38
ControlOriented Model of a Hypersonic Vehicle (MASTRIM) Containing an Integrated, Advanced Propulsion SubModel (MASIV) Jim Driscoll, Sean Torrez, Derek Dalle University of Michigan, Michael Bolender, Jonathan Muse, AFRL 1 September 2012

Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

  • Upload
    others

  • View
    2

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Control-­‐Oriented  Model  of  a  Hypersonic    Vehicle  (MASTRIM)    -­‐    

 Containing  an  Integrated,  Advanced    Propulsion  Sub-­‐Model  (MASIV)  

Jim  Driscoll,    Sean  Torrez,    Derek  Dalle  University  of  Michigan,  

   Michael  Bolender,    Jonathan  Muse,  AFRL  

1  September  2012  

Page 2: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

A.   MoNvaNon  

B.   Results  prior  to  last  year  

C.   Results  for  last  year  

D.   Next  year’s  plans  

Outline  

2  

Page 3: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

3  

A.   MoNvaNon    Develop  an  improved  “control-­‐oriented”  model  by  significantly  modifying  Doman-­‐Bolender  model          -­‐  hypersonic  vehicle  (MASTRIM)  with  integrated  propulsion  (MASIV)    -­‐  compute  liD,  drag,  thrust,  moments  in  1  sec  on  PC  using  ROMs  

     

 -­‐  including  realisIc  shock  interacIons  in  the  inlet,      -­‐  combustor  finite  rate  chemistry,  3-­‐D  mixing    -­‐  nozzle  expansion  waves  to  compute  lower  edge  shear  layer    -­‐  add  operability  limits:    ram-­‐scram,  unstart,  flame-­‐out  

   

Page 4: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

4  

B.    MoNvaNon    Ascent  trajectory  of  MAX-­‐1  trimmed  vehicle  1.  OpImizaIon  study    -­‐  how  to  minimize  fuel  ?  2.  MDO  study                              –  opImize  geometry  (surrogate  vs.  collocaIon)  3.          Delivered  to  MIT          -­‐    linearized  A,  B  matrices,  poles  and  zeros  

 Generic  hypersonic  vehicle  geometry  (GHV,  HiFIRE6)  8.        Add  3-­‐D  shock  interacIons  to  inlet  (3-­‐D  Riemann  problem)  9.        Add  ethylene  fuel  “lookup  tables”    

 Operability  Limits    4.        When  does  ram-­‐scram  occur  ?  5.        How  much  do  forces  jump  at  ram-­‐scram  ?  controllability  ?  6.        When  does  unstart  occur  ?  7.  Can  a  “befer”  trajectory  avoid  unstart  ?  

Page 5: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

5  

MoNvaNon  

A  Reduced  Order  Model  (ROM)  is  required      Suppose  vehicle  ascends  along  a  constant  dynamic  pressure  path  

 We  ask:  when  does  ram-­‐scram  transiIon  occur  ?      

 

AlItude  (km)  

Flight  Mach  Number  

acceleraIon  q  =  

0.6  atm  0.8  atm  1.0  atm  

Computed  ram-­‐scram  transiIon  boundaries  

To  generate  this  plot:    liD,  drag,  thrust,  moments  were  computed  1500  Imes  =                            (guess  15  AoA’s  to  trim)  X  5  (q  values  )  X  20  alItude  values  /curve    

MAX-­‐1  

Page 6: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

6  

MoNvaNon  ROM  is  best  when  thousands  of  force  computaIons  are  needed    -­‐  when  opImizing  the  trajectory  -­‐  when  generaIng  operaIng  maps  -­‐  for  geometry  opImizaIon  (MDO)    ROM  provides  understanding  of  Operability  Limits    -­‐  Unstart  Margin  -­‐      understand  what  factors  help  or  hurt  -­‐  Ram-­‐scram  transiIon    -­‐  esImate  large  jump  in  forces  -­‐  Engine  Flameout    -­‐  need  finite  rate  chemistry    

ROM  is  useful  for  a  “first  look”  at  the  design  space    -­‐  First  idenIfy  a  small  number  of  problem  cases    -­‐  Understand  what  the  problem  is  -­‐  Run  high  fidelity  CFD  just  for  those  cases  

