David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

  • Upload
    deez34p

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    1/21

    1

    SUPERSONIC JET NOISE FROM A CONICAL

    C-D NOZZLE WITH FORWARD FLIGHT

    EFFECTS

    David Munday,*

    Nick Heeb

    and Ephraim Gutmark

    University of Cincinnati

    Markus O. Burak

    and Lars-Erik Eriksson**

    Chalmers University of Technology

    Erik Prisell

    FMV

    Flow and far-field noise measurements are taken on a conical Convergent-

    Divergent nozzle similar to the nozzles employed on high-performancetactical jets. Matching flow and far-field computations are presented,

    produced by Large Eddy Simulation and the Kirchhoff integral method.The conditions examined are those in which the nozzle is operated at its

    design Mach number of 1.56 while forward flight is simulated at Mach

    numbers of 0.1, 0.3 and 0.8. Both measurement and LES show thatincreasing forward flight Mach number to the high subsonic range

    shortens the initial shock cell size, and weakens the shock cells induced by

    the nozzle throat relative to the shock cells induced by the nozzle lip. LESshows that high forward flight speed substantially reduces the noise

    radiated into the forward quadrant where shock noise is dominant. It alsoremoves the screech tone entirely.

    Nomenclature

    a Speed of soundDt Throat diameter

    De Exit diameterLES Large Eddy Simulation

    Md Design Mach numberMj Fully expanded jet Mach number

    M2 Secondary flow Mach numberNPR Nozzle Pressure Ratio

    * Graduate Student; member AIAA. , [email protected] Graduate Student; member AIAA., [email protected] Distinguished Professor; Fellow AIAA. ,[email protected]

    Ph.D. Student; member AIAA, [email protected]** Professor; member AIAA, [email protected] Strategic specialist; Aero-propulsion

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    2/21

    2

    SPL Sound Pressure LevelSt Strouhal Number; St = fDe/uJOASPL Over-All Sound Pressure Level

    uj Fully expanded velocity

    Angle from the upstream axis

    Introduction

    High-speed military aircraft are typically powered by low-bypass turbofan engines with amixed exhaust, re-heat and a variable geometry convergent-divergent exhaust nozzle. As

    the altitude and operating condition of the engine varies, the nozzles employed adjusts to

    match the mass flow and jet Mach number to some extent, but they have internal flowcontours which are far from ideal and they are rarely shock free. This means that these

    engines generally produce shock-associated noise as well as the turbulent mixing noisecharacteristic of subsonic or perfectly expanded jets.

    The noise levels produced by these jets are quite strong. They produce near-field

    pressures which are hard on personnel, aircraft structure and equipment, and far-fieldnoise which disturbs neighbors around air bases and training areas. Limitation of this

    noise will reduce wear and tear on crews and equipment and reduce noise complaints

    from those in the neighborhood.

    There has been a fair amount of work published on noise reduction for subsonic,

    commercial jet engines. The greatest gains in improving subsonic jets have come by

    reducing the jet velocity while increasing the jet radius to maintain the desired thrust.Increasing jet radius means increasing engine radius and increasing aircraft drag so this

    approach becomes less desirable as the aircraft velocity increases. Other approaches to

    decreasing subsonic jet noise usually involve mixing enhancements which reduce thelow-frequency noise while increasing high-frequency noise.

    When we shift to supersonic jets we have all the problems associated with mixing noise

    to contend with, but we also have additional sources of noise resulting from shocks andPrandtl-Meyer waves forming shock cells or shock diamonds in the jet itself.

    Figure 1 shows a typical far-field spectrum of an imperfectly expanded supersonic jet

    measured upstream of the nozzle exit. The figure depicts the three main noisecomponents as was also described previously [1, 2].

