34
COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR ANTENNAS MOHAMMAD ABEDIAN KASGARI A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering) Faculty of Electrical Engineering Universiti Teknologi Malaysia FEBRUARY 2015

COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

  • Upload
    ngobao

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR ANTENNAS

MOHAMMAD ABEDIAN KASGARI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Electrical Engineering)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

FEBRUARY 2015

Page 2: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

iii

To my beloved parents, who their enthusiasm and encouragement, I would never step

in this way

and

To my beloved, mindful understanding wife, Shadi, who supported me each step of the

way.

Page 3: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

iv

ACKNOWLEDGEMENT

I would like to acknowledge my supervisor Associated Professor Ir. Dr. Sharul

Kamal Abdul Rahim who has given me support and guidance throughout the period of

this project. His patience and perseverance towards the outcome of this study is of the

highest standard. Without him this project report will not become a reality.

None of this would have been possible without the love, support and

encouragement of my family. Mom and Dad, I did it. I am forever thankful to them

for allowing me to fulfill my dream. To my sister, Roja, thanks for all the love and

support. I am sure you would be so proud of me if you were here. I love you.

Words fail me to express my appreciation to my beloved wife, Shadi Danesh,

whose dedication, love and persistent confidence in me, has taken the load off my

shoulder. I owe her for being unselfishly let her intelligence, passions, and ambitions

collide with mine. I can’t thank you enough. I love you.

Thanks all of you

Mohammad Abedian Kasgari

Page 4: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

v

ABSTRACT

UWB communication systems were newly regenerated when the Federal

Communications Commission (FCC) defined the 3.1-10.6 GHz unlicensed band for

UWB applications. Based on an investigation in designing UWB antennas, researchers

have encountered more difficulties compared to a narrow band antenna. UWB antennas

should have extremely wide impedance bandwidth while preserving high radiation

efficiency with compact size. In some cases, a band-notched function should have

been created to avoid electromagnetic interference between nearby existing systems

and UWB systems. In this research, various promising UWB Dielectric Resonator

Antennas (DRAs) have been demonstrated to overcome several challenges. The

impedance bandwidth of the UWB DRAs has been improved for more than 110% by

using some techniques such as connecting a strip to the ground plane and modifying

structure of Dielectric Resonator (DR). The efficiency issue of UWB antennas is

overcome by implementing DR as a resonator element which is excited by various

shape structures feed lines to achieve more than 90% efficiency. The electromagnetic

interferences between UWB systems and nearby existing systems in the frequency

bands of 3.22-4.06 GHz, 4.84-5.96 GHz and 5.71-6.32 GHz are eliminated by using

a stub connected to the hollow centre of feed line, an inverted-T shape parasitic strip

near DR and modified metallic sheet underneath the DR, respectively. Compared with

UWB monopole antennas, UWB DRAs obviate the problem of radiation pattern by

utilizing dielectric resonator characteristics. In parallel, the broadside radiation pattern

is obtained by implementing various shapes of microstrip feed line at a proper location

to excite the DRA that provides symmetry radiation patterns with a consistent stability

across the desired bandwidth.

Page 5: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

vi

ABSTRAK

Sistem komunikasi UWB adalah baru tumbuh semula apabila Suruhanjaya

Komunikasi Persekutuan (FCC) mentakrifkan 3.1-10.6 GHz band yang tidak berlesen

untuk aplikasi UWB. Berdasarkan kajian di dalam mereka bentuk antena UWB, para

penyelidik menghadapi lebih kesukaran berbanding dengan mereka bentuk antena

jalur sempit. Antena UWB harus mempunyai lebar jalur galangan masukan yang

sangat luas di samping kecekapan pada radiasi tinggi dengan saiz yang kompak.

Dalam beberapa kes, fungsi jalur-bertakuk dicipta untuk mengelakkan gangguan

elektromagnet di antara sistem sedia ada dan sistem UWB. Di dalam kajian ini,

pelbagai UWB bentuk Antena Penyalun Dielektrik (DRAs) dicipta bagi mengatasi

beberapa cabaran berkaitan UWB. Lebar jalur galangan masukan daripada DRAs

UWB dipertingkatkan dengan lebih daripada 110% menggunakan beberapa teknik

seperti menghubungkan jalur dengan satah tanah dan mengubah suai struktur Penyalun

Dielektrik. Isu kecekapan antena UWB diatasi dengan melaksanakan DR sebagai

elemen resonator yang teruja dengan pelbagai struktur bentuk talian untuk mencapai

kecekapan yang lebih daripada 90%. Gangguan elektromagnetik antara sistem UWB

dan sistem sedia ada yang berdekatan dalam jalur frekuensi 3.22-4.06 GHz, 4.84-

5.96 GHz, dan 5.71-6.32 GHz dapat dikurangkan dengan menggunakan puntung

yang dihubungkan dengan pusat berongga talian makanan bentuk-T terbalik jalur

parasit berhampiran DR dan lembaran logam diubah suai bawahnya DR, masing-

masing. Berbanding dengan UWB antena monopole, DRAs UWB menyelesaikan

masalah corak sinaran dengan menggunakan ciri-ciri resonator dielektrik. Pada masa

yang sama, corak sinaran selebaran diperolehi dengan melaksanakan pelbagai bentuk

garis jalur mikro di lokasi yang betul, untuk merangsang DRA yang menyediakan

corak sinaran simetri dengan kestabilan yang konsisten di seluruh lebar jalur yang

dikehendaki.

Page 6: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION iiDEDICATION iiiACKNOWLEDGEMENT ivABSTRACT vABSTRAK viTABLE OF CONTENTS viiLIST OF TABLES xiLIST OF FIGURES xiiLIST OF ABBREVIATIONS xviLIST OF SYMBOLS xviiiLIST OF APPENDICES xix

1 INTRODUCTION 11.1 Background of the Study 11.2 Problem Statement 21.3 Research Objective 31.4 Scopes of Project 31.5 Contribution of the Research 41.6 Signification of the Research 51.7 Thesis Outlines 5

2 LITRATURE REVIEW 72.1 Introduction 72.2 History of UWB Antennas 82.3 Dielectric Resonators Antennas 11

2.3.1 Geometries and Characteristics of Dielec-tric Resonator 122.3.1.1 Hemispherical DRA 13

Page 7: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

viii

2.3.1.2 Cylindrical DRA 142.3.1.3 Rectangular DRA 15

2.4 Coupling Mechanisms of DRAs 182.4.1 Microstrip Feed Line 192.4.2 Coaxial Probe Feed 222.4.3 Coplanar Waveguide Feed 232.4.4 Dielectric Image Guide Coupling 242.4.5 Aperture Coupling 252.4.6 Summary of Coupling Mechanisms 27

