91
10.12.2009 1 Data Mining MTAT.03.183 Text Mining Text Mining Social Network Analysis Graph Mining Jaak Vilo 2009 Fall Topics Information Retrieval Text Mining Web Mining Social Network Analysis friends, epidemiology, coauthoring, cocitation, espionage espionage,… Graph Mining STACC Jaak Vilo and other authors UT: Data Mining 2009 2

Data Mining MTAT.03.183 Text Mining Social Network

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

10.12.2009

1

Data Mining MTAT.03.183

Text MiningText MiningSocial Network Analysis

Graph Mining

Jaak Vilo

2009 Fall

Topics

• Information Retrieval

• Text Mining

• Web Mining

• Social Network Analysis

– friends, epidemiology, co‐authoring, co‐citation, espionageespionage, …

• Graph Mining

• STACC

Jaak Vilo and other authors UT: Data Mining 2009 2

10.12.2009

2

Books

• Feldman, Sanger: The Text Mining Handbook

• Information Retrieval

• Web Mining

Jaak Vilo and other authors UT: Data Mining 2009 3

Materials

• Modern Information Retrieval by Ricardo Baeza‐Yates and Berthier Ribeiro‐Neto.Berthier Ribeiro Neto. – http://people.ischool.berkeley.edu/~hearst/irbook/– http://www.amazon.co.uk/Modern‐Information‐Retrieval‐ACM‐

Press/dp/020139829X/ref=sr_1_1?ie=UTF8&s=books&qid=1228237684&sr=8‐1

– http://books.google.com/books?id=HLyAAAAACAAJ&dq=modern+information+retrieval

– New edition in May 2009 (overdue?)

• Google Books: Information Retrievalhtt //b k l /b k ? i f ti t i l– http://books.google.com/books?q=information+retrieval

• ESSCaSS’08 : Ricardo Baeza‐Yates and Filippo Menczer– http://courses.cs.ut.ee/schools/esscass2008/Main/Materials

10.12.2009

3

Topics

• Information Retrieval

• Text Mining

• Web Mining

• Social Network Analysis

– friends, epidemiology, co‐authoring, co‐citation, espionageespionage, …

• Graph Mining

Jaak Vilo and other authors UT: Data Mining 2009 5

ConceptsInformation Retrieval ‐ the study of systems for representing, indexing (organising), searching (retrieving) and recalling (delivering) data(retrieving), and recalling (delivering) data.

Information Filtering ‐ given a large amount of data, return the data that the user wants to see

Information Need ‐ what the user really wants to know; a query is an approximation to the i f ti dinformation need. 

Query ‐ a string of words that characterizes the information that the user seeks

Browsing ‐ a sequence of user interaction tasks that characterizes the information that the user seeks

10.12.2009

4

Documents

• News, articles

L l l d t• Laws, legal documents

• Scientific publications, patents

• E‐mail

• Technical documents

• Books

• Encyclopediae

• Dictionaries

• …

Jaak Vilo and other authors UT: Data Mining 2009 7

Information Retrieval

• DB of indexed documents

• Query

• Find documents relevant to query

Jaak Vilo and other authors UT: Data Mining 2009 8

10.12.2009

5

Jaak Vilo and other authors UT: Data Mining 2009 9

More features

• Metadata

• Context

• Hypertext – xrefs

• Language

• Structured vs unstructured

• Semantics

• Tags

• …Jaak Vilo and other authors UT: Data Mining 2009 10

10.12.2009

6

Jaak Vilo and other authors UT: Data Mining 2009 11

Jaak Vilo and other authors UT: Data Mining 2009 12

10.12.2009

7

TP

FP

FN

TN

T=TrueF=False

Jaak Vilo and other authors UT: Data Mining 2009 13

P=PositivesN=Negative

Jaak Vilo and other authors UT: Data Mining 2009 14

10.12.2009

8

Jaak Vilo and other authors UT: Data Mining 2009 15

Jaak Vilo and other authors UT: Data Mining 2009 16

10.12.2009

9

Web search

• data mining university of tartu fall 2009 

• Java

• Paris Hilton

• climate change

Jaak Vilo and other authors UT: Data Mining 2009 18

10.12.2009

10

Jaak Vilo and other authors UT: Data Mining 2009 19

Jaak Vilo and other authors UT: Data Mining 2009 20

10.12.2009

11

Jaak Vilo and other authors UT: Data Mining 2009 21

Web search enginesRooted in Information Retrieval (IR) systems

•Prepare a keyword index for corpus

•Respond to keyword queries with a ranked list of•Respond to keyword queries with a ranked list of documents.