    The narrow peak with a Strouhal number of 0.32 is a screech tone. Screech is excited by

    acoustic waves that are generated by interaction between shear layer vortices and shockstructures in the jet, which propagate upstream and excite flow instabilities at the nozzles

    lip. These energized structures are convected downstream and further interact with the

    shocks to form a feedback loop (cite Powell). Screech has been investigated by Umeda

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    3/21

    3

    and Ishii using the Schlieren technique [3]. In their experimental study the authors tried

    to identify the locations and the behavior of the sound sources of the screech tone. Anamplification of the overall sound pressure level of an underexpanded and heated

    supersonic jet was observed in the forward quadrant (upstream) and a reduction in the

    mixing noise was found in the aft quadrant (downstream). The Strouhal number

    corresponding to the screech frequency was found to decrease with forward-flight Machnumber, a result consistent with a formula for prediction of the screech frequency [5].

    The broader peak at higher frequency than the screech tone is the broadband shock-associated noise peak. This peak is produced by coherent structures convecting through

    the shock cells. This source exhibits a Doppler shift in frequency moving the frequency

    higher as the observer moves to aft angles. At aft angles this peak also becomes broaderand reduces in level. The peak direction of radiation of broadband shock-associated

    noise is in the forward quadrant, typically around 30. The majority of broadband shock-

    associated noise occurs in the vicinity of shocks near the end of the potential core [5].

    Both screech and broadband shock-associated noise are added to the turbulent mixingnoise that is present in jets whether they are supersonic or subsonic. This source is

    generally dominated by the shock cell noise at forward angles and at frequencies at andabove the screech frequency. Mixing noise remains the dominant source as frequencies

    below the screech tone at all angles and is the dominant source observed at aft angles.

    Experimental Facility and Procedure

    The Gas Dynamics and Propulsion Laboratory at the University of Cincinnati (UC-GDPL) has a scale model of a separate-flow jet engine exhaust system. For the present

    experiment a convergent-divergent nozzle is fitted to the primary flow and the secondary

    flow is used to simulate forward flight effects. The nozzle under study has an area ratioof 1.23, corresponding to a design Mach number , Md, of 1.56 and a design NPR of 4.00.

    The exit diameter, De, is 57.5mm. The radius of curvature at the throat is 0.5 mm and the

    exit lip thickness is 0.5mm. A secondary flow nozzle has been constructed to give nearlyuniform flow outside the primary flow nozzle. Several configurations of secondary

    nozzles axial location relative to the center nozzle were tested and it was determined that

    the shadowgraph images were independent of the particular configuration. Secondary

    flow Mach numbers, M2, of 0.1, 0.3 and 0.8 are considered. The nozzle details are shownin Figure 2. The completed test article is show in Figure 3. The model is mounted in the

    University of Cincinnati Aeroacoustic Test Facility (UCATF) which is a 24 x 25 x 11

    test chamber which has been acoustically treated to be anechoic down to 350 Hz. Figure

    4(a) shows the layout of the facility.

    Instrumentation

    Eight quarter inch microphones are arrayed along the depicted arc at angles from 35 to

    150 measured from the upstream axis of the jet. The microphones are placed at 3.43mor 60 exit diameters from the nozzle exit. The facility is more fully described in

    Callender, Gutmark & DiMicco [6]. The microphone signals are filtered above 100 kHz

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    4/21

    4

    and recorded at 200 kHz for 10 seconds. The flow variables are monitored at 4 Hz in

    order to establish and hold the desired operating condition of the model. Variablesrecorded include the ambient conditions in the chamber as well as the flow stagnation

    temperature and pressure.

    In order to map the near-field acoustics, eight microphones are mounted on a linear rakewhich is in turn mounted on a large three-axis traverse. The rake is stepped through a

    rectangular region just outside the main flow region. The resulting grid of pressure

    fluctuations can then be analyzed on an OASPL basis or the particular spectral rangespertinent to different mechanisms can be mapped to look at source location and direction

    of propagation. Typical mapped regions are shown in Figure 4(b).

    Detailed flow-field mapping is performed by Particle Image Velocimetry (PIV). The PIV

    system is built by LaVision and the entire PIV suite, laser and cameras are mounted on a

    traverse which allows the system to be translated, undisturbed, to any streamwise locationallowing many cross-cuts to be measured without the loss of time in changing setups and

    without the uncertainties which come from repeated adjustment of components. Theflow is seeded with olive oil droplets with diameters on the order of 1 m. A 500 mJ

    New Wave Research nd:YAG double-pulse laser is passed through sheet-forming opticsto illuminate the seed an the images are captured in stereo by a pair of LaVision 1376 x

    1040 12-bit PIV cameras.

