage in as they investigate and build models and theories about the natural world and the key set of engineering practices that engineers use as they design and build models and systems.

The NRC uses the term practices instead of a term like “skills” to emphasize that engaging in scientific investigation requires not only skill but also knowledge that is specific to each practice.

Part of the NRC’s intent is to better explain and extend what is meant by “inquiry” in science and the range of cognitive, social, and physical practices that it requires (Inquiry = Practices).

Page 19: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICES OF SCIENCE AND ENGINEERING (PSE)

Although engineering design is similar to scientific inquiry, there are significant differences. For example, scientific inquiry involves the formulation of a question that can be answered through investigation, while engineering design involves the formulation of a problem that can be solved through design.

Strengthening the engineering aspects of the Next Generation Science Standards will clarify for students the relevance of science, technology, engineering and mathematics (the four STEM fields) to everyday life.

Bybee, R. (2011). Scientific and Engineering Practices in K–12 Classrooms: Understanding A Framework for K–12 Science Education. The Science Teacher.

Page 20: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

SCIENTIFIC AND ENGINEERING PRACTICES

1. Asking questions (for science) and defining problems (for engineering)

2. Developing and using models

3. Planning and carrying out investigations

4. Analyzing and interpreting data

5. Using mathematics and computational thinking

6. Constructing explanations (for science) and designing solutions (for engineering)

7. Engaging in argument from evidence

8. Obtaining, evaluating, and communicating information

Page 21: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

GUIDING PRINCIPLES - NGSS PRACTICES OF SCIENCE AND ENGINEERING

Students in grades K-12 should engage in all eight practices over each grade band.

Practices grow in complexity and sophistication across the grades.

Each practice may reflect science or engineering. Practices represent what students are expected

to do, and are not teaching methods or curriculum.

The eight practices are not separate; they intentionally overlap and interconnect.

Performance expectations focus on some but not all capabilities associated with a practice.

Engagement in practices is language intensive and requires students to participate in classroom science discourse.

Page 22: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 1: ASKING QUESTIONS AND DEFINING PROBLEMS

Students at any grade level should be able to ask questions of each other about the texts they read, the features of the phenomena they observe, and the conclusions they draw from their models or scientific investigations. For engineering, they should ask questions to define the problem to be solved and to elicit ideas that lead to the constraints and specifications for its solution. (NRC Framework 2012, p. 56 )

Scientific questions arise in a variety of ways. They can be driven by curiosity about the world, inspired by the predictions of a model, theory, or findings from previous investigations, or they can be stimulated by the need to solve a problem. Scientific questions are distinguished from other types of questions in that the answers lie in explanations supported by empirical evidence, including evidence gathered by others or through investigation.

While science begins with questions, engineering begins with defining a problem to solve. However, engineering may also involve asking questions to define a problem

Page 23: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 2 : DEVELOPING AND USING MODELS

Modeling can begin in the earliest grades, with students’ models progressing from concrete “pictures” and/or physical scale models (e.g., a toy car) to more abstract representations of relevant relationships in later grades, such as a diagram representing forces on a particular object in a system. (NRC Framework, 2012, p. 58)

Models include diagrams, physical replicas, mathematical representations, analogies, and computer simulations. Although models do not correspond exactly to the real world, they bring certain features into focus while obscuring others. All models contain approximations and assumptions that limit the range of validity and predictive power, so it is important for students to recognize their limitations.

Page 24: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 3: PLANNING AND CARRYING OUT INVESTIGATIONS Students should have opportunities to plan and carry out several different kinds

of investigations during their K-12 years. At all levels, they should engage in investigations that range from those structured by the teacher—in order to expose an issue or question that they would be unlikely to explore on their own (e.g., measuring specific properties of materials)—to those that emerge from students’ own questions. (NRC Framework, 2012, p. 61)

Scientific investigations may be undertaken to describe a phenomenon, or to test a theory or model for how the world works. The purpose of engineering investigations might be to find out how to fix or improve the functioning of a technological system or to compare different solutions to see which best solves a problem. Whether students are doing science or engineering, it is always important for them to state the goal of an investigation, predict outcomes, and plan a course of action that will provide the best evidence to support their conclusions. Students should design investigations that generate data to provide evidence to support claims they make about phenomena. Data aren’t evidence until used in the process of supporting a claim. Students should use reasoning and scientific ideas, principles, and theories to show why data can be considered evidence.