ARCHIE•Earliest application of rudimentary IR systems to the Internet

•Title search across sites serving files over FTP

10.12.2009

12

Document representation

• Feature vector

– Bag of words 

• vector Di – which words are present

– Query Q

– similarity M(Q, Di) = Q ∙ Di (scalar product)

– Weighted version – easy to generalise

Jaak Vilo and other authors UT: Data Mining 2009 23

TF‐IDF

• Term Frequency – Inverted Document Frequency

h f d f• Weights: frequent in doc, infrequent in DB

– Measures frequency, and relevance

– TF‐IDF(w,d) = tf(w.d)*idf(w)

TF‐IDF_Weight(w,d) = Term_Frequency(w,d)*log(N/DocFreq(w))

• log( N / 1+DocFreq(w) ) to avoid division by 0 if not in the database at all…

Jaak Vilo and other authors UT: Data Mining 2009 24

10.12.2009

13

Boolean queries: Examples

• Simple queries involving relationships b t t d d tbetween terms and documents– Java (documents containing word Java)

– Java AND (NOT coffee) Java -coffee

• Proximity queries– phrase “Java beans” or the term API

Mining the Web Chakrabarti and Ramakrishnan 25

– phrase Java beans or the term API

– Documents where Java and island occur in the same sentence

Document preprocessing

• Tokenization– Filtering away tags

– Tokens regarded as nonempty sequence of characters excluding spaces and punctuations.

– Token represented by a suitable integer, tid,

Mining the Web Chakrabarti and Ramakrishnan 26

typically 32 bits

– Optional: stemming/conflation of words

– Result: document (did) transformed into a sequence of integers (tid, pos)

10.12.2009

14

Storing tokens

• Straight-forward implementation using a l ti l d t brelational database

– Example figure

– Space scales to almost 10 times

• Accesses to table show common pattern– reduce the storage by mapping tids to a

Mining the Web Chakrabarti and Ramakrishnan 27

– reduce the storage by mapping tids to a lexicographically sorted buffer of (did, pos) tuples.

– Indexing = transposing document-term matrix

Mining the Web Chakrabarti and Ramakrishnan 28

Two variants of the inverted index data structure, usually stored on disk. The simplerversion in the middle does not store term offset information; the version to the right stores termoffsets. The mapping from terms to documents and positions (written as “document/position”) maybe implemented using a B-tree or a hash-table.

10.12.2009

15

Storage

• For dynamic corpora– Berkeley DB2 storage manager

– Can frequently add, modify and delete documents

• For static collections– Index compression techniques (to be

Mining the Web Chakrabarti and Ramakrishnan 29

Index compression techniques (to be discussed)

Stopwords• Function words and connectives• Appear in large number of documents and little

i i i ti d tuse in pinpointing documents• Indexing stopwords

– Stopwords not indexed• For reducing index space and improving performance

– Replace stopwords with a placeholder (to remember the offset)

Mining the Web Chakrabarti and Ramakrishnan 30

• Issues– Queries containing only stopwords ruled out– Polysemous words that are stopwords in one sense

but not in others• E.g.; can as a verb vs. can as a noun

10.12.2009

16

Stemming

• Conflating words to help match a query term with a morphological variant in the corpus.

• Remove inflections that convey parts of speech, tense and number

• E.g.: university and universal both stem to universe.

• Techniques– morphological analysis (e.g., Porter's algorithm)

– dictionary lookup (e.g., WordNet).

• Stemming may increase recall but at the price of precisionAbbre iations pol sem and names coined in the technical and

Mining the Web Chakrabarti and Ramakrishnan 31

– Abbreviations, polysemy and names coined in the technical and commercial sectors

– E.g.: Stemming “ides” to “IDE”, “SOCKS” to “sock”, “gated” to “gate”, may be bad !

Batch indexing and updates

• Incremental indexingTime consuming due to random disk IO– Time-consuming due to random disk IO

– High level of disk block fragmentation

• Simple sort-merges.– To replace the indexed update of variable-length

postings

• For a dynamic collection

Mining the Web Chakrabarti and Ramakrishnan 32

• For a dynamic collection– single document-level change may need to update

hundreds to thousands of records.

– Solution : create an additional “stop-press” index.

10.12.2009

17

Mining the Web Chakrabarti and Ramakrishnan 33

Maintaining indices over dynamic collections.

Relevance ranking

• Keyword queriesIn natural language– In natural language

– Not precise, unlike SQL• Boolean decision for response unacceptable

– Solution• Rate each document for how likely it is to satisfy the user's

information need

S t i d i d f th

Mining the Web Chakrabarti and Ramakrishnan 34

• Sort in decreasing order of the score

• Present results in a ranked list.

• No algorithmic way of ensuring that the ranking strategy always favors the information need– Query: only a part of the user's information need

10.12.2009

18

Responding to queries

• Set-valued response– Response set may be very large

• (E.g., by recent estimates, over 12 million Web pages contain the word java.)

• Demanding selective query from user

• Guessing user's information need and

Mining the Web Chakrabarti and Ramakrishnan 35

granking responses

• Evaluating rankings

Mining the Web Chakrabarti and Ramakrishnan 36

Precision and interpolated precision plotted against recall for the given relevance vector. Missing are zeroes.kr

10.12.2009

19

Beyond keyword search

Jaak Vilo and other authors UT: Data Mining 2009 37

Bayesian Inferencing

Bayesian inference network for relevance ranking. A Manual specification of

Mining the Web Chakrabarti and Ramakrishnan 38

document is relevant to the extent that setting its corresponding belief node to true lets us assign a high degree of belief in the node corresponding to the query.

mappings between terms to approximate concepts.