    The high gradient features in the flow are visualized by the shadowgraph technique. An

    Oriel 66056 arc lamp is used for illumination. A pair of 12 parabolic first-surface

    mirrors with a 72 focal length are employed to collimate the light before the model andthen to focus the beam after. The image is captured with a LaVision Imager Intense

    cross-correlation CCD camera with 1376 x 1040 pixel resolution and 12-bit intensity

    resolution. This gives a spatial resolution on the order of 0.01 or 0.004 throat diameters.A 28-300 zoom lens is mounted to the camera which allows optimization of the field of

    view. The aperture is left completely open and exposure is controlled by mounting a

    filter. Averaging 100 images eliminates the turbulence and gives a clear view of theshock and Prandtl-Meyer waves.

    Point measurements of static pressure and Mach number are performed using a

    supersonic five-hole conical probe. The probe, a United Sensor model SDF-15-6-15-600,has a truncated cone with a half angle of 15, a total pressure port is located at the tip of

    the truncated cone and four side ports are evenly spaced around the conic surface. When

    the side port pressure values are averaged the Mach number result is insensitive to yaw

    angle changes up to 10 [13].

    Numerical approach

    The evolution of the flow is considered to follow the compressible form of the continuity,momentum and energy equations in which the viscous stress and the heat flux have been

    defined using Newton's viscosity law and Fourier's heat law, respectively. This set of

    equations is often referred to as the Navier-Stokes equations.

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    5/21

    5

    The code used for the simulations is one of the codes in the G3D family of finite volumemethod codes developed by Eriksson [7]. These codes solve the compressible flow

    equations in conservative form on a boundary-fitted, curvilinear non-orthogonal multi-

    block mesh. To enable simulations with a large number of degrees of freedom, routines

    have been implemented for parallel computations using Message Passing Interface (MPI)libraries. The Favre-filtered Navier-Stokes equations were solved using a finite volume

    method with a low-dissipation third-order upwind-biased scheme for the convective

    fluxes and a second-order centered difference approach for the diffusive fluxes. Thesubgrid-scale model used in the present work is the Smagorinsky part of the model

    proposed by Erlebacher et al. [8] for compressible flows. The temporal derivatives were

    calculated using a second-order three-stage Runge-Kutta technique. Detaileddescriptions of the numerical scheme and boundary conditions are given in Eriksson [7],

    Andersson [9] and Burak [10].

    Computational Domain

    The computational domain was discretized using a block-structured boundary-fitted meshwith 249 mesh blocks and approximately 16M nodes. The domain is divided into two

    parts: a high-resolution region around the nozzle and a medium dense LES region. See

    Figure 5 and Figure 6. The mesh is constructed using a combination of Cartesian andpolar mesh blocks in order to ensure mesh homogeneity in the radial direction throughout

    the domain. Along the centerline, a Cartesian mesh block of square cross-section was

    used in order to avoid centerline singularity. See Figure 7. At the nozzle inlet total

    pressure and total enthalpy are specified. Entrainment velocities at the outer radial boundof the computational domain are obtained by using a 2D extension of the domain

    representing the flow outside the LES domain. In order to minimize the reflections at the

    domain outlet on the predicted flow, a damping zone was added at the domain outlet. Thecorrect wall friction is obtained through the use of wall functions where needed.

    Sound Propagation

    For sound evaluation at a far-field observer, Kirchhoff [11] surface integral formulation

    was used. For a point outside a surface enclosing all generating structures, this is amethod for predicting the value of a property, , which is governed by the wave

    equation. The integral relation is given by

    +

    =

    SxdS

    tn

    r

    rcnrn

    r

    rty

    r

    )(11

    4

    1),(

    2

    vv

    where yv

    is the observer location in the far-field and xv

    is a location on the surface. ris

    related to the observer evaluation of time, t, distance from observer to surface location,

    || xyrvv

    = , and the speed of sound in the far-field, c , as

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    6/21

    6

    =c

    rtr

    The expression within the brackets in the equation above is thus evaluated at retarded

    time, i.e. emission time.