2.5 Bandwidth Enhancement of DRAs 272.5.1 Single Element Methods 27

2.5.1.1 Modified Shape of the DRAs 272.5.1.2 Modified Feed Geometries 302.5.1.3 Introducing an Air Gap Be-

tween the DR and Ground Plane 322.5.1.4 Multi-Segment DRAs 342.5.1.5 Attaching Parasitic Patch on the

DRAs 362.5.2 Multiple DRAs 37

2.5.2.1 Stacked DRAs 372.5.2.2 Embedded DRAs 39

2.5.3 Hybrid DRAs 412.5.4 Summary of Bandwidth Enhancement 42

2.6 UWB Antennas with Band Rejection 432.6.1 Band Rejection Techniques 432.6.2 Summary of UWB DRAs with Band

Rejection 492.7 Summary 52

3 RESEARCH METHODOLOGY 533.1 Introduction 533.2 Methodology 533.3 Design of UWB DRA with and without Band

Rejection 563.3.1 Specifications of Design 563.3.2 Dielectric Resonator Specifications 573.3.3 Substrate Material 58

3.4 Software and Measurement Equipment 593.5 Summary 61

Page 8: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

ix

4 DESIGN OF COMPACT UWB DIELECTRIC RES-ONATOR ANTENNA 624.1 Introduction 624.2 Design of Two-Segment Compact UWB DRA 63

4.2.1 Two-Segment Compact UWB DRA Con-figuration 64

4.2.2 Parametric Study of Two-Segment Com-pact UWB DRA 64

4.2.3 Experimental Results of Two-SegmentCompact UWB DRA 68

4.3 Design of a Compact UWB Rectangular DRA 724.3.1 Geometry of a Compact UWB Rectangu-

lar DRA 724.3.2 Parametric Study of a Compact UWB

Rectangular DRA 734.3.3 Experimental Results of a Compact UWB

Rectangular DRA 744.4 Performance Comparison Between Two-Segment

and Rectangular UWB DRAs 784.5 Summary 80

5 UWB DIELCTRIC RESONATOR ANTENNA DESIGNWITH BAND REJECTION FUNCTION 815.1 Introduction 815.2 UWB DRA with single Band-Notch for Upper

WLAN Band at 5.8 GHz 825.2.1 Geometry of Single Band-notch UWB

DRA 825.2.2 Parametric Study of Single Band-notch

UWB DRA 825.2.3 Experimental Results of Single Band-

notch UWB DRA 885.3 Compact UWB DRA with Dual Band Rejection

Characteristics for WiMAX/WLAN Bands 925.3.1 UWB DRA with Dual Band Rejection

Configuration 925.3.2 Parametric Study and Key Parameters of

UWB DRA with Dual Band Rejection 93

Page 9: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

x

5.3.3 Experimental Results of UWB DRA withDual Band Rejection 102

5.4 Performance Comparison between Single and DualBand-notch UWB DRAs 106

5.5 Summary 106

6 CONCLUSION AND FUTURE WORK 1086.1 Conclusion 1086.2 Recommendations for Future Works 109

REFERENCES 110Appendix A 120

Page 10: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Microstrip feed line technique to excite DRAs 202.2 Coaxial probe feed technique to excite DRAs 232.3 Coplanar waveguide feed technique to excite DRAs 242.4 Aperture coupling mechanism to excite DRAs 262.5 Modified shape of the DRAs 292.6 Modified feed geometries 312.7 Introducing an air gap between the DR and ground plane 332.8 Multi-segment DRAs 352.9 Attaching parasitic patch on the DRAs 372.10 Stacked DRAs 382.11 Embedded DRAs 402.12 Hybrid DRAs technique 422.13 Band rejection UWB antenna 503.1 Design specifications 573.2 Dielectric resonator specification 583.3 Substrate dimensions 594.1 Two-segment compact UWB DRA parameters 694.2 Compact UWB rectangular DRA dimensions 724.3 Compression of compact DRAs 804.4 Performances comparison between Two-Segment and Rect-

angular DRAs 805.1 Parameters of DRA with single band-notch 845.2 Dimensions of UWB DRA with dual band-notch 935.3 Performances comparison between Single and Dual Band-

notch DRAs 106

Page 11: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Geometry of Lodge’s biconical antennas (1898). 92.2 Carter’s improved match biconical antenna configuration

(1939). 92.3 Lindenblad’s coaxial horn antenna configuration (1941). 92.4 Brillouin’s coaxial horn antenna configuration (1948). 102.5 Geometry of Stohrs ellipsoidal monople antenna (1968). 102.6 Geometry of Gibson’s vivaldi antenna (1979). 102.7 Various types of UWB antennas (a) planar monopole antenna,

(b) printed monopole antenna, (c) printed wide-slot antenna,and (d) dielectric resonator antenna. 11

2.8 Various shapes of dielectric resonator. 122.9 Hemispherical DRA excited by coaxial probe. 142.10 Geometry of the cylindrical DRA. 152.11 Geometry of the Rectangular DRA. 162.12 Electric and Magnetic Fields inside the Rectangular DRA for

the TEXδ11 Mode. 18

2.13 Microstrip feed line mechanism (a) side coupling and (b)direct coupling. 19

2.14 Probe coupling the DRA (a) RDRA (b) CDRA. 202.15 Coaxial probe feed. 222.16 Various shape of CPW for coupling to DRAs. 222.17 Dielectric image guide (DIG) for coupling to DRA. 252.18 Aperture coupling technique (a) various aperture slots (b)

embedded slot in the ground plane. 262.19 Prototype of inverted cup-shaped HDRA. 282.20 Schematic diagrams of Z-shaped DRA. 292.21 Geometry of dielectric ring resonator excited by L-shaped

microstrip feed line . 322.22 Photograph of the RDRA. 332.23 Exploded view of the MSDRA. 34

Page 12: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xiii

2.24 Photograph of MSDRA with a single insert. 352.25 Geometry of the HDRA with a parasitic patch, excited by

aperture-coupled. 362.26 Geometry of the staked CDRA, excited by coaxial probe. 392.27 Cross section of the embedded DRA and top view of the

narrow slot board. 402.28 Geometry of DR-loaded monopole antenna. 412.29 Geometry of DR-loaded microstrip patch antenna. 412.30 Geometry of the UWB DRA with dual band rejections. 442.31 Geometry of the UWB DRA with band rejection using hybrid

technique. 442.32 Configuration of the UWB DRA reconfigurable band

rejection. 452.33 Prototype of the UWB DRA excited by elliptical patch with

dual band notched characteristics. 462.34 Geometry of the UWB DRA excited by microstrip feed line

with dual band notched characteristics. 462.35 Configuration of the UWB DRA with band rejection

characteristics. 472.36 Geometry of the UWB DRA with band rejection characteris-

tics. 482.37 Geometry of the band-notched UWB rectangular DRA. 482.38 Geometry of UWB DR-loaded monopole antenna with band

rejection. 493.1 The flowchart of research methodology. 553.2 Chamber room (a) antenna under testing (b) reference

antenna (c) schematic diagram. 604.1 Geometry of proposed DRA. 654.2 Effect of ground plane length Lg on reflection coefficient. 664.3 Simulated radiation efficiency of proposed DRA excited by

two different feed lines. 664.4 Effect of changing dimension Lc on reflection coefficient. 674.5 Effect of changing dimension Ld on reflection coefficient. 684.6 Photograph of the proposed DRA. 684.7 Measured and simulated reflection coefficient of proposed