10.12.2009

20

Bayesian Inferencing (contd.)

• Four layers1.Document layer

2.Representation layer

3.Query concept layer

4.Query

• Each node is associated with a random

Mining the Web Chakrabarti and Ramakrishnan 39

• Each node is associated with a random Boolean variable, reflecting belief

• Directed arcs signify that the belief of a node is a function of the belief of its immediate parents (and so on..)

NLP – Natural Language Processing

• Tokenisation – words, sentences

• Part‐of‐Speech (POS) tagging 

– articles, nouns, verbs, adjective, number, … (87+?)

• Syntactical Parsing

• Shallow Parsing

Jaak Vilo and other authors UT: Data Mining 2009 40

10.12.2009

21

Text Categorisation

• Indexing texts with controlled vocabularies

• Document sorting, text filtering

– topic

– spam

• Hierarchical web page categorisation 

Y h ! t– Yahoo! , etc

Jaak Vilo and other authors UT: Data Mining 2009 41

• Single label vs multilabel

– overlapping

– binary

– Multilabel can be represented by binary classifiers

• Document or category – pivoted

• Hard vs Soft• Hard vs Soft

Jaak Vilo and other authors UT: Data Mining 2009 42

10.12.2009

22

Bridging the gap: raw data vs actionable information

Document Management

SystemsSearch

Technicaldocumentation

Email

CRM

News Stories

Personalisation

Analysis

Alerting

Tagging

Jaak Vilo and other authors UT: Data Mining 2009 43

News Stories

Web pages

Decision Support

Machine Readable Machine Understandable

Topics

• Information Retrieval

• Text Mining

• Web Mining

• Social Network Analysis

– friends, epidemiology, co‐authoring, co‐citation, espionageespionage, …

• Graph Mining

Jaak Vilo and other authors UT: Data Mining 2009 44

10.12.2009

23

Information Extraction (IE)

• Information extraction tasks…

Jaak Vilo and other authors UT: Data Mining 2009 45

Typical subtasks of IE are

• Content Noise Removal– remove noise contents. For example, tagclouds, navigational menu, related contents, and context 

l t d d ti trelated advertisements.

• Named Entity Recognition (NER)– recognition of entity names (for people and organizations), place names, temporal expressions, and 

certain types of numerical expressions.

• Coreference resolution: – detection of coreference and anaphoric links between text entities. In IE tasks, this is typically 

restricted in finding links between previously extracted named entities. For example, "International Business Machines" and "IBM" refer to the same real world entity.

• Terminology extraction: finding the relevant terms for a given corpusgy g g p

• Relationship Extraction: identification of relations between entities, such as: – PERSON works for ORGANIZATION (extracted from the sentence "Bill works for IBM.")

– PERSON located in LOCATION (extracted from the sentence "Bill is in France.")

Jaak Vilo and other authors UT: Data Mining 2009 46

10.12.2009

24

Example from Feldman

Jaak Vilo and other authors UT: Data Mining 2009 47

Intelligent Auto-Tagging(c) 2001, Chicago Tribune. Visit the Chicago Tribune on the Internet at http://www.chicago.tribune.com/ Distributed by Knight Ridder/Tribune

<Facility>Finsbury Park Mosque</Facility>

<Country>England</Country>

<Country>England</Country>

<Country>France </Country>

Information Services. By Stephen J. Hedges and Cam Simpson

<PersonPositionOrganization><OFFLEN OFFSET="3576" LENGTH=“33" /><Person>Abu Hamza al-Masri</Person><Position>chief cleric</Position><Organization>Finsbury Park Mosque</Organization>

y g y

<Country>United States</Country>

<Country>Belgium</Country>

<Person>Abu Hamza al-Masri</Person>

…….

The Finsbury Park Mosque is the center of radical Muslim activism in England. Through its doors have passed at least three of the men now held on suspicion of terrorist activity in France, England and Belgium, as well as one Algerian man in prison in the United States.

g y q g</PersonPositionOrganization>

<PersonArrest><OFFLEN OFFSET="3814" LENGTH="61" /><Person>Abu Hamza al-Masri</Person><Location>London</Location><Date>1999</Date><Reason>his alleged involvement in a Yemen bomb

plot</Reason></PersonArrest>

<City>London</City>

``The mosque's chief cleric, Abu Hamza al-Masri lost two hands fighting the Soviet Union in Afghanistan and he advocates the elimination of Western influence from Muslim countries. He was arrested in London in 1999 for his alleged involvement in a Yemen bomb plot, but was set free after Yemen failed to produce enough evidence to have him extradited. .''