    Description of Results

    The preliminary efforts in this project were to establish valid boundary conditions for theLES, validate the LES code and take preliminary flow and acoustical measurements.

    Pitot and hot film traverses were taken inside the inlet piping in the stilling section after

    the flow straightening hardware and turbulence educing screens. The area ratio at thisstation A0/A* = 8.07 giving M0 = 0.072 for all NPRs above 1.89. Conditions measured in

    the stilling section were used as inlet boundary conditions for the LES. Pitot traverses

    were made at the exit of the secondary flow nozzle to confirm that uniform flow existed

    in the vicinity of the models outer contour.

    Measurements were taken while holding the jet fully expanded Mach number, Mj, to

    within 0.01. Temperature ratio was held to within 0.04. Secondary flow Mach number,M2, was held to within 0.03. All these to a 20:1 confidence interval.

    Mean Axial velocity contours are shown in Figure 8. In all cases the nozzle is operating

    at its design condition, Mj = Md = 1.56, T0/Ta = 1.22. Three secondary flow Mach

    numbers are shown. M2 = 0.1, 0.3 and 0.8. In the left column are measurements by PIVwhile in the right column are predictions from LES. The agreement between the two is

    very good.

    Centerline pressure is compared between a cone probe measurement and LES in Figure 9.In each case the LES data has been shifted 0.3 De upstream to align the first peak. The

    shapes of the centerline pressure curves match well, though there is a slowly growing

    difference in axial position between the two indicating a small difference in shock cellspacing. For the first two secondary flow conditions we see that the length of the shock

    train is over-predicted by the LES. The cone probe run for the M2 = 0.8 run was

    terminated early due to a hardware malfunction. The agreement between LES and coneprobe is fairly good as far as we have data to check.

    Examining the mean velocity contours in Figure 8 we can see that the lower twosecondary flow Mach numbers clearly show two shock cell structures superimposed on

    one another in a double diamond. The first of these structures emerges from inside thenozzle and reflects from the shear layer at around 0.15 to 0.17 De. The reflected wave

    crosses the centerline at x/De = 0.8. The second, anchored to the nozzles trailing edgelip, is the shock cell structure seen in smoothly contoured nozzles. This wave crosses the

    center at around x/De = 0.5. The two superimposed structures forming the double

    diamond have been previously observed for unheated jets from conical C-D nozzleswithout secondary flow by Munday, Gutmark, Liu and Kailasanath [12]. At the higher

    secondary flow Mach number (M2 = 0.8) the shock cell structure from the lip becomes

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    7/21

    7

    slightly shorter, crossing the centerline at x/De = 0.4 while the structure from inside the

    nozzle becomes much less pronounced.

    At high subsonic secondary flow Mach number the structure from inside the nozzle

    becomes indistinct in PIV, but it can still be discerned in shadowgraph. Figure 10 shows

    shadowgraph images of nine secondary flow Mach numbers ranging from M2 = 0.0 to0.8. The vertical lines aid in tracking features in the images. They are aligned with the

    features in the first image (M2 = 0.0) and we can see how the features move relative to

    this condition in subsequent images.

    Features associated with the lip wave are marked with green lines. The first green line is

    at the nozzle lip itself. The second green line, the dashed green line, is aligned with thepoint where lip wave crosses the centerline. This crossing point remains fixed up to M2 =

    0.4 after which it begins to move upstream. The third green line tracks the first reflection

    of the lip wave from the shear layer which likewise moves upstream past M2 = 0.4.

    Features associated with the wave from inside the nozzle are tracked by the red lines.The first red line follows the first reflection of this wave from the shear layer. The

    second red line, the dashed one, follows the point at which this reflected internal wavecrosses the centerline. The third red line follows the second reflection of this wave from

    the shear layer. These features also move upstream, but they also become weaker as

    secondary flow Mach number increases. For M2 above 0.7 is becomes difficult to makeout the center crossing of this wave, but the reflection can be seen as high as M2 = 0.8.