DRA. 694.8 Simulated radiation efficiency and measured gain of proposed

DRA. 70

Page 13: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xiv

4.9 Measured and simulated radiation patterns. H-plane (right)and E-plane (left) at (a) 3.5 GHz, (b) 6 GHz, and (c) 8.5GHz. Red and blue are measured and simulated results,respectively. 71

4.10 Geometry of proposed RDRA: (a) front, (b) back, (c) sideview. 73

4.11 Effect of microstrip feed line width W2 on reflectioncoefficient. 74

4.12 Reflection coefficient of proposed antenna; the antennawithout DR and inserted and planar RDRA with and withoutparasitic strip. 75

4.13 Reflection coefficient for various length of L4. 754.14 Reflection coefficient for various values of εd. 764.15 Prototype of the fabricated proposed RDRA. 774.16 Measured and simulated Reflection coefficient of proposed

RDRA. 774.17 Simulated radiation efficiency and gain of proposed RDRA. 784.18 Measured and simulated radiation patterns. H(xz)-plane (left)

and E(yz)-plane (right) at (a) 4 GHz, (b) 7 GHz, and (c) 10GHz. Blue and red are measured and simulated results (dB),respectively. 79

5.1 Geometry of inserted DRA without modified structure: (a)front, (b) back, (c) side view. 83

5.2 Schematic diagram of DRA: (a) back view of planar DRA,(b) back view of inserted DRA with modified structure, (c)side view of planar DRA. 83

5.3 Reflection coefficient for planar DRA with and without L-shaped strip and inserted DRA with and without metallicsheet. 85

5.4 Reflection coefficient for various L6. 865.5 Reflection coefficient for various W6. 865.6 Reflection coefficient for various L4. 875.7 Current distribution at notched frequency (5.8 GHz) (a) front

view (b) back view. 875.8 Reflection coefficient for various length of Ln. 885.9 Prototype of the fabricated proposed DRA. 895.10 Measured and simulated reflection coefficient of proposed

antenna. 89

Page 14: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xv

5.11 Simulated radiation efficiency and measured gain of proposedDRA. 90

5.12 Measured and simulated radiation patterns. H(xz)-plane(right) and E(yz)-plane (left) at (a) 4 GHz, (b) 6.5 GHz, (c)8 GHz and (d) 10.5 GHz. Blue and red are measured andsimulated results (dB), respectively. 91

5.13 Geometry of the proposed DRA; (a) front view, (b) back view,(c) 3D view. 94

5.14 Evolution of the proposed UWB DRA with dual bandrejections; (a) planar RDRA (front view), (b) inserted DRAwith Stub. (c) inserted DRA with Inverted T-shaped on theback plane, (d) inserted DRA with inverted T-shaped on theback plane and slot on the ground plane, (e) planar RDRA(3D view), and (f) proposed DRA (3D view). 95

5.15 Simulated reflection coefficient for planar and inserted RDRAand modified DRA with and without stub. 96

5.16 Simulated reflection coefficient for various stub lengths (Lb)with 1.4 mm stub width. 97

5.17 Simulated reflection coefficient for various stub widths (Wb)with 11.5 mm stub length. 98

5.18 Simulated reflection coefficient for various lengths of Lt. 985.19 Simulated reflection coefficient for various lengths of Ls. 995.20 Simulated reflection coefficient for inserted DRA with stub

and inverted T-shaped strip, separately. 1005.21 Simulated reflection coefficient for various lengths of Lb. 1015.22 Simulated reflection coefficient for various lengths of Lt. 1015.23 Current distribution at two notched frequencies (a) 3.45 GHz

(b) 3.45 GHz (all transparent), (c) 5.52 GHz, (d) 5.4 GHz (alltransparent). 102

5.24 Prototype of the fabricated proposed DRA. 1035.25 Measured and simulated reflection coefficient of proposed

DRA. 1035.26 Simulated radiation efficiency and measured gain of proposed

DRA. 1045.27 Measured far-field radiation patterns; H(xz)-plane (left) and

E(yz)-plane (right) at (a) 3.1 GHz, (b) 6.5 GHz, and (c) 9.5GHz. Red and blue are simulated and measured results (dB),respectively. 105

Page 15: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xvi

LIST OF ABBREVIATIONS

AR – Axial Ratio

BW – Bandwidth

CDR – Cylindrical Dielectric Resonator

CDRA – Cylindrical Dielectric Resonator Antenna

CRP – Circular Ring Patch

CPW – Co-Planar Waveguide

CST – Computer Simulation Software

dB – decibel

dBi – decibel (isotropic)

DIG – Dielectric Image Guide

DR – Dielectric Resonator

DRA – Dielectric Resonator Antenna

DWM – Dielectric Waveguide Model

EDC – Effective Dielectric Constant

EM – Electromagnetic

ESCSRR – Elliptic Single Complementary Split-Ring Resonator

FCC – Federal Communication Commission

FDTD – Finite Difference Time Domain

FEM – Finite Element Method

FSS – Frequency Selective Surface

GHz – Giga Hertz

HCLR – Hollow-Cross-Loop Resonator

HDR – Hemispherical Dielectric Resonator

HDRA – Hemispherical Dielectric Resonator Antenna

HFSS – High Frequency Structural Simulator

Hz – Hertz

IDCLLR – Interdigital Capacitance Loading Loop Resonator

IEEE – Institute of Electrical and Electronic Engineers

Page 16: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xvii

mm – Millimeter

MoM – Method of Moment

MSDRA – Multi-Segment Dielectric Resonator Antenna

MWM – Magnetic Waveguide Model

PCB – Printed Circuit Boards

PIN – Positive-Intrinsic-Negative

Q factor – Quality factor

RDR – Rectangular Dielectric Resonator

RDRA – Rectangular Dielectric Resonator Antenna

RF – Radio Frequency

RL – Return Loss

RSRR – Rectangular Split-Ring Resonator

SIR-DGS – Stepped Impedance Resonator-Defected Ground Structure

SRR – Split-Ring Resonator

TE – Transverse Electric

TLM – Transmission Line Matrix

TM – Transverse Magnetic

TSDRA – Two-Segment Dielectric Resonator Antenna

UWB – Ultra-wideband

VSWR – Voltage Standing Wave Ratio

WiMAX – Worldwide Interoperability for Microwave Access

WLAN – Wireless Local Area Network

Page 17: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xviii

LIST OF SYMBOLS

fc – Center frequency

ε – Dielectric constant

εeff – Effective permittivity

E − plane – Electric plane

δ – Fraction of a half-of-field cycle variation

G – Gain of antenna

H − plane – Magnetic plane

≥ – More than

fn – Notched frequency

φ – Phi angle

λ – Wavelength

λn – wavelength at the notched resonant frequency

π – pi

Γ – Reflection coefficient

f0 – Resonant frequency

c – Speed of light

θ – Theta angle

Page 18: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

xix

LIST OF APPENDICES

APPENDIX TITLE PAGE

A LIST OF PUBLICATIONS 120

Page 19: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The Ultra-Wideband (UWB) systems have developed intensely in the past two

decades which are implemented for both academic and industrial communities of

telecommunication applications. These antennas generally strive to be compatible the