……

10.12.2009

25

Intelligence Article

IE Accuracy by Information Type

Information Type

Accuracy

Entities 90-98%

Attributes 80%

Facts 60-70%

Events 50-60%

10.12.2009

26

Jaak Vilo and other authors UT: Data Mining 2009 51

Ontologies

• Names, synonyms, objects…

• Controlled vocabularies

• Ontologies – definitions and relationships

Jaak Vilo and other authors UT: Data Mining 2009 52

10.12.2009

27

Topics

• Information Retrieval

• Text Mining

• WebMining

• Social Network Analysis

– friends, epidemiology, co‐authoring, co‐citation, espionageespionage, …

• Graph Mining

Jaak Vilo and other authors UT: Data Mining 2009 53

History of Hypertext

• Citation,– Hyperlinking

• Ramayana, Mahabharata, Talmud– branching, non-linear discourse, nested

commentary,

• Dictionary encyclopedia

Mining the Web Chakrabarti and Ramakrishnan 54

Dictionary, encyclopedia– self-contained networks of textual nodes

– joined by referential links

10.12.2009

28

Hypertext systems

• Memex [Vannevar Bush, 1945]– stands for “memory extension”stands for memory extension– photoelectrical-mechanical storage and

computing device– Aim: to create and help follow hyperlinks

across documents

• Hypertext

Mining the Web Chakrabarti and Ramakrishnan 55

yp– Coined by Ted Nelson– Xanadu hypertext (1981): system with

• robust two-way hyperlinks, version management, controversy management, annotation and copyright management.

• http://www.robotwisdom.com/web/timeline.html

H T i t' Ti li f H t t Hi t• HyperTerrorist's Timeline of Hypertext History

• Jorn Barger . . . . . . . . . . . . . . . . . . . . . . 4 March 1996

Jaak Vilo and other authors UT: Data Mining 2009 56

10.12.2009

29

World-wide Web• Initiated at CERN (the European Organization for Nuclear

Research)B Ti B L– By Tim Berners-Lee

• GUIs– Berners-Lee (1990)

– Erwise and Viola(1992), Midas (1993)

• Mosaic (1993)– a hypertext GUI for the X-window system

Mining the Web Chakrabarti and Ramakrishnan 57

– HTML: markup language for rendering hypertext

– HTTP: hypertext transport protocol for sending HTML and other data over the Internet

– CERN HTTPD: server of hypertext documents

World Wide WebHypertext documents

•Text

•Links•Links

Web•billions of documents

•authored by millions of diverse people

•edited by no one in particulary p

•distributed over millions of computers, connected by variety of media

Chakrabartihttp://www.cse.iitb.ac.in/~soumen/mining-the-web/

10.12.2009

30

Mining the Web Chakrabarti and Ramakrishnan 59

The early days of the Web : CERN HTTP traffic grows by 1000between 1991-1994 (image courtesy W3C)

Mining the Web Chakrabarti and Ramakrishnan 60

The early days of the Web: The number of servers grows from a few hundred to a million between 1991 and 1997 (image courtesy Nielsen)

10.12.2009

31

1994: the landmark year

• Foundation of the “Mosaic C i ti C ti "Communications Corporation"

• first World-wide Web conference

• MIT and CERN agreed to set up the World-wide Web Consortium (W3C).

Mining the Web Chakrabarti and Ramakrishnan 61

Web: A populist, participatory medium

• number of writers =(approx) number of dreaders.

• the evolution of MEMES– ideas, theories etc that spread from person to

person by imitation.

– Now they have constructed the Internet !!

Mining the Web Chakrabarti and Ramakrishnan 62

Now they have constructed the Internet !!

– E.g.: “Free speech online", chain letters, and email viruses

10.12.2009

32

Abundance and authority crisis

• liberal and informal culture of content generation and disseminationand dissemination.

• Very little uniform civil code.

• redundancy and non-standard form and content.

• millions of qualifying pages for most broad queries

Mining the Web Chakrabarti and Ramakrishnan 63

– Example: java or kayaking

• no authoritative information about the reliability of a site

Problems due to Uniform accessibility

• little support for adapting to the b k d f ifibackground of specific users.

• commercial interests routinely influence the operation of Web search– “Search Engine Optimization“ !!

Mining the Web Chakrabarti and Ramakrishnan 64

10.12.2009

33

Hypertext data

• Semi-structured or unstructured– No schema

• Large number of attributes

Mining the Web Chakrabarti and Ramakrishnan 65

Jaak Vilo and other authors UT: Data Mining 2009 66

10.12.2009

34

Jaak Vilo and other authors UT: Data Mining 2009 67

Jaak Vilo and other authors UT: Data Mining 2009 68

10.12.2009

35

Jaak Vilo and other authors UT: Data Mining 2009 69

Jaak Vilo and other authors UT: Data Mining 2009 70

10.12.2009

36

Crawling and indexing

• Purpose of crawling and indexingquick fetching of large number of Web pages into a– quick fetching of large number of Web pages into a local repository

– indexing based on keywords

– Ordering responses to maximize user’s chances of the first few responses satisfying his information need.

Mining the Web Chakrabarti and Ramakrishnan 71

• Earliest search engine: Lycos (Jan 1994)

• Followed by….– Alta Vista (1995), HotBot and Inktomi, Excite

Topic directories

• Yahoo! directory– to locate useful Web sites

• WWW-Wärk (www.ee), Neti (www.neti.ee)

• Efforts for organizing knowledge into ontologies

Centralized: (Yahoo!)

