30
Outline Classical Control Lecture 2 Lecture 2 Classical Control

Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Outline

Classical Control

Lecture 2

Lecture 2 Classical Control

Page 2: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Outline

Outline

1 Review of Material from Lecture 1

2 New Stuff - Steady State

Lecture 2 Classical Control

Page 3: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

System PerformanceEffect of Poles

Outline

1 Review of Material from Lecture 1System PerformanceEffect of Poles

2 New Stuff - Steady StateTime Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Lecture 2 Classical Control

Page 4: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

System PerformanceEffect of Poles

Analyzing System Performance

System types

Continuous system

Discrete system

Analysis domain

Time-domain specifications

Frequency-domain specifications

Different periods

Dynamic (transient) responses

Steady-state responses

Lecture 2 Classical Control

Page 5: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

System PerformanceEffect of Poles

Continuous Time - Dynamic Response

0 2 4 6 8 10 12−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Impulse Response

Time (sec)

Am

plitu

de

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (sec)

Am

plitu

de

num1=[1];

den1=[1 2 1];

num2=[1 2];

den2=[1 2 3];

impulse(tf(num1,den1),’b’,tf(num2,den2),’r’)

step(tf(num1,den1),’b’,tf(num2,den2),’r’)

Lecture 2 Classical Control

Page 6: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

System PerformanceEffect of Poles

Continuous Time - Dynamic Response

0 2 4 6 8 10 120

0.1

0.4

0.6

0.9

1

1.2

1.4

Step Response

Time (sec)

Am

plitu

de

tr

Mp

1%

ts

tp

Overshoot(Mp)

Rise time (tr )

Settling time(ts)

Peak time (tp)

Lecture 2 Classical Control

Page 7: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

System PerformanceEffect of Poles

Natural Frequency and Damping

Lecture 2 Classical Control

Page 8: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

System PerformanceEffect of Poles

Poles in the Continuous s-plane

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0.985

0.94

0.86

0.76

0.640.5

0.340.16

0.985

0.94

0.86

0.76

0.640.5

0.340.16

Lecture 2 Classical Control

Page 9: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

System PerformanceEffect of Poles

Poles in the Continuous s-plane

Lecture 2 Classical Control

Page 10: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Outline

1 Review of Material from Lecture 1System PerformanceEffect of Poles

2 New Stuff - Steady StateTime Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Lecture 2 Classical Control

Page 11: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Short description of different reference inputs

Position reference

Servo-motorsPosition tracking (robots)

Velocity reference

AC-motorsVehicles

Acceleration reference

Space shuttle (during launch)Force exerting systems

Lecture 2 Classical Control

Page 12: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Conversion from Time Domain to Laplace Domain

Position

Time Domain

Linear, x(t)Rotational, θ(t)

Laplace

Linear, X (s)Rotational, Θ(s)

Lecture 2 Classical Control

Page 13: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Conversion from Time Domain to Laplace Domain

Velocity

Time Domain

Linear, v(t) = x(t)Rotational, ω(t) = θ(t)

Laplace

Linear, V (s) = sX (s)Rotational, Ω(s) = sΘ(s)

Lecture 2 Classical Control

Page 14: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Conversion from Time Domain to Laplace Domain

Acceleration

Time Domain

Linear, a(t) = v(t) = x(t)Rotational, α(t) = ω(t) = θ(t)

Laplace

Linear, A(s) = sV (s) = s2X (s)Rotational, A(s) = sΩ(s) = s2Θ(s)

Lecture 2 Classical Control

Page 15: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Why look at steady-state conditions?

Different reference inputs

PositionVelocityAcceleration

Steady-state corresponds to the state a system settles inunder constant conditions

Constant reference can be interpreted differently

Constant position (no velocity or acceleration)Constant velocity (ramp/integration in position, noacceleration)Constant acceleration (ramp/integration in velocity,parabola/integration2 in position)

Lecture 2 Classical Control

Page 16: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Diagram of Feedback System

General System

+

D(s) G (s)

H(s)

Unity Feedback System

+

D(s) G (s)

Lecture 2 Classical Control

Page 17: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Continuous Time - Steady-State - Unity Feedback