Federal Communications Commission (FCC) which support an impedance bandwidth

of 7.5 GHz, i.e. from 3.1 GHz to 10.6 GHz in 2002 [1]. There are several advantages

of UWB communications compare to other technologies which make them excellent

candidate to present a further eloquent solution for wireless broadband applications as

follow [2–6].

First of all, the UWB systems can obtain an immense capacity of several

Gbps with a short range of 1 to 10 meters due to proportion of channel capacity

to bandwidth. Secondly, the UWB facilitates an extremely reliable communication

and secure solution due to possessing a spectral density in low power level, noise-

like, which causes slightly electromagnetic interference with longer-range existing

narrow-band systems. Thirdly, in UWB systems, a sufficient spatial resolution is

achieved by applying a short duration impulse. This characteristic is used in target

imaging to provide a potential capability to distinct targets from background clutter.

Fourthly, since the UWB signals have short duration pulse waveforms, no multi-

path cancellation will occurred because of passing the direct path signal through the

system before attaining the reflected path signal. Lastly, UWB systems compared

to conventional radio systems have an intrinsic capability for integration in low

Page 20: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

2

complexity, low power, and low cost due to propagating without the requirement of

an additional RF components which providing considerably short time domain pulse.

On the other hands, dielectric resonators (DRs) have been applied in the

microwave circuits design such as oscillators and filters due to their high Q-factor

characteristic. Moreover, it is found that the DRs with low dielectric constant can

be used in antenna design as radiating element because of their low radiating Q-

factor [7]. In the last two decades, dielectric resonator antennas (DRAs) have received

agreeable consideration for UWB antennas due to remarkable characteristics such as

different excitation mechanisms [8–11], high radiation efficiency [12], nearly constant

gain [13, 14], and compact antenna size [15, 16]. The DRAs compared to microstrip

patch antennas (MPAs)have wider impedance bandwidth because of having very small

dielectric losses and lack of conductor losses, and also higher efficiency and less

radiation pattern distortions due to lack of existing surface wave phenomena. In

addition, DRAs compared with printed antenna provide small size ate expense of

thickness due to decreasing the maximum path length in a certain direction to other

directions.

1.2 Problem Statement

Based on investigation on ultra-wideband DR antenna, the researchers

encountered some difficulties. One of the main challenges is obtaining wide impedance

bandwidth more than around 91% with high radiation efficiency more than 90% while

sustaining compact size. For example, the DRA impedance bandwidth is mostly below

10% for a single-mode excitation, which is not sufficient for UWB applications. On the

other hands, existing electromagnetic interference of some narrow bands system such

as wireless local area network (WLAN) and worldwide interoperability for microwave

access (WiMAX) is a serious problem for UWB application systems. Some design

techniques have been developed for the band rejection UWB DRA antenna. However,

most of these approaches suffer from increasing size of antenna and lack of the

Page 21: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

3

flexibility and separately of each band rejection with control the width of the band-

notch across the stop-band.

1.3 Research Objective

The objectives of this work focus on simulate and fabricate of a novel UWB

DRA which are :

i. Design of compact UWB DRA with high radiation efficiency while sustaining

wide bandwidth over whole desired frequencies.

ii. Design of UWB DRA with sufficient band rejection for existing

electromagnetic interference of nearby wireless communication systems such

as WiMAX (3.3-3.8 GHz) and WLAN (5.15-5.825 GHz).

1.4 Scopes of Project

This work focuses on the design of the UWB DRA which operates within

the frequency range from 3.1 GHz to 10.6 GHz. The development of the UWB

DRA is comprised by avoiding the electromagnetic interference of nearby narrow

band systems such as the worldwide interoperability for microwave access (WiMAX)

system operating at 3.3-3.8 GHz and wireless local area network (WLAN) system

operating at 5.15-5.85 GHz.

The rectangular DR with dielectric constant less than 15 is used to achieve wide

impedance bandwidth. The compact UWB DRAs is simulated and verified by CST

and HFSS in terms of return loss, gain, efficiency, and radiation pattern to improve its

performance. A parametric study of the different design of UWB DRAs was carried

out. The UWB DRA is optimized and fabricated with good agreement between the

measured results with simulated results.

Page 22: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

4

1.5 Contribution of the Research

For this work, four contributions are introduced which include:

i. Design of a new compact two-segment Z-shaped DRA with different

permittivity excited by a U-shaped feed-line for ultra-wideband application

that the combination mechanism of the U-shaped feed-line and two-segments

DR (TSDR) characteristics provide firm omnidirectional radiation pattern and

high radiation efficiency with compact size while sustaining wide impedance

bandwidth.

ii. Design of a new simple compact rectangular dielectric resonator antenna

(RDRA) for ultra-wideband application that by applying a combination of

simple parasitic strip connected to the ground plane, microstrip feed line and

inserted RDR characteristic, a compact antenna size with a wide impedance

bandwidth, high radiation efficiency, nearly constant gain and consistent

omnidirectional radiation pattern over desired frequency range are achieved.

iii. Design of a new compact DRA with band rejection of 5.71-6.32 GHz (upper

WLAN band) using a modified metallic sheet for ultra-wideband application

that the combination mechanism of L-Shape strip connected to the ground

plane, proper position of microstrip feed line, inserted DR characteristic,

and metallic sheet underneath DR provide a wide impedance bandwidth and

compact antenna with consistent omnidirectional radiation pattern.

iv. Design of a new compact UWB DRA with dual band rejection of 3.22-4.06

GHz (WiMAX) and 4.84-5.96 GHz (WLAN) that by intently implementing a

combination mechanism of two inserted identical DRs, U-shaped excitation

performance, stub, inverted T-shaped parasitic strip, and slot in the ground

plane, ultra wideband characteristic with efficient dual band-notched and

miniature size of about 0.124λ × 0.31λ × 0.062λ at 3.1 GHz are achieved

simultaneously.