Mining the Web Chakrabarti and Ramakrishnan 72

– Centralized: (Yahoo!)

– Decentralized: About.COM and the Open Directory

10.12.2009

37

Clustering and classification

• Clustering– discover groups in the set of documents such that– discover groups in the set of documents such that

documents within a group are more similar than documents across groups.

– Subjective disagreements due to • different similarity measures• Large feature sets

• Classification

Mining the Web Chakrabarti and Ramakrishnan 73

– For assisting human efforts in maintaining taxonomies – E.g.: IBM's Lotus Notes text processing system &

Universal Database text extenders

Hyperlink analysis

• Take advantage of the structure of the Web graphgraph.– Indicators of prestige of a page (E.g. citations)

– HITS & PageRank

• Bibliometry– bibliographic citation graph of academic papers

Topic distillation

Mining the Web Chakrabarti and Ramakrishnan 74

• Topic distillation– Adapting to idioms of Web authorship and linking

styles

10.12.2009

38

Resource discovery and vertical portals

• Federations of crawling and search iservices

– each specializing in specific topical areas.

• Goal-driven Web resource discovery– language analysis does not scale to billions of

documents

Mining the Web Chakrabarti and Ramakrishnan 75

documents

– counter by throwing more hardware

Structured vs. Web data mining

• Traditional data mining– data is structured and relational– data is structured and relational– well-defined tables, columns, rows, keys, and

constraints.

• Web data– readily available data rich in features and patterns– spontaneous formation and evolution of

t i i d d h l t

Mining the Web Chakrabarti and Ramakrishnan 76

• topic-induced graph clusters • hyperlink-induced communities

• Goal of book: discovering patterns which are spontaneously driven by semantics,

10.12.2009

39

Crawl “all” Web pages?

• Problem: no catalog of all accessible URL th W bURLs on the Web.

• Solution: – start from a given set of URLs

– Progressively fetch and scan them for new outlinking URLs

Mining the Web Chakrabarti and Ramakrishnan 77

outlinking URLs

– fetch these pages in turn…..

– Submit the text in page to a text indexing system

– and so on……….

Crawling procedure

• Simple Great deal of engineering goes into ind str– Great deal of engineering goes into industry-strength crawlers

– Industry crawlers crawl a substantial fraction of the Web

– E.g.: Alta Vista, Northern Lights, Inktomi

• No guarantee that all accessible Web

Mining the Web Chakrabarti and Ramakrishnan 78

• No guarantee that all accessible Web pages will be located in this fashion

• Crawler may never halt …….– pages will be added continually even as it is

running.

10.12.2009

40

Crawling overheads

• Delays involved in– Resolving the host name in the URL to an IP

address using DNS

– Connecting a socket to the server and sending the request

– Receiving the requested page in response

Mining the Web Chakrabarti and Ramakrishnan 79

• Solution: Overlap the above delays by– fetching many pages at the same time

Anatomy of a crawler.

• Page fetching threads– Starts with DNS resolution– Starts with DNS resolution – Finishes when the entire page has been fetched

• Each page – stored in compressed form to disk/tape – scanned for outlinks

• Work pool of outlinks

Mining the Web Chakrabarti and Ramakrishnan 80

– maintain network utilization without overloading it• Dealt with by load manager

• Continue till he crawler has collected a sufficientnumber of pages.

10.12.2009

41

Mining the Web Chakrabarti and Ramakrishnan 81

Typical anatomy of a large-scale crawler.

Large-scale crawlers: performance and reliability considerations

• Need to fetch many pages at same time– utilize the network bandwidth– single page fetch may involve several seconds of network

latency

• Highly concurrent and parallelized DNS lookups• Use of asynchronous sockets

– Explicit encoding of the state of a fetch context in a data structure

– Polling socket to check for completion of network transfers

Mining the Web Chakrabarti and Ramakrishnan 82

Polling socket to check for completion of network transfers– Multi-processing or multi-threading: Impractical

• Care in URL extraction– Eliminating duplicates to reduce redundant fetches– Avoiding “spider traps”

10.12.2009

42

Jaak Vilo and other authors UT: Data Mining 2009 83

Jaak Vilo and other authors UT: Data Mining 2009 84

10.12.2009

43

What does WWW look like?

Jaak Vilo and other authors UT: Data Mining 2009 85

Jaak Vilo and other authors UT: Data Mining 2009 86

10.12.2009

44

Jaak Vilo and other authors UT: Data Mining 2009 87

Jaak Vilo and other authors UT: Data Mining 2009 88

10.12.2009

45

Jaak Vilo and other authors UT: Data Mining 2009 89

Graph G=(V,E)

• V – vertices (nodes)

• E – edges (arcs, connections)

Jaak Vilo and other authors UT: Data Mining 2009 90

10.12.2009

46

B

A

2009/12/10CS4335 Design and Analysis of Algorithms 

/WANG LushengPage 91

Find a shortest path from station A to station B.

-need serious thinking to get a correct algorithm.