Page 7: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

7  

MoNvaNon:    Operability  Limits  –  when  does  unstart  occur  ?                                                                                  Unstart  Margin          =    L1    /      L2    L1    =    distance  between  leading  edge  of  shock  train  and  entrance  to  isolator    L2    =    total  length  of  isolator  

station: 2 3 4

inlet isolator combustor nozzle

(c)

(b)

(a)

L2

L1

1.  First  must  properly  compute  the  thermally-­‐choked  (ram)  case  

2.  Then  MASIV  predicts  isolator  back  pressure    (pback)                

3.  Length  of  shock  train  then  computed  from  experimental  relaIon  

   (L2  –  L1)    /  H        =      funcIon  (pback    /    pinlet  )  

Page 8: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

8  

For  a  short  isolator,    MASTRIM  shows  that  as  you  accelerate  too  fast    (2  m/s2)                  à    you  unstart  before  you  reach  ram-­‐scram    !  

MASIV  tells  us  one  way  to  avoid  unstart    !      

Unstart  Margin  

ßunstart  

Flight  Mach  Number  

 MASIV  predicts  the  proper  acceleraIon  path  =  lower  ER  path                à    reduce  acceleraIon  to  1  m/s2  for  the  predicted  Ime  period  

MAX-­‐1  

Page 9: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

MoNvaNon:    Operability  Limits    =      Unstart,  Flameout,                              Ram-­‐Scram  Issues  

AlItude          (h)  

Flight  Mach  Number  M∞

insufficient  liD,    insufficient  air      flow  to  trim  

flame  out    at  low    pressure  

insufficient  mixing  (low  Re)  

engine    unstart  

   ram  -­‐  scram  thermal    limit    of  wall    cooling  

4                                                                        8                                                            12  

9  

Page 10: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

B.  Results  Prior  to  Last  Year  

1.    MASTRIM    -­‐  Developed  a  6-­‐DOF  Flight  Dynamics  Model      of  a  Hypersonic  Vehicle  -­‐  based  on  Doman-­‐Bolender  trim  code        

2.      Completed  Propulsion/Vehicle  integraNon  

 a.  SAMURI    -­‐  reduced  order  inlet  &  nozzle  code                      addedà  realisIc    inlet  losses  from  mulIple  shock/expansion  interacIons.      

   rapidly  computes  lower  edge  of  exhaust  plume  

 b.  MASIV    -­‐  reduced  order  code  for  combustor        method:  lookup  tables  from  high  fidelity  3-­‐D  combusIon,  3-­‐D  mixing      added:    finite-­‐rate  chemistry  of  hydrogen  and  ethylene  fuel,    

                             gas  dissociaIon  losses  

3.      Operability  Limits  -­‐  began  methodology                -­‐    ram-­‐scram  transiIon,      engine  unstart,          flame  out  at  low  pressure  

   

10  

Page 11: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

4.  Published  three  examples:      

a)  Level  Flight      Generic  X-­‐43,  Mach  8  b)  Ascent      OperaIng  maps  (δCE,  α,  ER)  vs.  (M∞ ,  h)  c)  Turn      Poles,  zeros,  Ime  to  double  amplitude    

5.  Disseminated  the  MASTRIM  code  

B.  Prior  to  last  year  (con’t)  

Delivered  MASTRIM  to  AFRL              Demos  to  AFRL  Air  Vehicles  and  Propulsion  

     Boeing  (Bowcuf)  HunIngton  Beach  March  11          NASA  AMES  (Soloway)        Ohio  State        

Demos  at  MIT  and  NASA  Glenn  are  planned      Michael  Smart  UQ  @  HyTASP  Conference  

6.   ValidaNon  tests              vs.  high-­‐fidelity  3-­‐D  CFD  &  some  experiments  (6-­‐10%)                                  reduced  run  Ime  to  ~  1  sec  

11  

Page 12: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Developed  a  6-­‐DOF  Flight  Dynamics  Model    MASTRIM  control  parameters:      1. δCE          elevon  combined  deflecIon  angle  2. δER            equivalence  raIo  change  3. Δxc        cowl  lateral  translaIon  distance  4. Δyc        cowl  transverse  translaIon  distance  5. Δθc          cowl  flap  angle  6. εFUEL      fracIon  of  fuel  injected  at  locaIon  2      for  a  turning  trajectory:  7. δDE        elevon  differenIal  deflecIon  angle  8. δCR        rudder  combined  deflecIon  angle  9.  δDR        rudder  differenIal  deflecIon  angle    Trims  the  vehicle  Computes  poles,  zeros,  Ime  to  double  amplitude  