Page 23: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

5

1.6 Signification of the Research

Dielectric resonator antennas would be chosen by more system engineers when

designing their wireless products due to possessing their considerable characteristics,

flexibility in design and easily available commercially at very low cost. Therefore,

DRAs have proved themselves to be ideal candidates for UWB antenna applications

such as local and personal area networks (LAN/PAN), roadside info-station, short

range radios and military communications.

1.7 Thesis Outlines

This thesis is organized in six chapters, which each chapter will describe on the

different aspects of the work. The outlines of the dissertation for each 6 chapter are

organized as follows.

Chapter 1 introduces an introduction of UWB system and a brief history

about the dielectric resonator antenna and also makes some view about the problem

statements, objective, and scope of this work.

Chapter 2 describes most prevalently used shapes of DRA and focuses on

surveys of coupling mechanisms, bandwidth enhancement techniques, and compact

techniques of DRAs through the literature to obtain some idea and achieve proper

design.

Chapter 3 focuses on the methodology of project and steps of design.

Moreover, the steps of the fabrication process and measurement procedure are

illustrated.

Chapter 4 depicts simulated and measured results of an ultra-wideband

dielectric resonator antenna design. Discussions about comparisons between simulated

and measured result through the diagram are illustrated.

Page 24: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

6

Chapter 5 demonstrates a design of ultra-wideband dielectric resonator antenna

with WiMAX/WLAN band rejections. Parametric studies and discussions with

experimental results are illustrated.

Chapter 6 concludes this project and indicates some possible future works.

Page 25: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

REFERENCES

1. FCC. Federal Communications Commission Revision of Part 15 of the

Commission’s Rules Regarding Ultra-Wideband Transmission System from

3.1 to 10.6 GHz. Federal Communications Commission. 2002.

2. Dowla, F. Handbook of RF and Wireless Technologies. Elsevier Science.2003.

3. Wayarles, K. and Rahman, T. A. Reconfigurable Ultra Wideband AntennaDesign and Development for Wireless Communication. 2008.

4. Lim, E. G., Wang, Z., Lei, C.-U., Wang, Y. and Man, K. Ultra WidebandAntennas-Past and Present. IAENG International Journal of Computer

Science, 2010. 37(3): 304–314.

5. Oppermann, I., Hamalainen, M. and Iinatti, J. UWB: theory and applications.John Wiley & Sons. 2005.

6. Roy, S., Foerster, J. R., Somayazulu, V. S. and Leeper, D. G. Ultrawidebandradio design: The promise of high-speed, short-range wireless connectivity.Proceedings of the IEEE, 2004. 92(2): 295–311.

7. Long, S. A., McAllister, M. W. and Shen, L. C. The resonant cylindricaldielectric cavity antenna. IEEE Transactions on Antennas and Propagation,1983. 31: 406–412.

8. Guo, Y.-X. and Luk, K.-M. On improving coupling between a coplanarwaveguide feed and a dielectric resonator antenna. IEEE Transactions on

Antennas and Propagation, 2003. 51(8): 2144–2146.

9. Al Salameh, M., Antar, Y. M. and Seguin, G. Coplanar-waveguide-fedslot-coupled rectangular dielectric resonator antenna. IEEE Transactions on

Antennas and Propagation, 2002. 50(10): 1415–1419.

10. Danesh, S., Abdulrahim, S., Abedian, M., Khalily, M. and Hamid, M.Frequency Reconfigurable Rectangular Dielectric Resonator Antenna. IEEE

Antennas and Wireless Propagation Letters, 2013. 12: 1331–1334.

11. Sulaiman, M. I. and Khamas, S. K. A singly fed rectangular dielectric

Page 26: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

111

resonator antenna with a wideband circular polarization. IEEE Antennas and

Wireless Propagation Letters, 2010. 9: 615–618.

12. Ryu, K. S. and Kishk, A. A. Ultrawideband dielectric resonator antennawith broadside patterns mounted on a vertical ground plane edge. IEEE

Transactions on Antennas and Propagation, 2010. 58(4): 1047–1053.

13. Ryu, K. S. and Kishk, A. A. UWB dielectric resonator antenna havingconsistent omnidirectional pattern and low cross-polarization characteristics.IEEE Transactions on Antennas and Propagation, 2011. 59(4): 1403–1408.

14. Ryu, K. S. and Kishk, A. A. Evaluation of dielectric resonator sensorfor near-field breast tumor detection. IEEE Transactions on Antennas and

Propagation, 2011. 59(10): 3738–3745.

15. Buerkle, A., Sarabandi, K. and Mosallaei, H. Compact slot and dielectricresonator antenna with dual-resonance, broadband characteristics. IEEE

Transactions on Antennas and Propagation, 2005. 53(3): 1020–1027.

16. Huitema, L., Koubeissi, M., Mouhamadou, M., Arnaud, E., Decroze, C.and Monediere, T. Compact and multiband dielectric resonator antennawith pattern diversity for multistandard mobile handheld devices. IEEE

Transactions on Antennas and Propagation, 2011. 59(11): 4201–4208.

17. IEEE Standard Definitions of Terms for Antennas. IEEE Std 145-1993, 2013:1–32.

18. Lodge, O. Electric telegraphy, 1898. US Patent 609,154.

19. PS, C. Wideband, short wave antenna and transmission line system, 1939.US Patent 2,181, 870.

20. NE, L. Wide Band Antenna, 1941. US Patent 2,239,724.

21. LN, B. Broad Band Antenna, 1948. US Patent 2,454,766.

22. W, S. Broadband ellipsoidal dipole antenna, 1968. US Patent 3,364,491.

23. Gibson, P. The Vivaldi Aerial. Microwave Conference, 1979. 9th European.1979. 101–105.

24. Liang, X. L. Ultra-Wideband Antenna and Design, Ultra Wideband - Current

Status and Future Trends, Dr. Mohammad Matin (Ed.). InTech. 2012.

25. Agrawall, N., Kumar, G. and Ray, K. Wide-band planar monopole antennas.IEEE Transactions on Antennas and Propagation, 1998. 46(2): 294–295.

26. Kim, J., Yoon, T., Kim, J. and Choi, J. Design of an ultra wide-band printedmonopole antenna using FDTD and genetic algorithm. IEEE Microwave and

Page 27: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

112

Wireless Components Letters, 2005. 15(6): 395–397.

27. Chen, H.-D. Broadband CPW-fed square slot antennas with a widened tuningstub. IEEE Transactions on Antennas and Propagation, 2003. 51(8): 1982–1986.

28. Ruan, Y.-F., Guo, Y.-X. and Shi, X.-Q. Double annular-ring dielectricresonator antenna for ultra-wideband application. Microwave and Optical

Technology Letters, 2007. 49(2): 362–366.

29. Okaya, A. and Barash, L. The dielectric microwave resonator. Proceedings

of the IRE, 1962. 50(10): 2081–2092.