Representation For An Undirected Graph

92

10.12.2009

47

Representation For A Directed Graph

1 bit per entry

93

Jaak Vilo and other authors UT: Data Mining 2009 94

10.12.2009

48

Jaak Vilo and other authors UT: Data Mining 2009 95

Jaak Vilo and other authors UT: Data Mining 2009 96

10.12.2009

49

Jaak Vilo and other authors UT: Data Mining 2009 97

Jaak Vilo and other authors UT: Data Mining 2009 98

10.12.2009

50

Jaak Vilo and other authors UT: Data Mining 2009 99

Jaak Vilo and other authors UT: Data Mining 2009 100

10.12.2009

51

Jaak Vilo and other authors UT: Data Mining 2009 101

Jaak Vilo and other authors UT: Data Mining 2009 102

10.12.2009

52

Jaak Vilo and other authors UT: Data Mining 2009 103

Topics

• Information Retrieval

• Text Mining

• Web Mining

• Social Network Analysis

– friends, epidemiology, co‐authoring, co‐citation, espionageespionage, …

• Graph Mining

Jaak Vilo and other authors UT: Data Mining 2009 104

10.12.2009

53

Jaak Vilo and other authors UT: Data Mining 2009 105

Skype: 400+MFacebook: 350+M

Social network of 9/11 hijackers

Jaak Vilo and other authors UT: Data Mining 2009 106

10.12.2009

54

Running Example

Hijackers by Flight

Flight 77 Pentagon Flight 11 WTC 1 Flight 175 WTC 2 Flight 93 PAFlight 77 : Pentagon Flight 11 : WTC 1 Flight 175 : WTC 2 Flight 93: PA

Khalid Al-Midhar Satam Al Suqami Marwan Al-Shehhi Saeed Alghamdi

Majed Moqed Waleed M. Alshehri Fayez Ahmed Ahmed Alhaznawi

Nawaq Alhamzi Wail Alshehri Ahmed Alghamdi Ahmed Alnami

Salem Alhamzi Mohamed Atta Hamza Alghamdi Ziad Jarrahi

Hani Hanjour Abdulaziz Alomari Mohald Alshehri

10.12.2009

55

Jaak Vilo and other authors UT: Data Mining 2009 109

Jaak Vilo and other authors UT: Data Mining 2009 110

10.12.2009

56

Jaak Vilo and other authors UT: Data Mining 2009 111

Jaak Vilo and other authors UT: Data Mining 2009 112

http://www.cs.cmu.edu/~jure/pubs/msn-www08.pdf

10.12.2009

57

240M nodes30B conversations180M, 1.3B

average 6.6 degrees

social aspects

Jaak Vilo and other authors UT: Data Mining 2009 113

Jaak Vilo and other authors UT: Data Mining 2009 114

10.12.2009

58

Jaak Vilo and other authors UT: Data Mining 2009 115

Jaak Vilo and other authors UT: Data Mining 2009 116

10.12.2009

59

Jaak Vilo and other authors UT: Data Mining 2009 117

Jaak Vilo and other authors UT: Data Mining 2009 118

10.12.2009

60

Smaller scale questions

FriendsFriends

Bars

Jaak Vilo and other authors UT: Data Mining 2009 119

Drinks

http://yury.name/webguide/02webguide.pdf

Friends

v’

Friends

Bars

Jaak Vilo and other authors UT: Data Mining 2009 120

Drinks

10.12.2009

61

Suggestions:

Friends

v’

Friends

Bars

Jaak Vilo and other authors UT: Data Mining 2009 121

Drinks

Possible questions in SNA

• Prestige

• Centrality

• Co‐citation/co‐occurrence

• Radius/diameter

• …

Jaak Vilo and other authors UT: Data Mining 2009 122

10.12.2009

62

Prestige

• p = vector of prestige values

• E ‐ citations

• E[i,j] – document i cites document j

• Calculate a new prestige where prestige of citing documents is added to current prestige

Jaak Vilo and other authors UT: Data Mining 2009 123

Jaak Vilo and other authors UT: Data Mining 2009 124

10.12.2009

63

Prestige

• p’ = ET pp p

• Find fixpoint, starting with p=(1,…n)T

u

upvuEvp ][],[]['

pEupuvEvp T

u

T ][],[]['

Find fixpoint, starting with p (1,…n)• Ensure p is normalised at each step, ||p||=1

• p converges to the principal eigenvector of ET

Jaak Vilo and other authors UT: Data Mining 2009 125

Attributes

Objects

Jaak Vilo and other authors UT: Data Mining 2009 126

10.12.2009

64

Jaak Vilo and other authors UT: Data Mining 2009 127

Centrality

• Importance notion based on centrality

• removing a central node disconnects the graph to large components

• d(u,v) the shortest‐path distance between u and v

• r(u) max d(u v) radius of node u• r(u) = maxv d(u,v) ‐ radius of node u

• arg minu r(u)  ‐ center of the graph

• Various other notions of centrality in the literatureJaak Vilo and other authors UT: Data Mining 2009 128