Page 25: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 4: ANALYZING AND INTERPRETING DATA Once collected, data must be presented in a form that can

reveal any patterns and relationships and that allows results to be communicated to others. Because raw data as such have little meaning, a major practice of scientists is to organize and interpret data through tabulating, graphing, or statistical analysis. Such analysis can bring out the meaning of data—and their relevance—so that they may be used as evidence.

Engineers, too, make decisions based on evidence that a given design will work; they rarely rely on trial and error. Engineers often analyze a design by creating a model or prototype and collecting extensive data on how it performs, including under extreme conditions. Analysis of this kind of data not only informs design decisions and enables the prediction or assessment of performance but also helps define or clarify problems, determine economic feasibility, evaluate alternatives, and investigate failures. (NRC Framework, 2012, p. 61-62)

Page 26: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 5: USING MATHEMATICS AND COMPUTATIONAL THINKING Although there are differences in how mathematics and computational thinking are

applied in science and in engineering, mathematics often brings these two fields together by enabling engineers to apply the mathematical form of scientific theories and by enabling scientists to use powerful information technologies designed by engineers. Both kinds of professionals can thereby accomplish investigations and analyses and build complex models, which might otherwise be out of the question. (NRC Framework, 2012, p. 65)

Students are expected to use mathematics to represent physical variables and their relationships, and to make quantitative predictions. Other applications of mathematics in science and engineering include logic, geometry, and at the highest levels, calculus.

Computers and digital tools can enhance the power of mathematics by automating calculations, approximating solutions to problems that cannot be calculated precisely, and analyzing large data sets available to identify meaningful patterns. Students are expected to use laboratory tools connected to computers for observing, measuring, recording, and processing data. Students are also expected to engage in computational thinking, which involves strategies for organizing and searching data, creating sequences of steps called algorithms, and using and developing new simulations of natural and designed systems. Mathematics is a tool that is key to understanding science. As such, classroom instruction must include critical skills of mathematics.

Page 27: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 6: CONSTRUCTING EXPLANATIONS AND DESIGNING SOLUTIONS

The goal of science is to construct explanations for the causes of phenomena. Students are expected to construct their own explanations, as well as apply standard explanations they learn about from their teachers or reading. The Framework states the following about explanation:

“The goal of science is the construction of theories that provide explanatory accounts of the world. A theory becomes accepted when it has multiple lines of empirical evidence and greater explanatory power of phenomena than previous theories.”(NRC Framework, 2012, p. 52)

An explanation includes a claim that relates how a variable or variables relate to another variable or a set of variables. A claim is often made in response to a question and in the process of answering the question, scientists often design investigations to generate data.

The goal of engineering is to solve problems. Designing solutions to problems is a systematic process that involves defining the problem, then generating, testing, and improving solutions.

Page 28: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 7: ENGAGING IN ARGUMENT FROM EVIDENCE The study of science and engineering should produce a sense of the process of

argument necessary for advancing and defending a new idea or an explanation of a phenomenon and the norms for conducting such arguments. In that spirit, students should argue for the explanations they construct, defend their interpretations of the associated data, and advocate for the designs they propose. (NRC Framework, 2012, p. 73)

Argumentation is a process for reaching agreements about explanations and design solutions. In science, reasoning and argument based on evidence are essential in identifying the best explanation for a natural phenomenon. In engineering, reasoning and argument are needed to identify the best solution to a design problem. Student engagement in scientific argumentation is critical if students are to understand the culture in which scientists live, and how to apply science and engineering for the benefit of society. As such, argument is a process based on evidence and reasoning that leads to explanations acceptable by the scientific community and design solutions acceptable by the engineering community.