30. McAllister, M., Long, S. and Conway, G. Rectangular dielectric resonatorantenna. Electronics Letters, 1983. 19(6): 218–219.

31. McAllister, M. and Long, S. Resonant hemispherical dielectric antenna.Electronics Letters, 1984. 20(16): 657–659.

32. Petosa, A. Dielectric Resonator Antenna Handbook. Artech House. 2007.

33. Luk, K. and Leung, K. Dielectric Resonator Antennas. Research StudiesPress. 2003.

34. Maity, S. and Gupta, B. Effective wave guide model (EWGM) for resonantfrequency computation of rectangular dielectric resonator antennas. Progress

In Electromagnetics Research C, 2010. 16: 1–12.

35. Kumar Mongia, R. and Ittipiboon, A. Theoretical and experimentalinvestigations on rectangular dielectric resonator antennas. IEEE

Transactions on Antennas and Propagation, 1997. 45(9): 1348–1356.

36. McLevige, W., Itoh, T. and Mittra, R. New Waveguide Structures forMillimeter-Wave and Optical Integrated Circuits. IEEE Transactions on

Microwave Theory and Techniques, 1975. 23(10): 788–794.

37. Marcatili, E. A. Dielectric rectangular waveguide and directional coupler forintegrated optics. Bell System Technical Journal, 1969. 48(7): 2071–2102.

38. Guha, D., Gupta, B., Kumar, C. and Antar, Y. M. Segmented hemisphericalDRA: New geometry characterized and investigated in multi-elementcomposite forms for wideband antenna applications. IEEE Transactions on

Antennas and Propagation, 2012. 60(3): 1605–1610.

39. Guha, D., Gupta, B. and Antar, Y. M. Hybrid monopole-DRAsusing hemispherical/conical-shaped dielectric ring resonators: Improvedultrawideband designs. IEEE Transactions on Antennas and Propagation,2012. 60(1): 393–398.

Page 28: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

113

40. Mukherjee, B., Patel, P. and Mukherjee, J. A Novel Cup-shaped InvertedHemispherical Dielectric Resonator Antenna for Wideband Applications.IEEE Antennas and Wireless Propagation Letters, 2013. 12: 1240–1243.

41. Lim, E. H. and Leung, K. W. Use of the dielectric resonator antenna as a filterelement. IEEE Transactions on Antennas and Propagation, 2008. 56(1): 5–10.

42. Hady, L. K., Kajfez, D. and Kishk, A. A. Triple mode use of a singledielectric resonator. IEEE Transactions on Antennas and Propagation, 2009.57(5): 1328–1335.

43. Zou, L., Abbott, D. and Fumeaux, C. Omnidirectional cylindrical dielectricresonator antenna with dual polarization. IEEE Antennas and Wireless

Propagation Letters, 2012. 11: 515–518.

44. Rashidian, A. and Klymyshyn, D. M. On the two segmented and high aspectratio rectangular dielectric resonator antennas for bandwidth enhancementand miniaturization. IEEE Transactions on Antennas and Propagation, 2009.57(9): 2775–2780.

45. Petosa, A. and Thirakoune, S. Rectangular dielectric resonator antennas withenhanced gain. IEEE Transactions on Antennas and Propagation, 2011.59(4): 1385–1389.

46. Collin, R. Foundations for Microwave Engineering. Wiley. 2001.

47. Li, B. and Leung, K. W. On the differentially fed rectangular dielectricresonator antenna. IEEE Transactions on Antennas and Propagation, 2008.56(2): 353–359.

48. Rashidian, A., Shafai, L. and Klymyshyn, D. M. Compact widebandmultimode dielectric resonator antennas fed with parallel standing strips.IEEE Transactions on Antennas and Propagation, 2012. 60(11): 5021–5031.

49. Haraz, O., Sebak, A.-R. and Denidni, T. Dual-polarised dielectric-loaded monopole antenna for wideband communication applications. IET

Microwaves, Antennas & Propagation, 2012. 6(6): 663–669.

50. Petosa, A., Simons, N., Siushansian, R., Ittipiboon, A. and Cuhaci, M.Design and analysis of multisegment dielectric resonator antennas. IEEE

Transactions on Antennas and Propagation, 2000. 48(5): 738–742.

51. Rezaei, P., Hakkak, M. and Forooraghi, K. Design of wide-banddielectric resonator antenna with a two-segment structure. Progress In

Electromagnetics Research, 2006. 66: 111–124.

Page 29: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

114

52. Denidni, T. A., Rao, Q. and Sebak, A. R. Broadband L-shaped dielectricresonator antenna. Antennas and Wireless Propagation Letters, IEEE, 2005.4: 453–454.

53. Ge, Y., Esselle, K. and Bird, T. Compact Dielectric Resonator AntennasWith Ultrawide 60% − 110% Bandwidth. IEEE Transactions on Antennas

and Propagation, 2011. 59(9): 3445–3448.

54. Simeoni, M., Cicchetti, R., Yarovoy, A. and Caratelli, D. Plastic-basedsupershaped dielectric resonator antennas for wide-band applications. IEEE

Transactions on Antennas and Propagation, 2011. 59(12): 4820–4825.

55. Yang, N., Leung, K. W. and Lim, E. H. Mirror-Integrated DielectricResonator Antenna. IEEE Transactions on Antennas and Propagation, 2014.62(1): 27–32.

56. Dhar, S., Ghatak, R., Gupta, B. and Poddar, D. R. A Wideband MinkowskiFractal Dielectric Resonator Antenna. IEEE Transactions on Antennas and

Propagation, 2013. 61(6): 2895–2903.

57. Gao, Y., Feng, Z. and Zhang, L. Compact CPW-fed dielectric resonatorantenna with dual polarization. IEEE Antennas and Wireless Propagation

Letters, 2011. 10: 544–547.

58. Lin, Y.-F., Chen, H.-M. and Lin, C.-H. Compact dual-band hybriddielectric resonator antenna with radiating slot. IEEE Antennas and Wireless

Propagation Letters, 2009. 8: 6–9.

59. Chang, T.-H. and Kiang, J.-F. Broadband dielectric resonator antenna withmetal coating. IEEE Transactions on Antennas and Propagation, 2007.55(5): 1254–1259.

60. Roslan, S., Kamarudin, M., Khalily, M. and Jamaluddin, M. An MIMORectangular Dielectric Resonator Antenna for 4G Applications. IEEE

Antennas and Wireless Propagation Letters, 2014. 13: 321–324.

61. Al-Zoubi, A. S., Kishk, A. A. and Glisson, A. W. A linear rectangulardielectric resonator antenna array fed by dielectric image guide with lowcross polarization. IEEE Transactions on Antennas and Propagation, 2010.58(3): 697–705.