Δxc  

Δyc  

12  

Page 13: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Prior  to  Last  Year  –  SAMURI  inlet  ROM  

13  

Track  discrete  waves,  no  CFD  grid  used    Shocks:        exact  2-­‐D  oblique  shock  relaIons  with  real  gas  properIes  Expansions:    discreIze  conInuous  fan  into  2-­‐4  waves    Wave  interacIons:    exact  Riemann  jump  condiIons  Boundary  layers:      displace  wall  by  displacement  thickness    

inlet  losses:              PRF  =  (stagnaIon)  pressure  recovery  factor    ~  60%      inlet  compression  raIo:              p2/p∞    =  40    

Moo  =  10,    α  =  0  ,  q  =  2040  lbf/D2  

Dalle,  J.  of  Propul.  &Power,  2010  

6.6%  error  in  our  ROM  compared  to  CFD++  for  stagnaIon  pressure  raIo  

Page 14: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

14  

Prior  to  last  year:      for  nozzle,  SAMURI  predicts  lower  edge  

engine  flow  

Plume  lower  edge  

Riemann  solver  -­‐  interacIon  of            many  expansion  waves    

Dalle,  sub.    to  J.  of  Propul.&  Power,  2011  

Page 15: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

15  

MASIV  Reduced  Order  Model  of  Combustor  

   Pre-­‐computed  lookup  tables                of  finite-­‐rate  chemistry                of  jet-­‐in-­‐cross  flow  mixing        15  species,  22  reacIons      ethylene  or  hydrogen  fuel        Fuel  can  be  added  anywhere      Area  is  variable      Wall  fricIon,  heat  transfer      Real  gas  properIes    

bow              internal              isolator        const  area      diverging          external  shock                inlet burner            burner                  nozzle

∞ 1                                          2                                            3                                            4                                        5                                          e

Wake  of  jet  includes:Recirculation  zoneVortex  entrainment  

Torrez,  J.  of  Propul.      &  Power,  2011  

Page 16: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

16  

Prior  to  last  year  –  flight  dynamics  of  climbing  flight  

acceleraIon  from  Mach  7  to  Mach  11,          constant  q    &  mass  flow  air  trajectory  minimizes  total  fuel  consumpIon  

stable  –  to  –  unstable    transiIon  at  Mach  9.5  

due  to  increased  α

Page 17: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Prior  to  last  year    =  one  journal  paper,  12  AIAA  conference  papers    

 “Reduced-­‐Order  Modeling  …    Inlets”,      J.  of  Propul.  &Power,  2010.  

Last  year  =  4  journal  papers,  5  AIAA  conference  papers      1.  “Reduced  Order  Modeling  …  Scramjet”,    J.  of  Propul.  &  Power,  2011.  2.  “Reduced  Order  Modeling..    .Nozzles”,    J.  of  Propul.  &  Power,  2012.  3.          “Ram-­‐Scram  TransiIon…”          J.  of  Propul.  &  Power,  2012.  4.  “Minimum-­‐Fuel  Ascent…Using  Surrogate  OpImizaIon”,    submifed  to    JSR,  2012.  

 “Ram-­‐Scram  TransiIon…on  Ascent  Trajectory”,      to  be  submifed,  2012.  

 “Performance  Analysis  of  Variable-­‐Geometry  Scramjet  Inlets…”      AIAA  Paper  2011-­‐5756    “Design  of  …Flowpaths  …”,  AIAA  2011-­‐2380    “Turn  Performance  of  a  ….Hypersonic  Vehicle”,    AIAA  2011-­‐6300  

                 “Hypersonic  Vehicle  Flight  Dynamics…  ”,  AIAA  2010-­‐7930                  “Flight  Envelope  CalculaIons  of  a  Hypersonic  Vehicle…”    AIAA  Paper  2011-­‐2368  

   Uncertainty  PropagaIon  in  Integrated  Airframe-­‐Propulsion  Systems”,      AIAA    2011-­‐2394  

 PublicaNons,  Awards                    

17  

Sean  Torrez  won  AIAA  Airbreathing  Propulsion  Graduate  Student  Award  at  San  Diego  AIAA  JPC    