Argument in science goes beyond reaching agreements in explanations and design solutions. Whether investigating a phenomenon, testing a design, or constructing a model to provide a mechanism for an explanation, students are expected to use argumentation to listen to, compare, and evaluate competing ideas and methods based on their merits. Scientists and engineers engage in argumentation when investigating a phenomenon, testing a design solution, resolving questions about measurements, building data models, and using evidence to evaluate claims.

Page 29: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

PRACTICE 8: OBTAINING, EVALUATING, AND COMMUNICATING INFORMATION

Any education in science and engineering needs to develop students’ ability to read and produce domain-specific text. As such, every science or engineering lesson is in part a language lesson, particularly reading and producing the genres of texts that are intrinsic to science and engineering. (NRC Framework, 2012, p. 76)

Being able to read, interpret, and produce scientific and technical text are fundamental practices of science and engineering, as is the ability to communicate clearly and persuasively. Being a critical consumer of information about science and engineering requires the ability to read or view reports of scientific or technological advances or applications (whether found in the press, the Internet, or in a town meeting) and to recognize the salient ideas, identify sources of error and methodological flaws, distinguish observations from inferences, arguments from explanations, and claims from evidence. Scientists and engineers employ multiple sources to obtain information used to evaluate the merit and validity of claims, methods, and designs. Communicating information, evidence, and ideas can be done in multiple ways: using tables, diagrams, graphs, models, interactive displays, and equations as well as orally, in writing, and through extended discussions.

Page 30: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the Box

Page 31: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the NGSS Box

Based on the January 2013 Draft of NGSS

Page 32: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the NGSS Box

What is AssessedA collection of several 

performance expectations describing what students 

should be able to do to master this standard

Foundation BoxThe practices, core disciplinary 

ideas, and crosscutting concepts from the Framework

for K-12 Science Education that were used to form the performance expectations

Connection BoxOther standards in the Next

Generation Science Standards or in the Common Core State

Standards that are related to this standard 

Title and CodeThe titles of standard pages are not necessarily unique and may be reused at several different grade levels . The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses.

Based on the January 2013 Draft of NGSS

Page 33: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the NGSS Box

What is AssessedA collection of several 

performance expectations describing what students 

should be able to do to master this standard

Performance ExpectationsA statement that combines practices, core  ideas, and crosscutting concepts together to describe how students can show what they have learned. 

Assessment BoundaryA statement that provides guidance about the scope of the performance expectation at a particular grade level. 

Clarification StatementA statement that supplies examples or additional clarification to the performance expectation. 

Engineering Connection (*)An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. 

Based on the January 2013 Draft of NGSS

Page 34: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the NGSS Box

Foundation BoxThe practices, core disciplinary 

ideas, and crosscutting concepts from the Framework

for K-12 Science Education that were used to form the performance expectations

Scientific & Engineering PracticesActivities that scientists and engineers engage in to either understand the world or solve a problem

Disciplinary Core IdeasConcepts in science and engineering that have broad importance within and across disciplines as well as relevance in people’s lives. 

Crosscutting ConceptsIdeas, such as  Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. 

Based on the January 2013 Draft of NGSS

Page 35: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the NGSS Box

Foundation BoxThe practices, core disciplinary 

ideas, and crosscutting concepts from the Framework

for K-12 Science Education that were used to form the performance expectations

Connections to Engineering, Technology and Applications of ScienceThese connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework.

Connections to Nature of ScienceConnections are listed in either the practices or the crosscutting connections section of the foundation box. 

Based on the January 2013 Draft of NGSS

Page 36: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the NGSS Box

Codes for Performance ExpectationsCodes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection.

Based on the January 2013 Draft of NGSS

Page 37: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Inside the NGSS Box

What is AssessedA collection of several 

performance expectations describing what students 

should be able to do to master this standard

Foundation BoxThe practices, core disciplinary 

ideas, and crosscutting concepts from the Framework

for K-12 Science Education that were used to form the performance expectations

Connection BoxOther standards in the Next

Generation Science Standards or in the Common Core State

Standards that are related to this standard 

Performance ExpectationsA statement that combines practices, core  ideas, and crosscutting concepts together to describe how students can show what they have learned. 

