36
Cliquez pour modifier le style du titre Cliquez pour modifier le style des sous-titres du masque Retrieval of the turbulent and backscattering properties using a non- linear filtering technique applied to Doppler LIDAR observation Christophe Baehr* , ** , C. Beigbeder*, F. Couvreux*, A. Dabas*, B. Piguet* [email protected] ** Météo-France/CNRS – CNRM/GAME URA1357 ** Institut de Mathématiques de Toulouse - Université de Toulouse ISARS 2012 - Boulder, Colorado, USA, 5-8 June 2012

Christophe Baehr* , ** , C. Beigbeder*, F. Couvreux*, A. Dabas*, B. Piguet*

  • Upload
    long

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Retrieval of the turbulent and backscattering properties using a non-linear filtering technique applied to Doppler LIDAR observation. Christophe Baehr* , ** , C. Beigbeder*, F. Couvreux*, A. Dabas*, B. Piguet*. ISARS 2012 - Boulder, Colorado, USA, 5-8 June 2012. - PowerPoint PPT Presentation

Citation preview

Page 1: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Cliquez pour modifier le style du titre

Cliquez pour modifier le style des sous-titres du masque

Retrieval of the turbulent and backscattering properties using a

non-linear filtering technique applied to Doppler LIDAR

observation Christophe Baehr*,**, C. Beigbeder*,

F. Couvreux*, A. Dabas*, B. Piguet*

[email protected]

** Météo-France/CNRS – CNRM/GAME URA1357** Institut de Mathématiques de Toulouse - Université de Toulouse III

ISARS 2012 - Boulder, Colorado, USA, 5-8 June 2012

Page 2: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Outline

Introduction How a Doppler lidar and a particle filter can

retrieve the properties of a random medium? Some theoretical elements. Experimental results : a numerical exercise. Comparisons with Numerical products Next Steps

[email protected]

Page 3: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Introduction

Our final objective is to retrieve the characteristics of a random medium from sparse observations.

The retrieval is done locally, that is, in the vicinity of the observations.

The retrieval technique we have developed has already been applied successfully to in-situ measurements of wind and temperature performed at fixed locations.

We present here the extension of our method to Doppler lidar data for the retrieval of TKE and EDR at a fine temporal resolution.

[email protected]

Page 4: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

[email protected]

How a Doppler lidar and a particle filter can retrieve the properties of a random medium?

Page 5: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 6: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 7: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 8: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 9: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 10: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 11: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 12: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 13: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 14: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 15: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 16: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

How does it work ?

[email protected]

Page 17: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

[email protected]

Some theoretical background

Page 18: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Theoretical Background

[email protected]

are a random path and a random field

is the acquisition process of the random field along the path

is the conditional expectation according to the trajectory.

where

Page 19: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Theoretical Background

[email protected]

The probability laws of the random medium considered along a random path:

There is a time evolution that required a local model of the probed medium. Here this evolution is given by the Markovian kernel

Page 20: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Theoretical Background

[email protected]

The algorithm in term of state vectors is given by :

It is equivalent to the evolution in probability laws :

and solve the stochastic dynamical system :

Page 21: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

The Stochastic Lagrangian Model

[email protected]

The local Markovian evolution needs a physical model.We have choose to use a Stochastic Lagrangian Model (SLM).

The model adapted to wind vertical profiles is excerpt from the 3D SLM we use for the atmospheric measurements :

The term is embedded in a truncated normal distribution

learned by our algorithm.

Page 22: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

[email protected]

Experimental results : a numerical exercise.

Data recorded the June 19th, 2011 every 6s between 13h26 and 14h49 UTC at Lannemezan, France.

Leosphere vertical lidar involved during the BLLAST experiment.

Page 23: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

[email protected]

Experimental Results

Vertical wind times series ( 6s ) black : reference series

Page 24: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

[email protected]

Experimental Results

Vertical wind times series ( 6s ) black : reference, blue : observation

Page 25: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

[email protected]

Vertical wind times series ( 6s ) black : reference, blue : observation, red : estimated

Page 26: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

[email protected]

Vertical wind, black : reference, blue : observation, red : estimated

times series ( 6s )

Power Spectral Density

Page 27: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

[email protected]

Vertical wind PSD, black : reference, blue : observation, red : estimated

Page 28: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

[email protected]

Vertical wind profiles averaged on 1’. Above : reference, bottom : estimated

Page 29: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

[email protected]

TKE times series ( 6s )

Page 30: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

[email protected]

EDR times series ( 6s )

Page 31: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

[email protected]

Vertical wind + TKE + EDR profiles averaged on 1’

Page 32: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Experimental Results

Mean TKE and vertical wind variance profiles

[email protected]

Page 33: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Comparisons with other Numerical products

Comparison with a Meso-NH simulation (for an other day and an other location) to compare the shape of the structures (above : wind, bottom TKE), especially for the TKE.

[email protected]

How it is possible to assess the quality of TKE and EDR estimates ?

Page 34: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Comparisons with other Numerical products

[email protected]

On June 19th, 2011 from 13h26 to 14h49 UTC, the tethered balloon flew at 60m and we compare its data with the lidar range bin 75-125m:

- Balloon wind variance ~ 0.39 m2s−2.

- lidar filtered signal variance ~ 0.42 m2s−2.

- lidar averaged TKE ~ 0.25 m2s−2.

We are waiting for other lidar data to compare with other, more representative balloon flights.

Page 35: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

Next steps

[email protected]

Continue the work on the 3D estimations using hemispherical scanning lidars.

Work on the lidar observation operator. Full set of numerical comparisons. MesoNH comparisons with specific BLLAST simulations

Merge the estimation of Doppler lidar and Aerosol lidar to estimate the parameters of a full 3D atmospheric domain.

Work on the assimilation of turbulence parameters in NH models (e. g. Meso-NH).

Page 36: Christophe Baehr* , ** , C. Beigbeder*,  F. Couvreux*, A. Dabas*, B. Piguet*

[email protected]

Thank you for your attention

Acknowledgements :