    Instantaneous Mach number contours from LES are shown in Figure 11 for M2 = 0.1.The lower subfigure shows a close-up view of the inside of the nozzle where PIV can not

    reach. We can see that there is a shock wave shed from the nozzle throat producing aMach disk at x/D

    e= -0.32. The onward traveling shock wave exits the nozzle and

    reflects from the shear layer at z/De = 0.17 or so. The Mach disk sheds a slip line which

    is clearly visible in the PIV as well as the LES confirming the details of the in-nozzleflow structure.

    Looking at instantaneous total temperature in a series of cross-stream planes shows the

    development and mixing of the hot high-speed jet with cool lower speed secondary flowin Figure 12. The cross-planes range from x/De = 1 to 9. Moving from x/De = 1 through

    3 we can see the jet boundary become convoluted as large scale structures in the shear

    layer mix the hot with cold fluid. By x/De = 7 there is little if any unmixed fluid, butbeyond this point we do see pockets of higher enthalpy as the jet flaps and flickers.

    Far-field acoustics were measured in the laboratory and calculated from the LES. Spectrafor the nozzle operating at its design condition and M2 = 0.1 are shown in Figure13 range

    of inlet angles. In both the measurement and the simulation we see the typical features

    associated with shock associated noise. A screech tone appears at 2200 Hz with a

    broadband peak at 2600-5000Hz in the forward-most angle, shifting to higher frequenciesas the observer moves aft. Measurement and simulation are compared in detail for the

    forward-most angle in Figure 14. The agreement for M2 = 0.1 is outstanding. The M2 =

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    8/21

    8

    0.3 case is fairly good, with the screech tones in fair agreement, but some difference in

    the shape of the broadband hump. We show no measurement for M2 = 0.8 because theouter shear layer, between the Mach 0.8 secondary flow and the ambient atmosphere is a

    significant sound source itself, contaminating the measurement. The effect of high

    subsonic secondary flow on the spectrum is striking. The screech tone in eliminated and

    the overall sound level is substantially reduced.

    Distribution of OASPL in azimuth by LES is shown in Figure 15 for M2 = 0.3 and 0.8. It

    can be seen that the increased secondary flow substantially reduces the forward radiatingcomponents dominated by shock generated noise. There is s small elevation of sound

    radiation to side and aft angles.

    Finally we examine the effect of Mj on the sound production for the lower two secondary

    flow velocities. For both M2 = 0.1 and 0.3 we can see a strong screech at the off-design

    condition, both overexpanded and underexpanded. This screech diminishes and shiftsfrequency at a point slightly above the design Mach number. Increasing secondary flow

    velocity causes a larger region of diminished screech. For M2 = 0.1 there is nodiminution in the broad-band shock associated noise near the design condition. For M2 =

    0.3 the broad-band shock noise is reduced in the overexpanded condition except for aregion of higher broadband noise from Mj = 1.25 to 1.35. Looking at the same data on an

    OASPL bases we see in Figure 17 that there is a minimum in the curve for M 2 = 0.1 near

    the design condition (Pe/Patm = 1). Compared to the data of Seiner and Yu the minimumis shallow, due to the fact that while the screech is reduced at the design condition, there

    is no reduction in broad-band noise. When the secondary flow Mach number is increased

    to 0.3, the minimum becomes shallower still.

    Discussion and Conclusions

    The goal of this project is to employ a joint experimental/computational approach to

    investigate the acoustic properties of conical C-D nozzles and to explore the influence of

    forward flight effects on the flow field and sound field. LES provided us a tool to lookwhere it is difficult to measure in terms of location and in terms of operating condition.

    Simulating large forward flight effects in the laboratory generates a secondary shear layer

    between the flight simulation flow and the ambient air. This introduces additional sound

    sources which contaminate the measurement.

    We have demonstrated that the LES approach employed captures the physics necessary to

    produce the double-diamond shock cell structure that is characteristic of conical C-D

    nozzles even at their design condition. There are some small differences in terms ofshock cell spacing, shock train length and shear layer spreading rate, but overall the LES

    captures the flow features and accurately reproduced the far field acoustic radiation.