10.12.2009

65

Topics

• Information Retrieval

• Text Mining

• Web Mining

• Social Network Analysis

– friends, epidemiology, co‐authoring, co‐citation, espionageespionage, …

• Graph Mining

Jaak Vilo and other authors UT: Data Mining 2009 129

Jaak Vilo and other authors UT: Data Mining 2009 130

10.12.2009

66

Finding the modules

Jüri Reimand: GraphWeb. Genome Informatics, CSHL. Nov 1 2007

IntAct: Protein interactions (PPI), 18773 interactionsIntAct: PPI via orthologs from IntAct, 6705 interactions MEM: gene expression similarity over 89 tumor datasets, 46286 interactionsTransfac: gene regulation data, 5183 interactions

Public datasets for H.sapiens

Finding the modules

Jüri Reimand: GraphWeb. Genome Informatics, CSHL. Nov 1 2007

IntAct: Protein interactions (PPI), 18773 interactionsIntAct: PPI via orthologs from IntAct, 6705 interactions MEM: gene expression similarity over 89 tumor datasets, 46286 interactionsTransfac: gene regulation data, 5183 interactions

Public datasets for H.sapiens

10.12.2009

67

Module evaluation

Jüri Reimand: GraphWeb. Genome Informatics, CSHL. Nov 1 2007

GO: JAK-STAT cascade, Kinase inhibitor activity

Insulin receptor signaling pw.KEGG: Type II diabetes mellitus

GO:Transforming growth factor beta signaling pw.embryonic development, gastrulationKEGG: Cell cycle, cancers, WNT pw.

GO: Brain developmentPigment granule

Melanine metabolic process

MCL clustering algorithm

• Markov (Chain Monte Carlo) Clustering

Stijn van Dongen

– http://www.micans.org/mcl/

• Random walks according to edge weights

• Follow the different paths according to their probability

• Regions that are traversed “often” form clusters

10.12.2009

68

Stijn van Dongen

http://www.micans.org/mcl/intro.html

10.12.2009

69

Approximation and compression = learning

= X

Jaak Vilo and other authors UT: Data Mining 2009 137

Jaak Vilo and other authors UT: Data Mining 2009 138

http://www.cs.cmu.edu/~christos/PUBLICATIONS/sdm07-lsm.pdf

10.12.2009

70

We need to understand

• how networks emerge

• what are their properties

• features

• how to calculate interesting/important characteristics

Jaak Vilo and other authors UT: Data Mining 2009 139

Jaak Vilo and other authors UT: Data Mining 2009 140

http://www.cs.cmu.edu/~deepay/mywww/papers/csur06.pdfACM Computing Surveys, Vol. 38, March 2006,

10.12.2009

71

Jaak Vilo and other authors UT: Data Mining 2009 141

• Graphs and networks – also other types

• http://www.weizmann.ac.il/mcb/UriAlon/

– => Complex networks

Jaak Vilo and other authors UT: Data Mining 2009 142

10.12.2009

72

Jaak Vilo and other authors UT: Data Mining 2009 143

Jaak Vilo and other authors UT: Data Mining 2009 144

10.12.2009

73

Jaak Vilo and other authors UT: Data Mining 2009 145

Jaak Vilo and other authors UT: Data Mining 2009 146

10.12.2009

74

Jaak Vilo and other authors UT: Data Mining 2009 147

Jaak Vilo and other authors UT: Data Mining 2009 148

10.12.2009

75

Jaak Vilo and other authors UT: Data Mining 2009 149

Jaak Vilo and other authors UT: Data Mining 2009 150

10.12.2009

76

Jaak Vilo and other authors UT: Data Mining 2009 151

Jaak Vilo and other authors UT: Data Mining 2009 152

10.12.2009

77

Jaak Vilo and other authors UT: Data Mining 2009 153

Jaak Vilo and other authors UT: Data Mining 2009 154

10.12.2009

78

Jaak Vilo and other authors UT: Data Mining 2009 155

Jaak Vilo and other authors UT: Data Mining 2009 156

10.12.2009

79

Jaak Vilo and other authors UT: Data Mining 2009 157

Jaak Vilo and other authors UT: Data Mining 2009 158

10.12.2009

80

Jaak Vilo and other authors UT: Data Mining 2009 159

Ricardo Baeza-Yates

STACCSoftwareTechnologies and Applications

Competence CenterJaak Vilo

November 26, 2009

10.12.2009

81

Partners

Research Tracks and Programs

Data Integration and Mining (DIM)

1.1 Web Analytics and Social 

Network Analysis

1.2 Biomedical data integration and mining

1.3 Privacy‐Preserving Data 

Mining

Software and Services Engineering

Delfi, Logica, Quretec, Regio, Skype

ITK, Cybernetica, Quretec Cybernetica, Swedbank,Quretec

162

2.1 Smart Internet Interfaces

2.2 Smart Services2.3 Software Development Productivity

Delfi, Regio, Webmedia

Webmedia, Regio, Logica, Cybernetica

Webmedia, Logica, Cybernetica, KnowIT

10.12.2009

82

• Methods for analysing the structure and dynamics of very large social networks and raw web usage data in order to

1.1 Web Analytics and Social Network Analysis

large social networks and raw web usage data in order to discover user clusters, user goals, service or product consumption patterns, customer churning patterns, spam and fraud patterns and other patterns of individual or collective user behaviour.