Page 18: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

18  

C.    Last  Year  -­‐  Results    Ascent  trajectory  of  MAX-­‐1  trimmed  vehicle  1.  OpImizaIon  study    -­‐  how  to  minimize  fuel  ?  2.  MDO  study                              –  opImize  geometry  (surrogate  vs.  collocaIon)  3.          Delivered  to  MIT          -­‐    linearized  A,  B  matrices,  poles  and  zeros  

 Generic  hypersonic  vehicle  geometry  (GHV,  HiFIRE6)  8.        Add  3-­‐D  shock  interacIons  to  inlet  (3-­‐D  Riemann  problem)  9.        Add  ethylene  fuel  “lookup  tables”    

 Operability  Limits    4.        When  does  ram-­‐scram  occur  ?  5.        How  much  do  forces  jump  at  ram-­‐scram  ?  controllability  ?  6.        When  does  unstart  occur  ?  7.  Can  a  “befer”  trajectory  avoid  unstart  ?  

Page 19: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

19  

C.  Last  Year:        Ascent  trajectory  –  opNmizaNon  -­‐  minimize  fuel  

Dalle,  Torrez,  Driscoll,  Bolender,  Bowcuf,  sub.  to  JSR  

24 km Altitude 32 km

minimum  fuel  trajectory:    q  =  1  atm.  

acceleraIon  varies  as:    

24 km Altitude 32 km

ER  varies  as:    

surrogate  method:    q  =  constant  compute  operaIng  maps  of:  (ER,            ,  α,  δCE,  …)    =    fcn    (M,        )    

Page 20: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

20  

Last  Year:        MDO  study    -­‐  opNmize  geometry    

Torrez,  Dalle,  Driscoll,  AIAA  2011-­‐5757  

Study  #1:        vary  locaIon  of  fuel  injecIon,  angle  of  wall  divergence    locaIon  of  wall  divergence  

Minimize  fuel  along  a  constant  q  =  1  atm.  path    

Page 21: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

21  

Study  #2:  Displace  cowl  verIcally  (Δy)  –  change  compression  raIo  Displace  cowl  horizontally  (Δx)  –  change  spillage,  mass  flow  Rotate  cowl  lip  (Δθ)  -­‐    shiD  shock  interacIon  locaIons    What  geometry  provides  best  compression  ?    Lowest  fuel  required  ?    

Last  Year:  MDO  study    -­‐  opNmize  geometry  

Dalle,  Torrez,  Driscoll,  AIAA  2011-­‐575  

Page 22: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Result  for  opNmizaNon  study:      opNmize  flowpath  

“Performance  Analysis  of  Variable-­‐Geometry  Scramjet  Inlets…”      AIAA  Paper  2011-­‐5756  

Varied:  δ xcowl                  M∞            δ ycowl  α δ Θflap  

Maximized:  Inlet  recovery    Factor  (p02/  p01)      

“Design  of  Dual-­‐Mode  Engine    

           Flowpaths  …”,    

 AIAA  2011-­‐2380  

     Thrust  (normalized)  

p3  in  105  Pa  

downstream  fueling  

upstream  fueling  

Varied:      fuel  injector  locaIon  Maximized:    thrust  

“Design  of  Dual-­‐Mode  Engine  Flowpaths  …”,  AIAA  2011-­‐2380  22  

Page 23: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Last  year:        Operability  Limits:  added  ram-­‐scram  transiNon  

Where  is  the  thermal  choking    locaIon  ?  How  to  solve  ODEs  near  the  singular  point  ?  

L’Hospital’s  Rule:    choking  is  where:    

area  change  (given)  

~    heat  added  by              combusIon  

Torrez,  S.,  AIAA  2011-­‐2380  23  

Page 24: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

24  

Last  Year:    Operability  Limits  –  when  does  Ram-­‐Scram  occur  ?  