    The influence of increasing the secondary flow Mach number on the double-diamond jetis to reduce the initial shock cell size and to weaken the waves emanating from inside the

    nozzle relative to the waves shed from the nozzle lip.

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    9/21

    9

    LES and CAA enabled us to predict the acoustic radiation at higher secondary flow Mach

    number (higher simulated forward flight speed) than we would be able to measure. Wefind that the influence of high subsonic forward flight is to eliminate the screech and to

    strongly reduce the forward radiated sound characteristic of shock containing jet noise.

    Acknowledgements

    The authors would like to acknowledge the support of the Swedish Defense MaterielAdministration (FMV) which provided financial support for this research and Volvo

    Aero Corporation which provided technical guidance in the design of the nozzle and

    selection of test conditions. The computations were performed on computing resources

    at the National Supercomputer Centre in Sweden (NSC).

    References

    1. Seiner, John M. (1984). Advances in High Speed Jet Aeroacoustics. AIAA/NASA 9th

    Aeroacoustics Conference. AIAA-84-2275.

    2. Shih, F. S., Alvi, D.M. (1999). Effects of Counterflow on the Aeroacoustic

    Properties of a Supersont Jet. Journal of Aircraft, 36:451-457.

    3. Umeda, Y., and Ishii, R. (2001). On the sound sources of screech tones radiated

    from choked circular jets J. Acoust. Soc. Am, 110:1845-1858.

    4. Tam, C.K.W. (1991). Jet noise generated by large-scale coherent motion

    Aeroacoustics of Flight Vehicles: Theory and Practice, NASA RP 1258, Vol. 1.

    5. Seiner, J.M., Yu, J.C. (1984). Acoustic near-field properties associated withbroadband shock noiseAIAA Journal, 22:1207-1215.

    6. Callender, B., Gutmark, E. and Dimicco, R. (2002). The design and validation of acoaxial nozzle acoustic test facility, AIAA-2002-369.

    7. Eriksson, L.-E. 1995 Development and validation of highly modular flow solverversions in g2dflow and g3dflow. Internal report 9970-1162. Volvo Aero Corporation,

    Sweden.

    8. Erlebacher, G., Hussaini, M. Y., Speziale, C. G. & Zang, T. A.1992 Toward the

    large-eddy simulation of compressible turbulent flows. Journal of Fluid Mechanics 238,155-185.

    9. Andersson, N. 2005 A study of subsonic turbulent jets and their radiated sound using

    Large-Eddy Simulation. PhD thesis, Division of Fluid Dynamics, Chalmers University of

    Technology, Gothenburg.

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    10/21

    10

    10. Burak, M. 2007 Large Eddy Simulation for the Analysis of Jet Noise Suppression

    Devices. Licentiate thesis, Division of Fluid Dynamics, Chalmers University ofTechnology, Gothenburg.

    11. Kirchhoff, G. R. 1883 Zur theorie der lichtstrahlen. Annalen der Physik und Chemie

    18, 663-695.

    12. Munday, D., Gutmark, E., Liu J. and Kailasanath, K. (2008). Flow and Acoustic

    Radiation from Realistic Tactical Jet C-D Nozzles. 14th AIAA/CEAS AeroacousticsConference (29th AIAA Aeroacoustics Conference), May 5-7, 2008, Vancouver, British

    Columbia, AIAA-2008-2838.

    13. Cooper, M., and Webster, R. (1951). The use of an uncalibrated cone for

    determination of flow angles and Mach numbers at supersonic speeds, NACA-TN-

    2190.

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    11/21

    11

    Figure 2 Nozzle simulating the exhaust of a tactical jet. (a) entire model showing station definitions; Station

    0 is the location where inlet measurements are made in the stilling chamber, Station 1 is joint in the wettedsurface between this nozzle and the existing hardware, Station * is the throat, station e is the exit plane of the

    nozzle (b) nozzle details. De = 57.5mm, Area Ratio = 1.23, curvature radius at throat = 0.5 mm. Exit lip

    thickness = 0.5mm.