• Application to user interface personalization and re‐organization, personalized search, targeted advertising, peer‐g , p , g g, pto‐peer network monitoring, and derivation of e‐Business metrics associated to advertising, customer acquisition and retention/churning, and business intelligence.

163Delfi, Logica, Quretec, Regio, Skype

10.12.2009

83

Web usage mining

10.12.2009

84

Activities

1. Social Network Analysis

• mining of very large (400M nodes, x 10 edges) graphs for elementary properties

2. Web (and software) log mining 

• warehousing

• clustering, viusalisation, decision support …clustering, viusalisation, decision support …

3. User Intent Prediction 

• real time learning of user intent and goals

• collaborative filtering

10.12.2009

85

• To develop data integration and analysis methods for electronic patient records and biomarker data

1.2 Biomedical data integration and mining

for electronic patient records and biomarker data with the goal of improving the (early) diagnosis and medical treatment of the diseases.

• Complex disease of COPD as the proof of principle

• Mining Electronic patient records and E‐Health data

• UT – data mining; TTU – medical know‐how and data

• Hospital and e‐health solutions

169ITK, Cybernetica, Quretec, + E-Health, Medicum, Finnish NIH

10.12.2009

86

Activities

1. COPD patient cohort buildup based on ki t h t i tismoking etc characteristics

2. Data warehousing and decision support for hospital e‐health data

3. Introducing ontologies into clinic

4 Text mining of medical records4. Text mining of medical records

To develop and to evaluate privacy‐enhancing methods for datastorage and processing, along two complementary directions:

1.3 Privacy‐Preserving Data Mining

storage and processing, along two complementary directions:

1. Security of micro‐data releases and query auditing: Detection and elimination of possible privacy breaches indata to be published, and detection of queries to (medical and financial) databases that may breach the privacy of individuals.

2 Privacy‐preserving data aggregation: Development of secure2. Privacy‐preserving data aggregation: Development of secure and practically efficient methods for aggregating data from multiple sources, that leak nothing beyond the end aggregate results.

172Cybernetica, Swedbank, Skype

10.12.2009

87

Privacy preserving DM

Q: sexual behavior ofQ: sexual behavior of HIV patients?

# sex partners: 2 34 0

Privacy preserving DM

AVERAGE = 12876113 764224

9823

1235 68612

AVERAGE   12876113126531

764224

# sex partners: 2 34 0

10.12.2009

88

Privacy preserving DM

AVERAGE = 12876113 764224 AVERAGE   12876113126531

764224

ShareMind

10.12.2009

89

Activities in 1.3

1. Micro‐data  protection mechanisms

2. An environment for developing privacy‐preserving applications

3. Demonstration: questionnaire system

4. Protocol analysis for secret‐shared applicationsapplications

4 Sep 2008

10.12.2009

90

42 nodes2 x 4-core cpu

336 core

HPC @ UT anno 2009

336 core

32 GB / node1.2 TB RAM

Ultrafast network(Infiniband)

UT Inst of CS:32-core, 256GB RAM

Oktoober 2009

The first record is dated 10/01/2009, last record is dated 10/31/2009.

Wallclock Average AverageUsername Group #jobs days Percent #nodes q-days Full name-------- ----- ----- --------- ------- ------- ------- ---------

TOTAL - 36187 7293.91 100.00 1.64 0.07cipo users 363 3445.66 47.24 1.85 0.07 Heiki Kasemagi

thcmob users 33397 1427.46 19.57 1.00 0.06 Juri Reimandbronto hirlam 119 759.92 10.42 8.21 0.12 Andres Luhamaa

ivan users 102 566.69 7.77 48.87 0.13 Ivan Suhhonenkobayazit1 users 649 510.45 7.00 1.00 0.31 Bayazit Yunusbaevpriit85 users 69 184.23 2.53 1.00 0.17 Priit Priimagi

maitb users 467 180.12 2.47 1.00 0.21 Mait Metspalualfonsog users 28 106.21 1.46 1.01 0.02 Alfonso Tlatoani Garcia-Sosa

jaas users 8 57.53 0.79 13.80 0.04 Jaas Jezovsiims users 124 21 12 0 29 1 00 0 01 Siim Sobersiims users 124 21.12 0.29 1.00 0.01 Siim Sober

t6nuesko users 629 16.87 0.23 1.00 0.08 Tonu Eskoa72094 users 40 13.72 0.19 1.00 0.03 Kaur Alasoo

wire users 43 2.07 0.03 1.00 0.00 Lauri Juhan Liivamagilauria users 95 0.89 0.01 9.31 0.00 Lauri Antonreidar users 46 0.81 0.01 1.00 1.29 Reidar Andreson

kasak105 users 4 0.17 0.00 8.00 0.09 Kait Kasakeero users 4 0.00 0.00 1.00 0.00 Eero Vainikko

10.12.2009

91

Conclusions

• Data Mining is a rich and diverse field

• Driven by data, curiosity, business value

• Algorithmics, Statistics, Visualisation, …

• Decision support/actionable information