AlItude  (km)  

Flight  Mach  Number  

acceleraIon  q  =  

0.6  atm  0.8  atm  1.0  atm  

Computed  ram-­‐scram  transiIon  boundaries  

MAX-­‐1  

If  you  require  larger  acceleraIon  –  you  need  larger  ER                -­‐  stay  thermally  choked  longer            -­‐  so:  larger  Flight  Mach  Number  at  ram-­‐scram  transiIon    

Page 25: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

25  

-­‐    at  ram-­‐scram,  affecIng  controllability  

Torrez,  S.,  AIAA  2011-­‐2380  

Last  Year:  DerivaNves  of  performance  curves  are  disconNnuous    

vehiclealtitude(km)

flight  Mach  number  M

scramram

Thrust  in  kN

ram-­‐scram    boundary  

Page 26: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

26  

Last  Year    –  how  large  are  the  sudden  jumps  in  forces  at  ram-­‐scram  ?  

a  challenge  to  the  control  system    

before  ram-­‐scram  

aDer  ram-­‐scram  

inlet  shocks  jump  during  ram-­‐scram  

         1  

     0.  5  

wall  pressure  (atm)  

x/H  

x/H  

before  

aDer  

wall  pressure  jumps  down  during  ram-­‐scram  

Page 27: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

27  

Last  Year:    Operability  Limits  –  when  does  unstart  occur  ?                                                                                  Unstart  Margin          =    L1    /      L2    L1    =    distance  between  leading  edge  of  shock  train  and  entrance  to  isolator    L2    =    total  length  of  isolator  

station: 2 3 4

inlet isolator combustor nozzle

(c)

(b)

(a)

L2

L1

1.  First  must  properly  compute  the  thermally-­‐choked  (ram)  case  

2.  Then  MASIV  predicts  isolator  back  pressure    (pback)                

3.  Length  of  shock  train  then  computed  from  experimental  relaIon  

   (L2  –  L1)    /  H        =      funcIon  (pback    /    pinlet  )  

Page 28: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

28  

For  a  short  isolator,    MASTRIM  shows  that  as  you  accelerate  too  fast    (2  m/s2)                  à    you  unstart  before  you  reach  ram-­‐scram    !  

MASIV  tells  us  one  way  to  avoid  unstart    !      

Unstart  Margin  

ßunstart  

Flight  Mach  Number  

 MASIV  predicts  the  proper  acceleraIon  path  =  lower  ER  path                à    reduce  acceleraIon  to  1  m/s2  for  the  predicted  Ime  period  

MAX-­‐1  

Page 29: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

 Last  year:    added  the  flame-­‐out  limit    

Our  finite-­‐rate  chemistry  goes  “out”  if  :          

 combustor  gas  pressure  or  temperature  is  too  low    

 combustor  gas  velocity  is  too  large  (scalar  dissipaIon  rate)    

 inlet  provides  insufficient  compression  raIo    

 lookup  tables:    chemical  reacIon  rate  =  funcIon  (dissipaIon  rate)  

29  

Page 30: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

D.      Next  Year  

 1.    Add  Generic  Hypersonic  Vehicle:  

2.  Add  3-­‐D  inlet:  3-­‐D  Riemann  wave  interacIons,  inward-­‐turning      add  Tyler’s  AFRL  Vehicle  Model  Generator  

 3.  Ethylene  fuel:          run  GHV  on  ethylene  fuel,    speed  up  code  

30  

 4.  Uncertainty:          apply  uncertainty  analysis  to  compute  data  

                                 needed  by  Anu’s  adapIve  control  model    5.  IntegraNon    of  Cesnik’s  aero  thermo  elasIc  model  with:    

   MASTRIM  –  trim  code,  external  forces      MASIV  –  propulsion  code    

   

 

Page 31: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

6.  InteracNon:    with  Anu  Annaswamy’s    AcIve-­‐AdapIve  Control      Laboratory    at  MIT  to  couple  MASTRIM  to  her      adapIve  control  model  

 7.  OpNmizaNon  of  more  of  the  control  variables                                      

   (cowl  displacement,  elevon  size,  fuel  type)  

D.    Next  Year  (conNnued)  

31  

     8.  Operability  limits    -­‐  flame  out  limits      9.    ValidaNon:      determine  uncertainty  of  our  unstart,  ram-­‐scram  predicIons  

     10.  MDO:        opImize  inlet  panels  ,  elevon  size,  combustor  length  for  GHV  

Page 32: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

32  

Next  Year  -­‐    Provide  Uncertainty        -­‐    to  MIT  for  adapNve  control  

“Adaptive Control of Hypersonic Vehicles in the Presence of Thrust and Actuator Uncertainties”, T. Gibson, Anu Annaswamy, AIAA 2008-6961 “Uncertainty in Analysis of Integrated Airframe-Propulsion for Hypersonic Vehicles” N. Lamorte, D. Dalle, S. Torrez, J. Driscoll, AIAA 2011-2394  