Title and CodeThe titles of standard pages are not necessarily unique and may be reused at several different grade levels . The code, however, is a unique identifier for each set based on the grade level, content area, and topic it addresses.

Scientific & Engineering PracticesActivities that scientists and engineers engage in to either understand the world or solve a problem

Disciplinary Core IdeasConcepts in science and engineering that have broad importance within and across disciplines as well as relevance in people’s lives. 

Crosscutting ConceptsIdeas, such as  Patterns and Cause and Effect, which are not specific to any one discipline but cut across them all. 

Codes for Performance ExpectationsCodes designate the relevant performance expectation for an item in the foundation box and connection box. In the connections to common core, italics indicate a potential connection rather than a required prerequisite connection.

Assessment BoundaryA statement that provides guidance about the scope of the performance expectation at a particular grade level. 

Clarification StatementA statement that supplies examples or additional clarification to the performance expectation. 

Connections to Engineering, Technology and Applications of ScienceThese connections are drawn from the disciplinary core ideas for engineering, technology, and applications of science in the Framework.

Connections to Nature of ScienceConnections are listed in either the practices or the crosscutting connections section of the foundation box. 

Engineering Connection (*)An asterisk indicates an engineering connection in the practice, core idea or crosscutting concept that supports the performance expectation. 

Based on the January 2013 Draft of NGSS

Page 38: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Closer Look at NGSS

Page 39: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Closer Look at a NGSS (Grade 2)

39

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Connections to other DCIs in this grade-level: will be available on or before April 26, 2013. Articulation of DCIs across grade-levels: will be available on or before April 26, 2013 Common Core State Standards Connections: will be available on or before April 26, 2013. ELA/Literacy – Mathematics – 

Page 40: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Closer Look at a NGSS (Grade 2)

40

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Connections to other DCIs in this grade-level: will be available on or before April 26, 2013. Articulation of DCIs across grade-levels: will be available on or before April 26, 2013 Common Core State Standards Connections: will be available on or before April 26, 2013. ELA/Literacy – Mathematics – 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 41: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Closer Look at a NGSS (Grade 2)

41

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Connections to other DCIs in this grade-level: will be available on or before April 26, 2013. Articulation of DCIs across grade-levels: will be available on or before April 26, 2013 Common Core State Standards Connections: will be available on or before April 26, 2013. ELA/Literacy – Mathematics – 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 42: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Closer Look at a NGSS (Grade 2)

42

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Connections to other DCIs in this grade-level: will be available on or before April 26, 2013. Articulation of DCIs across grade-levels: will be available on or before April 26, 2013 Common Core State Standards Connections: will be available on or before April 26, 2013. ELA/Literacy – Mathematics – 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 43: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Closer Look at a NGSS (Grade 2)

43

2.PS1 Matter and Its Interactions Students who demonstrate understanding can: 2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials

by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.] 

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Disciplinary Core Ideas Crosscutting Concepts

Planning and Carrying Out Investigations Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions. • Plan and conduct an investigation 

collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

PS1.A: Structure and Properties of Matter • Different kinds of matter exist and 

many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)

Patterns • Patterns in the natural and human 

designed world can be observed. (2-PS1-1) 

Connections to other DCIs in this grade-level: will be available on or before April 26, 2013. Articulation of DCIs across grade-levels: will be available on or before April 26, 2013 Common Core State Standards Connections: will be available on or before April 26, 2013. ELA/Literacy – Mathematics – 

Note: Performance expectations combine practices, core ideas, and crosscutting concepts into a single statement of what is to be assessed. They are not instructional strategies or objectives for a lesson.

