31
Circuits Lecture 2: Node Analysis 李李李 Hung-yi Lee

Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Embed Size (px)

Citation preview

Page 1: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Circuits Lecture 2: Node

Analysis李宏毅 Hung-yi Lee

Page 2: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

DC Circuit - Chapter 1 to 4

KCL, KVL, Element Characteristics

Node Analysis

Mesh Analysis

Controlled Sources

Equivalent

Thevenin Theorem

Norton Theorem

Lecture 1

Lecture 2 Lecture 3 Lecture 4

Lecture 5&6Lecture 7

Lecture 8

Lecture 9

Superposition

Page 3: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Review – Lecture 1

A B+ -

i

v

If v<0, then actually ……

If i<0, then actually ……A B

A B+-Resistor with resistance R:

R

vi

reference current should flow from “+” to “-”

Page 4: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Review – Lecture 1

• Voltage defined for two points• Potential defined for one point• Voltage between the point and the reference

A B+ -v

v A B+ -

v

v-

Page 5: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Review – Lecture 1

• KCL:

• KVL

321 iii

svvv 21Loop 1:

Loop 1

Page 6: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Review – Lecture 1

Find the current and voltage of all elements.Systematic Solution:

Step 1. List all unknown variables and reference directionsStep 2. Use (a) Element Characteristics, (b) KCL and (c) KVL to list equations for unknown variables

How to reduce the number of unknown variables?

Page 7: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Textbook

• Chapter 4.1

Page 8: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Terminology

• Node: any connection point of two or more circuit elements (Textbook, P23)• Essential node: more than two elements• Non-essential node: two elements• Use “node” to represent “Essential node”

• Branch:• Circuit between nodes

Page 9: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis

Current + Voltage Voltage

Only consider the voltage as unknown variables• Reduce the number of unknown variables

Usually it is easy to find current if the voltages are known

A Bv+ -

R

vi

Resistor with resistance R

How about ……v

i??????

Page 10: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis

Current + Voltage Voltage

Voltages are not independent• If we know the voltage of some elements, we can

know the rest easily (KVL)• Maybe we only have to consider some of the

voltages as unknown variables • How to determine the voltage taken as unknown

variables?

+ -

-

+

+ -

+

-

v1

v2

v3

v4 = v1 + v2 – v3

Page 11: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis

Current + Voltage Voltage Node Potential

(Node Voltage)

The potentials are independent 10V15V

Target: node potential

A B+ -

Av Bv

BA vvv • Can know voltage immediately

Any potential value can satisfy KVL

+ -

-

+

+ -

+

-

Page 12: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis

• Find node potentials• 3 unknown variables

KVL:

+

-

+ -

+

-

1vvb 21 vvvc 2vvd

dcb vvv

Represent vb, vc and vd by node potentials

2211 vvvv KVL is automatically fulfilled!

Page 13: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis

• Find node potentials• 3 unknown variables

KCL:

cc R

vvi 12

b

b R

vi 1

a

s

a

aa R

vv

R

vi 1

0 scba iiiiRepresent ia, ib and ic by node potentials

Can we always represent current by node potentials (discuss later)?

Node v1:

Page 14: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis

• Find node potentials• Need 3 equations

KCL:

01211

scba

s iR

vv

R

v

R

vvNode v1:

Node v2:

Node v3:

023221

edc R

vv

R

v

R

vv

sfe

iR

v

R

vv

332

Page 15: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis

• Target: Find node potentials• Steps• 1. Set a node as reference point• 2. Find nodes with unknown node potentials• 3. KCL for these nodes• Input currents = output currents• Represent unknown current by node potentials • Always possible?

Page 16: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

8 Kinds of Branches

• There are only 8 kind of branches • 1. None• 2. Resistor• 3. Current • 4. Current + Resistor• 5. Voltage• 6. Voltage + Resistor• 7. Voltage + Current • 8. Current + Resistor + Voltage

Represent i by node potentials

i

branch

xvyv

R

R

vvi xy

Page 17: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

xvyv

sy vv

s

xsy

R

vvvi

Branch: Voltage + Resistor

Page 18: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Branch: Voltage + Resistor - Example

1v

Find vo301 v V20

0

4

0

5

20

2

300 111

k

v

k

v

k

v

Vv 201 Vvo 20

Page 19: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Branch: Voltage

sv xvyv

i

sxy vvv

Method 1: Beside node potential, consider i also as unknown variable as well

1i

2i

3i

4i5i

6i

0: 321 iiiivxiiiivy 654:

Represent i1 to i6 by node potential

One more unknown variable i, need one more equation

sxy vvv

Page 20: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Branch: Voltage

sv xvyv

i

Method 2: Consider vx and xy as supernode

1i

2i

3i

4i5i

6i

0: 654321 iiiiiiSupernode

Represent i1 to i6 by node potential

Bypass i

sxy vvv

Page 21: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Branch: None

xvyv

i

yx vv

Supernode

Page 22: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Example 4.5

• Use node analysis to analyze the following circuit

v50

1v

2v301 v

Page 23: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Example 4.5

• Use node analysis to analyze the following circuit

v50

1v

2v301 v

Page 24: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Example 4.5

01

2

30

105

50 12121

vvvvv

KCL for Supernode:

KCL for v2:

07

1

0

2

30

1022121

vvvvv

Page 25: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis – Connected Voltage Sources

1v 101 v 101 v

0

5

10

5

10

10

100

10

1004 111111

k

vv

k

vv

k

v

k

vm

201 v

Page 26: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis – Connected Voltage Sources

1v 101 v 101 v

0

5

10

5

10

10

100

10

1004 111111

k

vv

k

vv

k

v

k

vm

If a branch starts and ends at the same super node

Put it into the supernode

Page 27: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Node Analysis – Reference Points

2v

10 20

mk

v

k

v4

10

20

10

0 22

We don’t have to draw supernode.

Select the reference point carefully

302 v

Page 28: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Homework

• 4.18• 4.22

Page 29: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Thank you!

Page 30: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Answer

• 4.18• V1=-6, v2=12, i1=2, i2=3, i3=2.4

• 4.22• V1=-16.5, v2=30, i1=2, i2=0.5

Page 31: Circuits Lecture 2: Node Analysis 李宏毅 Hung-yi Lee

Branch: Voltage – Special Case!

sv xvyv

i

If vy is selected as reference

1i

2i

3i

4i5i

6i

vx is equal to vs The node potential is known

Eliminate one unknown variables

Which node should be selected as reference point?

Ans: The node connected with voltage source