Λ       =    effect  of  thrust  uncertainIes  on  the  B  matrix  

Rs    =    rectangular  saturaIon  funcIon    =  ui            (if  ui  <  umax)    d        =    disturbance  term    u        =    control  input        δthrust,    δelevon  

Page 33: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

33  

 Next  Year:        3-­‐D  Inlet    -­‐    wave  interacNons  for  GHV  

“Compound Compressible Flow for Hypersonic Inlets”, Mark Lewis, AIAA 2009-7304 “3-D Analysis of … Inward-Turning Inlets”, Malo-Molina, Gaitonde, AIAA J. 48, 2010 “…Hypersonic Inlet Rectangular to Ellipical…”, M. Smart, C. Trexler, JPP 20 2004  

3-­‐D    inlet  

“Compound  Compressible  Flow”    and  “Streamline  Tracing”  

Discrete  stream  tubes;  Shapiro  influence  coefficients;  Enforce  cons.  mass,    mom,  energy  +  surface  tracing  of  3-­‐D  shocks  

Page 34: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

34  

IntegraNon  with  Cesnik’s    aero  thermo  elasNcity  model  

-­‐   Begin  with  X-­‐43-­‐like    MAX-­‐1  vehicle  

-­‐   Revisit  Doman-­‐Bolender  problem  –  effect  of  longitudinal  bending  on  inlet  shocks,                                  spillage,  loss  of  thrust  

 -­‐   Add  more  complex  geometry  and    thermo  elasIcity  model  

-­‐   Add  mulIple  shock  interacIons  that  were  omifed  in  Doman-­‐Bolender  

-­‐   Consider  intense  heat  transfer  where  bow  shock  reflects  from  engine  cowl        

Page 35: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Next  year:  compute  controllability  

AlItude          (h)  

Flight  Mach  Number  M∞

ram  –scram*  

structural  –  excessive    forces  on  elevons  

4                                                                        8                                                            12  

gas  density  too  low              for  elevons  

 *At  ram-­‐scram  limit:  thermal  choking  b.c.  suddenly  disappears,    Sudden  change  in  wall  pressures,  forces,    moments    DerivaIves  of  thrust  performance  curves  are  disconInuous    

vehiclealtitude(km)

flight  Mach  number  M

scramram

Thrust  in  kN

Metric:  Time-­‐to-­‐double  amplitude,                                which  varies  along  trajectory  

engine    unstart  

35  

Page 36: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

36  

Flight  Dynamics  of  a  High  Speed  Turn  Trajectory    

 increasing  the  Mach  number  shortens  the  period  of  each  mode  

Pole        Time  to  Double  -­‐2.24                        0.31  1.84                          0.38  -­‐0.0058              120.0  

Page 37: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Long  term  impact                

MASTRIM  is  a  validated  flight  dynamics  plahorm    upon  which  to  build  an  adapNve  control  law    

Anu  Annaswamy    (MIT):  adapIve  control  methods    to  avoid  unstart,  flame  out,  and  issues    during  ram-­‐scram  transiIon  

     -­‐  needs  a  validated  flight  dynamics  model  

   -­‐  needs  uncertainty  analysis  

   -­‐  flight  dynamics  model  must  be  sufficiently  fast,  robust,  and      have  sufficient  control  variables  

   -­‐  “fundamental”  aspect  of  our  model  is  important  –  we  can  explain      why  the  control  system  adapts  in  a  certain  way  

 

37  

Page 38: Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,, … · 2012. 9. 19. · Control’Oriented,Model,of,a,Hypersonic,, Vehicle,(MASTRIM),,’,,, Containing,an,Integrated,,Advanced,,

Payoffs  to  the  Air  Force  

•   Research  addresses  important  component  of  control  design  and                analysis  development  

•  Novel  modeling  approaches  to  support  G&C  design  and  analysis    beginning  in  the  vehicle  conceptual  design  phase  

•   State-­‐of-­‐the  art  techniques  in  reduced-­‐order  and  first-­‐principles  modeling  

 •  Codes  have  been  transiIoned  to  NASA  AMES,  AFRL,  Boeing,  and  

Raytheon  

38