62. Nikkhah, M. R., Rashed-Mohassel, J. and Kishk, A. A. High-Gain ApertureCoupled Rectangular Dielectric Resonator Antenna Array Using ParasiticElements. IEEE Transactions on Antennas and Propagation, 2013. 61(7):3905–3908.

Page 30: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

115

63. Majeed, A., Abdullah, A., Elmegri, F., Sayidmarie, K., Abd-Alhameed, R.and Noras, J. Aperture-Coupled Asymmetric Dielectric Resonators Antennafor Wideband Applications. IEEE Antennas and Wireless Propagation

Letters, 2014. 13: 927–930.

64. Fang, X., Leung, K. W. and Lim, E. H. Singly-Fed Dual-Band CircularlyPolarized Dielectric Resonator Antenna. IEEE Antennas and Wireless

Propagation Letters, 2014. 13: 995–998.

65. Chang, T.-H. and Kiang, J.-F. Dualband Split Dielectric Resonator Antenna.IEEE Transactions on Antennas and Propagation, 2007. 55(11): 3155–3162.

66. Chang, T.-H., Huang, Y.-C., Su, W.-F. and Kiang, J.-F. Wideband dielectricresonator antenna with a tunnel. IEEE Antennas and Wireless Propagation

Letters, 2008. 7: 275–278.

67. Denidni, T. A., Weng, Z. and Niroo-Jazi, M. Z-shaped dielectric resonatorantenna for ultrawideband applications. IEEE Transactions on Antennas and

Propagation, 2010. 58(12): 4059–4062.

68. Zhang, L.-N., Zhong, S.-S. and Xu, S.-Q. Broadband U-shaped dielectricresonator antenna with elliptical patch feed. Electronics Letters, 2008.44(16): 947–949.

69. Kishk, A. A., Chair, R. and Lee, K. F. Broadband dielectric resonatorantennas excited by L-shaped probe. IEEE Transactions on Antennas and

Propagation, 2006. 54(8): 2182–2189.

70. Chang, W. and Feng, Z. Investigation of a novel wideband feedingtechnique for dielectric ring resonator antennas. IEEE Antennas and Wireless

Propagation Letters, 2009. 8: 348–351.

71. Saed, M. A. and Yadla, R. Microstrip-fed low profile and compact dielectricresonator antennas. Progress In Electromagnetics Research, 2006. 56: 151–162.

72. Chaudhary, R. K., Kumar, R. and Srivastava, K. V. Wideband ring dielectricresonator antenna with annular-shaped microstrip feed. IEEE Antennas and

Wireless Propagation Letters, 2013. 12: 595–598.

73. Khalily, M., Rahim, M. K. A. and Kishk, A. A. Bandwidth enhancementand radiation characteristics improvement of rectangular dielectric resonatorantenna. IEEE Antennas and Wireless Propagation Letters, 2011. 10: 393–395.

74. Denidni, T. and Weng, Z. Rectangular dielectric resonator antenna for

Page 31: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

116

ultrawideband applications. Electronics Letters, 2009. 45(24): 1210–1212.

75. Petosa, A., Larose, R., Ittipiboon, A. and Cuhaci, M. Microstrip-fed array ofmultisegment dielectric resonator antennas. IEE Proceedings - Microwaves,

Antennas and Propagation, 1997. 144(6): 472–476.

76. Long, R., Dorris, R., Long, S., Khayat, M. and Williams, J. Use of parasiticstrip to produce circular polarisation and increased bandwidth for cylindricaldielectric resonator antenna. Electronics Letters, 2001. 37(7): 406–408.

77. Leung, K. W. and Ng, H. K. The slot-coupled hemispherical dielectricresonator antenna with a parasitic patch: Applications to the circularlypolarized antenna and wide-band antenna. IEEE Transactions on Antennas

and Propagation, 2005. 53(5): 1762–1769.

78. Kishk, A. A., Zhang, X., Glisson, A. W. and Kajfez, D. Numerical analysis ofstacked dielectric resonator antennas excited by a coaxial probe for widebandapplications. IEEE Transactions on Antennas and Propagation, 2003. 51(8):1996–2006.

79. Guo, Y.-X., Ruan, Y.-F. and Shi, X.-Q. Wide-band stacked double annular-ring dielectric resonator antenna at the end-fire mode operation. IEEE

Transactions on Antennas and Propagation, 2005. 53(10): 3394–3397.

80. Rocha, H., Freire, F., Sohn, R., da Silva, M., Santos, M., Junqueira, C.,Cordaro, T. and Sombra, A. Bandwidth enhancement of stacked dielectricresonator antennas excited by a coaxial probe: an experimental and numericalinvestigation. IET Microwaves, Antennas & Propagation, 2008. 2(6): 580–587.

81. Walsh, A. G., DeYoung, C. S. and Long, S. A. An investigation of stackedand embedded cylindrical dielectric resonator antennas. IEEE Antennas and

Wireless Propagation Letters, 2006. 5(1): 130–133.

82. Shum, S. and Luk, K. Stacked annular ring dielectric resonator antennaexcited by axi-symmetric coaxial probe. IEEE Transactions on Antennas

and Propagation, 1995. 43(8): 889–892.

83. Sangiovanni, A., Dauvignac, J. and Pichot, C. Embedded dielectric resonatorantenna for bandwidth enhancement. Electronics Letters, 1997. 33(25):2090–2091.

84. Chair, R., Kishk, A. and Lee, K. Low profile wideband embedded dielectricresonator. Microwaves, Antennas & Propagation, IET, 2007. 1(2): 294–298.

85. Kishk, A. A. Experimental study of broadband embedded dielectric resonator

Page 32: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

117

antennas excited by a narrow slot. IEEE Antennas and Wireless Propagation

Letters, 2005. 4: 79–81.

86. Ahmed, O., Sebak, A. and Denidni, T. Compact UWB printed monopoleloaded with dielectric resonator antenna. Electronics Letters, 2011. 47(1):7–8.

87. Esselle, K. P. and Bird, T. S. A hybrid-resonator antenna: Experimentalresults. IEEE Transactions on Antennas and Propagation, 2005. 53(2): 870–871.

88. Gupta, V., Sinha, S., Koul, S. K. and Bhat, B. Wideband dielectricresonator-loaded suspended microstrip patch antennas. Microwave and

Optical Technology Letters, 2003. 37(4): 300–302.

89. Dong, Y.-D., Hong, W., Kuai, Z.-Q. and Chen, J. X. Analysis of PlanarUltrawideband Antennas With On-Ground Slot Band-Notched Structures.IEEE Transactions on Antennas and Propagation, 2009. 57(7): 1886–1893.

90. Yeo, J. and Mittra, R. A novel wideband antenna package design with acompact spatial-notch filter for wireless applications. Microwave and Optical

Technology Letters, 2002. 35(6): 455–460.

91. Chu, Q.-X. and Yang, Y.-Y. A Compact Ultrawideband Antenna With 3.4/5.5GHz Dual Band-Notched Characteristics. IEEE Transactions on Antennas

and Propagation, 2008. 56(12): 3637–3644.