Laplace transform

F (s) =

0−f (t)e−st

dt

Final value theorem

limt→∞

f (t) = lims→0

sF (s)

Steady-state errors

ess = lims→0

sn

sn + Kn

1

sk

Lecture 2 Classical Control

Page 18: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Continuous Time - Steady-State - Unity Feedback

Type 0 - Kp = lims→0 D(s)G (s)

Step input Ramp input Parabolic input

ess1

1+Kp

1Kv

1Ka

Static error Kp =constant Kv = 0 Ka = 0

Error 11+Kp

∞ ∞

Lecture 2 Classical Control

Page 19: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Continuous Time - Steady-State - Unity Feedback

Type 1 - Kv = lims→0 sD(s)G (s)

Step input Ramp input Parabolic input

ess1

1+Kp

1Kv

1Ka

Static error Kp = ∞ Kv =constant Ka = 0

Error 0 1Kv

Lecture 2 Classical Control

Page 20: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Continuous Time - Steady-State - Unity Feedback

Type 2 - Ka = lims→0 s2D(s)G (s)

Step input Ramp input Parabolic input

ess1

1+Kp

1Kv

1Ka

Static error Kp = ∞ Kv = ∞ Ka =constant

Error 0 0 1Ka

Lecture 2 Classical Control

Page 21: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.1

System

+

kpA

τs+1

Analysis of Steady-State Error

System type is ?

Lecture 2 Classical Control

Page 22: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.1

System

+

kpA

τs+1

Analysis of Steady-State Error

System type is 0(

L(s) =kpA

τs+1

)

Steady-State Error for Step:

Lecture 2 Classical Control

Page 23: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.1

System

+

kpA

τs+1

Analysis of Steady-State Error

System type is 0(

L(s) =kpA

τs+1

)

Steady-State Error for Step: ess = 1

1+lims→0kpA

τs+1

= 11+kpA

Lecture 2 Classical Control

Page 24: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.2

System

+

kp + kI

sA

τs+1

Analysis of Steady-State Error

System type is ?

Lecture 2 Classical Control

Page 25: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.2

System

+

kp + kI

sA

τs+1

Analysis of Steady-State Error

System type is 1

(

L(s) =(kp+

kIs

)A

τs+1 =A(kps+kI )s(τs+1)

)

Steady-State Error for Ramp:

Lecture 2 Classical Control

Page 26: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.2

System

+

kp + kI

sA

τs+1

Analysis of Steady-State Error

System type is 1

(

L(s) =(kp+

kIs

)A

τs+1 =A(kps+kI )s(τs+1)

)

Steady-State Error for Ramp: ess = 1

lims→0 sA(kps+kI )

s(τs+1)

= 1AkI

Lecture 2 Classical Control

Page 27: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Continuous Time - Steady-State

Laplace transform

F (s) =

0−f (t)e−st

dt

Final value theorem

limt→∞

f (t) = lims→0

sF (s)

Steady-state errors

ess = lims→0

1 − T (s)

sk

Lecture 2 Classical Control

Page 28: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.3

System

+

kp1

s(τs+1)

1 + kts

Lecture 2 Classical Control

Page 29: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Time Domain vs Laplace DomainSteady-State AnalysisUnity FeedbackGeneral Case

Example 4.3 - Continued

Analysis of Steady-State Error

ess = lims→0

1 − T (s)

sk

= lims→0

1

sk

(

1 −kp

s(τs + 1) + (1 + kts)kp

)

= lims→0

1

sk

s(τs + 1) + (1 + kts − 1)kp

s(τs + 1) + (1 + kts)kp

= lims→0

1

sk

s2τ + s(1 + ktkp)

s2τ + s(1 + ktkp) + kp

= 0 k = 0

=1 + ktkp

kp

k = 1

Lecture 2 Classical Control

Page 30: Classical Control - Lecture 2homes.et.aau.dk/yang/de5/cc/lecture2.beamer.pdf · Lecture 2 Classical Control. Review of Lecture 1 Steady State Exercises System Performance Effect

Review of Lecture 1Steady State

Exercises

Book: Feedback Control

Problem 4.6 (a+b)

Problem 4.8 (a+b)

Problem 4.9

Lecture 2 Classical Control