    (a) (b)

    0 1 * e

    Turbulent mixing noise

    Screech

    Figure 1 Far-field acoustic spectrum (forward quadrant; = 30, MD = 1.575, MJ = 1.575, M2 = 0.1).

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    12/21

    12

    Figure 4 Plan view of UC-GDPLs Aeroacoustic Test Facility. (a) far-field acoustic arrangement. (b) near-

    field acoustic arrangement.(a) (b)

    Figure 3 Convergent-divergent nozzle installed. (a) complete test article. (b) close-up of nozzle.(a) (b)

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    13/21

    13

    Medium-resolution

    LES domain

    Buffer

    zone

    High-

    resolution

    LES domain

    Figure 5 The computational domain is divided into two sections: a high-resolution region for high resolution

    of boundary layers and initial shear layers and a medium-resolution LES region optimized for propagation of

    acoustic waves.

    Figure 6 A slice through the domain at y=0, i.e. a xz-plane in the high-resolution LES region.

    Figure 7 Slice through the computational domain at constant x, i.e. a yz-plane. Combining Cartesian and

    polar grid blocks enhances the radial direction grid homogeneity throughout the domain.

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    14/21

    14

    Figure 8 Mean Axial velocity Mj = Md = 1.56, T0/Ta = 1.22.

    PIV, M2 = 0.1

    PIV, M2 = 0.3

    PIV, M2 = 0.8

    LES, M2 = 0.3

    LES, M2 = 0.8

    u [m/s]

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    15/21

    15

    Figure 9 Centerline pressure Mj = Md = 1.56, T0/Ta = 1.22.

    M2 = 0.1

    M2 = 0.3

    M2 = 0.8

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    16/21

    16

    M2 = 0.0

    M2 = 0.1

    M2 = 0.2

    M2 = 0.3

    M2 = 0.4

    M2 = 0.5

    M2 = 0.6

    Figure 10 Shadowgraph. One hundred images averaged to suppress turbulence and emphasize shock cells.

    Mj = Md = 1.56, T0/Ta = 1.22. Solid lines descend from reflections at the shear layer in M2 = 0.0. Dashed lines

    descend from waves crossing the centerline in M2 = 0.0. Green lines pertain to the wave from the lip. Red

    lines pertain to the wave from inside.

    M2 = 0.7

    M2 = 0.8

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    17/21

    17

    Figure 11 Instantaneous Mach number Mj = Md = 1.56, T0/Ta = 1.22, M2 = 0.1.

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    18/21

    18

    Figure13 Far-field acoustic spectra, Mj = Md = 1.56, T0/Ta = 1.22, M2 = 0.1.

    Mics LES

    Figure 12 Instantaneous total temperature by LES, Mj = Md = 1.56, T0/Ta = 1.22, M2 = 0.1.

    x = 1De x = 2De x = 3De

    x = 4De x = 5De x = 6De

    x = 7De x = 8De x = 9De

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    19/21

    19

    M2 = 0.1

    Figure 14 Upstream far-field acoustic spectra compared, Mj = Md = 1.56 T0/Ta = 1.22, = 35M2 = 0.3 M2 = 0.8

    Figure 15 Far-field SPL directivity from LES . o M2 = 0.1, o M2 = 0.8

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    20/21

    20

    Figure 16 Measured 35 Far-field spectra for a range of jet Mach numbers for, T0/Ta = 1.22. (a) M2 = 0.1.(b) M2 = 0.3.

    (a)

    (b)

  • 8/3/2019 David Munday et al- Supersonic Jet Noise from a Conical C-D Nozzle with Forward Flight Effects

    21/21

    Figure 17 Measured 35 Far-field OASPL for a range of jet Mach numbers for, T0/Ta = 1.22.

    100

    105

    110

    115

    120

    125

    130

    0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

    Pe/Patm = NPRJ/NPRD

    OASPL[dB]at=

    3

    5

    M2 = 0.1

    M2 = 0.3

    Seiner & Yu