Page 44: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

An Analogy

Page 45: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

An Analogy between NGSS and a Cake

Baking Tools & Techniques(Practices)

Cake(Core Ideas)

Frosting(Crosscutting Concepts)

Baking a Cake(Performance Expectation)

Page 46: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

An Analogy between NGSS and Cooking

Kitchen Tools & Techniques(Practices)

Basic Ingredients(Core Ideas)

Herbs, Spices, & Seasonings(Crosscutting Concepts)

Preparing a Meal(Performance Expectation)

Page 47: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Life Science (Vegetables) Physical Science (Meats)

Earth & Space Science (Grains) Engineering & Technology (Dairy)

47

An Analogy between NGSS and Cooking

Page 48: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Practices in Science, Mathematics, and

English Language Arts (ELA)

Page 49: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Practices in Mathematics, Science, and English Language Arts*Math Science English Language Arts

M1. Make sense of problems and persevere in solving them. 

M2.  Reason abstractly and quantitatively. 

M3.  Construct viable arguments and critique the reasoning of others. 

M4.  Model with mathematics. M5.  Use appropriate tools 

strategically. M6.  Attend to precision. M7.  Look for and make use of 

structure. M8.  Look for and express 

regularity in repeated reasoning. 

S1.  Asking questions (for science) and defining problems (for engineering). 

S2.  Developing and using models. S3.  Planning and carrying out 

investigations. S4.  Analyzing and interpreting data. S5.  Using mathematics, information and 

computer technology, and computational thinking. 

S6.  Constructing explanations  (for science) and designing solutions (for engineering). 

S7.  Engaging in argument from evidence. 

S8.  Obtaining, evaluating, and communicating information. 

E1.  They demonstrate independence.

E2.  They build strong content knowledge.

E3.  They respond to the varying demands of audience, task, purpose, and discipline. 

E4.  They comprehend as well as critique. 

E5.  They value evidence. E6.  They use technology and 

digital media strategically and capably. 

E7.  They come to understanding other perspectives and cultures. 

* The Common Core English Language Arts uses the term “student capacities” rather than the term “practices” used in Common Core Mathematics and the Next Generation Science Standards.

Practices in Math, Science, and ELA*

Page 50: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Based on work by Tina Chuek

ell.stanford.edu

Math Science

ELA

M1: Make sense of problems and persevere in solving them 

M2: Reason abstractly & quantitatively

M6: Attend to precisionM7: Look for & make use of structure

M8: Look for & make use of regularity in repeated reasoning

S1: Ask questions and define problems

S3: Plan & carry out investigationsS4: Analyze & interpret data

S6: Construct explanations & design solutions

M4. Models with 

mathematicsS2: Develop & use modelsS5: Use mathematics & computational thinking

E1: Demonstrate independence in reading complex texts, and writing and speaking about them

E7: Come to understand other perspectives and cultures through reading, listening, 

and collaborations

E6: Use technology & digital media strategically & capably

M5: Use appropriate tools strategically

E2: Build a strong base of knowledge through content rich texts

E5: Read, write, and speak grounded in evidence

M3 & E4: Construct viable arguments and critique reasoning of others

S7: Engage in argument from 

evidence

S8: Obtain, 

evaluate, & 

communicate information

E3: Obtain, synthesize, 

and report findings clearly and effectively in response to task and purpose

Commonalities Among the Practices in Science, Mathematics and English Language Arts

Page 51: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

NSTA Resources

Page 52: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

On the Web

nextgenscience.org

nsta.org/ngss

Page 53: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Connect & Collaborate with Colleagues

NSTA Member-only

Listserv on NGSS

Discussion forum on NGSS in the Learning center

Page 54: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

Web Seminars

Check the NSTA website at www.nsta.org/ngss for upcoming programs.

Previous programs focused on scientific and engineering practices, crosscutting concepts, engineering, and more. All programs are archived at http://learningcenter.nsta.org/products/symposia_seminars/NGSS/webseminar.aspx

the

Page 55: David T Crowther Professor Science Education Director  Raggio  Research Center for STEM Education

CONNECT WITH NEVADANGSE.NET

55Sign up today and become a part of the Nevada Next Generation Science Education Network!