16
Single-frequency operation of a Cr:YAG laser from 1332-1554 nm David Welford and Martin A. Jaspan Paper CThJ1, CLEO/QELS 2000 San Francisco, CA May 11, 2000

Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Single-frequency operation of a Cr:YAG laser from 1332-1554 nm

David Welford and Martin A. JaspanPaper CThJ1, CLEO/QELS 2000

San Francisco, CAMay 11, 2000

Page 2: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Outline

• Properties of Cr:YAG• Cr:YAG laser design considerations• Broadband laser results• Single frequency design and results• Summary

Page 3: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Cr4+:YAG energy-level diagram ( D2d )

3B1

3B2

3E, 3A2

3E

3E

3A2

1A1, 1B1

1A1, 1B2, 1A2

1E

1E

Pump

ESAESA

LaserNon-radiative

Complications:Cr3+ ionsCharge-compensation ionsMultiple sites

Ref: Chang et al, OSA TOPS Vol. 19, ASSL

Page 4: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Cr:YAG emission (not gain) spectrum

Eilers et al, IEEE JQE 29, 2508 (1993)

Page 5: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Water-vapor absorption is an issue

0

10

20

30

40

50

60

70

80

90

100

1300 1350 1400 1450 1500 1550 1600

Wavelength (nm)

Abs

orpt

ion

(%)

6 Torr pressure, 1-m path

Page 6: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Tetrahedral symmetry for Cr in YAG leads to large transition cross sections, short lifetime

Crystal Centerwavelength

(nm)

Tuningrange(nm)

Eff. gaincross

section(10-19 cm2)

Lifetime(μs)

Max.eff.

Ti:sapphire 800 680-1100 2.5-3 3.2 1.0Cr:LiSAF 850 780-1050 0.32 67 0.53Cr:YAG 1430 1340-1570 3 4 0.25Cr:ZnSe 2400 2300-2500 8 7 1.0Ce:LiSAF 292 280-297 60 0.028 0.35-0.7

Note: we measured 4.5-4.6 microseconds Cr:YAG lifetime at 300 K(radiative QE is likely less than unity, since 4 K lifetime is 25-30 usec)

Page 7: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Cr:YAG absorption spectrum

Eilers et al, IEEE JQE 29, 2508 (1993)

Pump

3B2, 3E, 3A23E??

Page 8: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Design considerations for cw Cr:YAG lasers

• For various reasons, the concentration of Cr4+ centers is limited, so pump absorption is typically 1 cm-1

– This limits pump focusing because of diffraction of pump beam in crystal absorbing region. Favors diffraction-limited pump laser.

• ESA of pump, bleaching of ground state absorption and thermal quenching call for minimizing pumping levels– Both output coupling and cavity losses must be minimized to

permit reasonable efficiencies. Gain is limited.– Crystal temperature rise must be minimized to avoid

increasing the threshold pump level• Despite variations in crystal environment for active ion, the

broadband nature of the vibronic transition means the laser is essentially homogeneously broadened– Elimination of spatial hole burning should lead to single-

frequency operation, similar to Nd:YAG and Ti:sapphire

Page 9: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Pump laser is diode side-pumped Nd:YLF

Gain module

Diode Laser bar

Nd:YLF slab1047 nm

System is early prototype of Q-Peak MPS-1047 CW 10Available TEM00 pump power ≈ 7 W

Page 10: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Standing-wave, Cr:YAG broadband tuning

0

200

400

600

800

1000

1200

1400

1340 1380 1420 1460 1500 1540 1580

Wavelength (nm)

Out

put p

ower

(mW

)

T = 0.50%

T = 1.25%

T = 1.75%Pump: 7.3 W

Page 11: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Towards tunable, single-frequency operation

• Basic approach to single-frequency operation was to make a unidirectional, 4-mirror ring cavity, similar to Ti:sapphire ring laser

• Because of the low gain in Cr:YAG and the need to minimize intracavity losses, the choice of an optical diode is critical. For the non-reciprocal element, we looked at:– YIG– TGG– Various glasses– Cr:YAG

• The best results were obtained by using the gain medium itself as the element. We placed a small magnet near the laser crystal, and aligned the cavity out of plane to compensate for the Faraday rotation

Page 12: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Schematic of Cr:YAG single-frequency laser

Single-platebirefringent tuner

Cr:YAG CRYSTAL(in magnetic field)

OUTPUT

PUMPLENS

1047-nm PUMP BEAM

M1M2

M3M4

CaF2 ETALON

MPS-1047 CW10DIODE-PUMPEDNd:YLF LASER

Page 13: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Cr:YAG laser layout

Cr:YAG

BRF

OC HREtalon

Pump

Page 14: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Single-frequency tuning curves

0

100

200

300

400

500

600

700

800

1300 1350 1400 1450 1500 1550 1600

Wavelength (nm)

Out

put p

ower

(mW

)

Mirror set 1

Mirror set 2

T=0.5%

T=0.1%

Page 15: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Scanning Confocal Etalon traces

Upper trace:100x expansion3.6 MHz linewidth(etalon limit)

Lower trace:Two peaks2 GHz spacing(etalon FSR)

Page 16: Cr:YAG laser layout - Q-Peak 2000... · 2014. 11. 15. · 2 3E, 3A 2 3E 3E 3A 2 1A 1, 1B 1 1 A 1, 1B 2 1 2 1E 1E Pump ESA ESA Laser Non-radiative Complications: Cr3+ ions Charge-compensation

Summary

• Cr:YAG has some fundamental limits to efficiency and gain because of the ion energy-level structure and interaction with the host crystal

• Despite these limits, Cr:YAG, when pumped by a diffraction-limited, multi-Watt laser, can provide Watt-level cw outputs in a broadly tunable wavelength region centered around 1470 nm

• Because the laser transition is essentially homogeneously broadened, efficient, single-frequency operation is possible by elimination of spatial hole-burning

• We obtained single-frequency, broadly tunable (1332-1554 nm) operation (0.68 W max. power) by using the laser crystal itself as the Faraday element in a unidirectional, non-planar ring cavity