92. Zheng, Z.-A., Chu, Q.-X. and Tu, Z.-H. Compact Band-RejectedUltrawideband Slot Antennas Inserting With λ /2 and λ /4 Resonators. IEEE

Transactions on Antennas and Propagation, 2011. 59(2): 390–397.

93. Sarkar, D., Srivastava, K. and Saurav, K. A Compact Microstrip-Fed TripleBand-Notched UWB Monopole Antenna. IEEE Antennas and Wireless

Propagation Letters, 2014. 13: 396–399.

94. Aghdam, S. A Novel UWB Monopole Antenna With Tunable NotchedBehavior Using Varactor Diode. IEEE Antennas and Wireless Propagation

Letters, 2014. 13: 1243–1246.

95. Gao, P., He, S., Wei, X., Xu, Z., Wang, N. and Zheng, Y. Compact PrintedUWB Diversity Slot Antenna With 5.5-GHz Band-Notched Characteristics.IEEE Antennas and Wireless Propagation Letters, 2014. 13: 376–379.

96. Badamchi, B., Nourinia, J., Ghobadi, C. and Valizade Shahmirzadi,A. Design of compact reconfigurable ultra-wideband slot antenna withswitchable single/dual band notch functions. IET Microwaves, Antennas &

Page 33: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

118

Propagation, 2014. 8(8): 541–548.

97. Eshtiaghi, R., Nourinia, J. and Ghobadi, C. Electromagnetically CoupledBand-Notched Elliptical Monopole Antenna for UWB Applications. IEEE

Transactions on Antennas and Propagation, 2010. 58(4): 1397–1402.

98. Ma, T.-G. and Wu, S.-J. Ultrawideband Band-Notched Folded StripMonopole Antenna. IEEE Transactions on Antennas and Propagation, 2007.55(9): 2473–2479.

99. Ellis, M., Zhao, Z., Wu, J., Nie, Z. and Liu, Q.-H. A Novel Miniature Band-Notched Wing-Shaped Monopole Ultrawideband Antenna. IEEE Antennas

and Wireless Propagation Letters, 2013. 12: 1614–1617.

100. Wang, J., Yin, Y., Liu, X. and Wang, T. Trapezoid UWB antenna with dualband-notched characteristics for WiMAX/WLAN bands. Electronics Letters,2013. 49(11): 685–686.

101. Zhang, C., Zhang, J. and Li, L. Triple band-notched UWB antenna based onSIR-DGS and fork-shaped stubs. Electronics Letters, 2014. 50(2): 67–69.

102. Ryu, K. and Kishk, A. UWB Antenna With Single or Dual Band-Notchesfor Lower WLAN Band and Upper WLAN Band. IEEE Transactions on

Antennas and Propagation, 2009. 57(12): 3942–3950.

103. Li, T., Zhai, H., Li, G., Li, L. and Liang, C. Compact UWB Band-NotchedAntenna Design Using Interdigital Capacitance Loading Loop Resonator.IEEE Antennas and Wireless Propagation Letters, 2012. 11: 724–727.

104. Reddy, G., Kamma, A., Mishra, S. and MUKHERJEE, J. CompactBluetooth/UWB Dual-Band Planar Antenna With Quadruple Band-NotchCharacteristics. IEEE Antennas and Wireless Propagation Letters, 2014. 13:872–875.

105. Azim, R., Islam, M. and Mobashsher, A. Dual Band-Notch UWB AntennaWith Single Tri-Arm Resonator. IEEE Antennas and Wireless Propagation

Letters, 2014. 13: 670–673.

106. Liu, Y., Chen, Z. and Gong, S. Triple band-notched aperture UWB antennausing hollow-cross-loop resonator. Electronics Letters, 2014. 50(10): 728–730.

107. Ojaroudi, M. and Ojaroudi, N. Ultra-Wideband Small Rectangular SlotAntenna With Variable Band-Stop Function. IEEE Transactions on Antennas

and Propagation, 2014. 62(1): 490–494.

108. Denidni, T. and Weng, Z. Hybrid ultrawideband dielectric resonator antenna

Page 34: COMPACT ULTRA-WIDEBAND DIELECTRIC RESONATOR …eprints.utm.my/id/eprint/77722/1/MohammadAbedianKasgariPFKE2015.pdf · elemen resonator yang teruja dengan pelbagai struktur bentuk

119

and band-notched designs. IET Microwaves, Antennas & Propagation, 2011.5(4): 450–458.

109. Niroo-Jazi, M. and Denidni, T. A. Experimental investigations of a novelultrawideband dielectric resonator antenna with rejection band using hybridtechniques. IEEE Antennas and Wireless Propagation Letters, 2012. 11:492–495.

110. Shahine, M. A., Al-Husseini, M., Kabalan, K. and El-Hajj, A. AnUltra-wideband Dielectric Resonator Antenna with Reconfigurable BandRejection. Session 2A9: 298.

111. kumari, P., Bisoyi, D. K. and Behera, S. K. Design of DielectricResonator antenna with band notched Characteristics for UWB applications.International Journal of Scientific & Engineering Research, 2013. 4(6):2624–2628.

112. Sabouni, A. and Kishk, A. Single or multi notch bands applied to microstripexcited ultra-wideband antennas with dielectric resonator antenna case.Microwave and Optical Technology Letters, 2013. 55(5): 1066–1069.

113. Tseng, C.-F. and Lu, S.-C. Notch frequency of dielectric resonator-loadedmonopole antenna for UWB application. Microwave and Optical Technology

Letters, 2014. 56(5): 1189–1193.

114. Vashistha, V., Kartikeyan, M., Malik, J. and Maheshwari, R. Analysis ofultra wide band dielectric resonator antenna with band notch for WLANcommunication. Electrical, Electronics and Computer Science (SCEECS),

2014 IEEE Students’ Conference on. 2014. 1–3.

115. Wang, Y. F., Denidni, T., Zeng, Q. S. and Wei, G. Band-notched UWBrectangular dielectric resonator antenna. Electronics Letters, 2014. 50(7):483–484.

116. Tseng, C.-F. and Lu, S.-C. A compact band-notched ultrawideband dielectric-loaded antenna. Microwave and Optical Technology Letters, 2014. 56(2):456–462.

117. Liang, X.-L., Denidni, T. and Zhang, L.-N. Wideband L-Shaped DielectricResonator Antenna With a Conformal Inverted-Trapezoidal Patch Feed.IEEE Transactions onAntennas and Propagation, 2009. 57(1): 271–274.

118. Chen, Z. N., See, T. S. P. and Qing, X. Small Printed Ultrawideband AntennaWith Reduced Ground Plane Effect. IEEE Transactions onAntennas and

Propagation, 2007. 55(2): 383–388.