32
IGARSS 2011 Esteban Aguilera Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and A. Reigber

Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and A. Reigber

  • Upload
    fausto

  • View
    49

  • Download
    2

Embed Size (px)

DESCRIPTION

Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and A. Reigber. Polarimetric SAR tomography Compressive sensing of single signals Multiple signals compressive sensing: Exploiting correlations Compressive sensing for volumetric scatterers Conclusions. Overview. - PowerPoint PPT Presentation

Citation preview

Page 1: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Compressed Sensing forPolarimetric SAR Tomography

E. Aguilera, M. Nannini and A. Reigber

Page 2: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

1. Polarimetric SAR tomography2. Compressive sensing of single signals3. Multiple signals compressive sensing: Exploiting

correlations4. Compressive sensing for volumetric scatterers5. Conclusions

Overview

Page 3: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

azimuthground range

M parallel tracks for 3D imaging

Tomographic SAR data acquisition

Side-looking illumination at L-Band

Page 4: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

The tomographic data stack

Our dataset is a stack of M two-dimensional SAR images per polarimetric channel

M images

azimuthrange

Page 5: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

The tomographic data stack

Projections of the reflectivity in the elevation direction are encoded in M pixels (complex valued)

azimuthrange

1

2

M

bb

B

b

Page 6: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

The tomographic signal model: B = AX

11,1 1,2 1,3 1,1

22,1 2,2 2,3 2,2

33,1 3,2 3,3 3,

,1 ,2 ,3 ,

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N

N

N

MM M M M N N

xa r a r a r a rb

xa r a r a r a rb

xa r a r a r a r

ba r a r a r a r x

,4

,( ) i jj r

i ja r e

height

B : measurementsA : steering matrixX : unknown reflectivity

Page 7: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

What’s the problem?

High resolution and low ambiguity require a large number of tracks:

1. Expensive and time consuming2. Sometimes infeasible3. Long temporal baselines affect reconstruction

Page 8: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Where does this work fit?

Beamforming (SAR tomography):1. Beamforming (Reigber, Nannini, Frey)2. Adaptive beamforming (Lombardini, Guillaso)3. Covariance matrix decomposition (Tebaldini)

Physical Models (SAR interferometry):1. PolInSAR (Cloude, Papathanassiou)2. PCT (Cloude)

Compressed sensing (SAR tomography)1. Single signal approach (Zhu, Budillon)2. Multiple signal/channel approach

Page 9: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

A

B AX

AMxN : steering matrixXN : unknown reflectivityBM : stack of pixels

height

gnd. rangeazimuth

Page 10: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

The compressive sensing approach

We look for the sparsest solution that matches the measurements

minX 1

X

2AX B subject to

Convex optimization problem

Page 11: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

How many tracks?

In theory:

take

measurements

frequencies selected at random

In practice:

we can use our knowledge about the signal and sample less:

low frequency components seem to do the job!

0 log( )M C S N

2M S

Page 12: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

CS for vegetation mapping ?

The elevation profile can be approximated by a summation of sparse profilesDifferent to conventional models (non-sparse). And probably a bad one…

elevation

amplitude

= + + … +

Page 13: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Tomographic E-SAR CampaignTestsite: Dornstetten, GermanyHorizontal baselines: ~ 20mVertical baselines: ~ 0mAltitude above ground: ~ 3800m# of baselines: 23

3,5 m

2 corner reflectors in layover and ground

Page 14: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

CAPON using 23 tracks (13x13 window) = ground truth

40 m

2 corner reflectors in layover

Canopy and groundGround

40 m

Single Channel Compressive Sensing

CS using only 5 tracks

Page 15: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Normalized intensity – 40 m

Beamforming (23 passes, 3x3)

SSCS (5 passes, 3x3)

Page 16: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Multiple Signal Compressive Sensing

Assumption: adjacent azimuth-range positions are likely to have targets at about the same elevation

1 1 1

2 2 2...

M M M

b c db c d

b c d

L columnsazimuthrange

rangeazimuth

M images GHH

Page 17: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Polarimetric correlations

We can further exploit correlations between polarimetric channels

G

3L columns

GHH GHV GVV

Page 18: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

A

G AY

AMxN : steering matrixYNx3L : unknown reflectivities HH HV VV Mx3L : stacks of pixelsG

Page 19: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

YNx3L : unknown reflectivity

Y

minY

2AY G subject to

2,1Y

Elevation profile reconstruction

We look for a matrix with the least number of non-zero rows that matches the measurements

Page 20: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Mixed-norm minimization

minY

2AY G subject to

0

Number of columns in Y (window size + polarizations)

Probability of recovery failure

(Eldar and Rauhut, 2010)

2,1Y

Page 21: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

SSCS (saturated) MSCS (span saturated)

MSCS (polar) MSCS (span)

Layover recovery with CS

Page 22: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Beamforming (23 passes, 3x3)

SSCS (5 passes, 3x3)

MSCS (5 passes, 3x3)

MSCS (pre-denoised) (5 passes, 3x3)

Layover recovery with CS

Page 23: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Volumetric ImagingSingle signal CS (5 tracks)

Multiple signal CS (5 tracks)

40 m

Page 24: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Volumetric ImagingSingle signal CS (5 tracks)

Multiple signal CS (5 tracks)

40 m

Page 25: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Volumetric ImagingPolarimetric Capon beamforming (5 tracks)

Multiple signal CS (5 tracks)

40 m

Page 26: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Towards a “realistic” sparse vegetation model

elevation

amplitude

Canopy and ground component

Possible sparse description in wavelet domain!

Page 27: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Sparsity in the wavelet domain

Daubechies wavelet example: 4 vanishing moments 3 levels of decomposition

groundcanopy ground

canopy

0.5

1

0

0.5

1

0

Page 28: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

minY 1

WY

( )AY D Gs.t.

Additional regularization

1

L1 norm of wavelet expansion (W: transform matrix)

synthetic aperture

2,1Y

Page 29: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Volumetric Imaging in Wavelet DomainFourier beamforming using 23 tracks (23x23 window)

Wavelet-based CS (5 tracks)

40 m

Page 30: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Volumetric Imaging in Wavelet DomainFourier beamforming using 23 tracks (23x23 window)

Wavelet-based CS (5 tracks)

40 m

Page 31: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Conclusions

Single signal CS:

1. High resolution with reduced number of tracks2. Recovers complex reflectivities but polarimetry problematic3. Model mismatch is not catastrophic (CS theory)4. It’s time-consuming (Convex optimization)

Multiple signal CS:

1. Polarimetric extension of CS2. Higher probability of reconstruction, less noise3. More robust for distributed targets4. Vegetation reconstruction in the wavelet domain

Page 32: Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and  A. Reigber

IGARSS 2011Esteban Aguilera

Convex optimization solvers

CVX (Disciplined Convex Programming): http://cvxr.com/cvx/

SEDUMI: http://sedumi.ie.lehigh.edu/