25
Viapal™ Selection of types with tables showing physical properties and chemical resistance Unsaturated Polyester Resins Chemical Resistance Guide

Chem Beständigkeits-Broschüre

Embed Size (px)

DESCRIPTION

Chem Beständigkeits-Broschüre

Citation preview

Page 1: Chem Beständigkeits-Broschüre

Viapal™Selection of types with tables showing

physical properties and chemical resistance

Unsaturated Polyester Resins

Chemical Resistance

Guide

Page 2: Chem Beständigkeits-Broschüre

2 3

The complex requirements of their practical use mean thatresins or combinations of resins that have been speciallytailored to the intended purpose are required when usingunsaturated polyester resins. The summary of types contained inthis brochure provides details of the product-specificcharacteristic values and the properties of some of the mostimportant Viapal types and is intended to serve as a basis forthe safe preselection of the product to be used in each case. Inaddition, the summary includes notes on the manufacturingprocesses, fields of application and chemical resistance. Thesummary, in table form, should act as a decision aid whenselecting the appropriate unsaturated polyester resin for thedesired field of application. Individual specifications for theseand further Viapal types are also available on request.

Unsaturated Polyester Resins

Cytec Industries is a specialty chemicals and materialstechnology company with sales of $3 billion. Its growthstrategies are based on developing technologically advancedcustomer solutions for global markets including: aerospace,coatings, mining, plastics and water treatment.

Surface Specialties is a global leader in the development andproduction of technically innovative products for surfaceapplications. With a strong market focus and broad productportfolio, the organization is focused on providing value-addedsolutions for customers throughout the world.

Surface Specialties serves a wide range of markets includingautomotive, industrial, graphics, architecture, glass, electronics,wood, textiles, tire, paper, abrasives, gelcoats, labels, packaging,tapes and medical.

Our Technical Resins serve more than 20 markets, includingtires, sanitary products, textile coatings and abrasives. Tailor-made solutions and fast response logistics augment our leadingposition in polyurethane, phenolic and unsaturated polyesterresins. Our technical expertise and market-driven developmentprocess is the key to our position at the leading edge ofadvances in these markets. Headquartered in Brussels(Belgium), Cytec Surface Specialties operates ISO-certifiedmanufacturing facilities and distribution centers worldwide.

Our ten technology centers – located in Europe, Asia and NorthAmerica – offer customers ready access to world-class technicalsupport and applications research. We also staff sales offices inmore than 30 countries across the globe, to provide responsiveservice – focused on helping customers identify and capturetheir emerging opportunities in the marketplace.

About us

Page 3: Chem Beständigkeits-Broschüre

4 5

These tables combine a maximum amount of information regarding the Viapal range with use-ful information regarding their practical use.

Only the most important delivery forms in each case have been included for some of the Viapaltypes. In several cases further delivery forms do exist. It is therefore frequently possible toobtain resins with and without a UV absorber or thixotropic agent; the styrene content canalso vary. The letters in the features denote:

T = thixotropicS = light stabilisedB = preaccelerated

Special formulations which can be manufactured on request are not included in this deliveryprogramme. As it is often important to know the chemical structure in order to select a resin,we have included appropriate notes as follows:

OPA = orthophthalic acidIPA = isophthalic acidTPA = terephthalic acidBisphenol = Bisphenol A, propoxylated

The characteristic data and property values indicated are averages in each case. The precondi-tion when assessing the physical properties of the cured moulded materials was perfect curing;for this reason we have always carried out postcuring with cold-cured parts. Further informa-tion and tolerances regarding the physical and, also in part, regarding the chemical propertiesas well as their resistance in accordance with the recommendations of the Federal HealthOffice regarding the use of unsaturated polyester resins in food transportation can be found inthe product specifications or can be supplied on request.

In some cases a dash (-) is indicated in the column indicating the physical properties. Thisdenotes that a test cannot be carried out or is not relevant. A dash in the chemical resistancetables denotes that the use of the resin concerned is not recommended.

Transport and storage of Viapal UP 745, UP 746, UP 797These UP reins are based on neopentyl glycol/hexachloroendomethylene-tetrahydrophthalicacid or neopentyl glycol/terephthalic acid. This chemism can cause clouding to occur, particular-ly at low temperatures, and sometimes also the formation of sediment. This does not have anynegative effect on the application properties of the resins and the moulded materials manufac-tured therefrom. The resins can be easily homogenised by stirring with slight heating (approx.30˚C). In addition, an adhesive label is provided on each package indicating the correct hand-ling of the products.

Storage of thixotropic and low styrene emission resinsIn order to counteract the possible appearance of sedimentation, it is recommended that theresin be stored in the storage tank or packaging or circulated diagonally with the aid of mixingnozzles from the bottom to the top in conjunction with a feed pump in the storage tank.

PageIntroduction with definitions of terms 5

Summary of types - Features, chemical structure, characteristics 6- Fields of application 8- Manufacturing processes 9

Characteristic data in delivery condition 10

Physical properties of unreinforced moulded parts- Mechanical data, Electrical data, Thermal data 12

Physical properties of reinforced moulded parts- Mechanical data 14- Thermal data 15

Comments to some selected physical parameters 16

UP resins for paints and fillers 19

Chemical resistance of glass-fibre reinforced Viapal types- Foreword with explanation of symbols 20- Resistance tables for approx. 400 media 22- Use in electrolysis of alkali-metal chlorides 40 - Use with plating baths 41

Physical units and conversion tables 42

Addresses of the major sales offices 46

Introduction with definitions of termsContents

E = enhanced shelf lifeM = low styrene emission

HET- = hexachloroendomethylene-Acid tetrahydrophthalic acidNPG = neopentyl glycol

Page 4: Chem Beständigkeits-Broschüre

76

Viapal™ types Features of Other delivery forms Chemical Reactivity Characteristicsstandard structure (degree of delivery form cross-linking)

For moulded parts and casting resin partsStandard resinsUP 001/67 OPA Medium Universal resin for FRP and coatings UP 002/60 OPA High Low-viscosity injection resinUP 004/64 Other styrene content OPA High For technical moulded parts with increased HDTUP 064 S/63 S OPA Medium Light stabilised for light componentsFlexible resinsUP 130/65 IPA Medium Impact-resistant type with high elongation for flexibilising, mixing resin UP 179 MT/57 MT Medium Viscoplastic type, in combination with polyester surface tissues for high flexible seamless roof

claddings and repairResins for special requirementsUP 223 BS/65 B S OPA Medium Transparent, preaccelerated casting resinUP 242 BT/57 BT OPA Medium Preaccelerated, thixotropic fibre spray resin, approved for boat buildingUP 242 BMT/57 BMT OPA Medium Low styrene emission resinUP 273 BMT/57 BMT OPA Medium Low styrene emission resin, preaccelerated, thixotropic, approved for boat building, fibre spray resin UP 303 BMT/55 BMT OPA High Low styrene emission resin, preaccelerated, thixotropic, fibre spray resin, type 1140 (DIN 16946/2)UP 303/65 Other styrene content OPA High Type for reinforced moulded parts, approved for heating oil containers and boat building.UP 320/70 OPA High Highly reactive resin for mould makingVUP 4779/55 OPA High High HDT, Moulded parts correspond to type 1140 in accordance with DIN 16 946, part 2.VUP 4666/51 IPA Very High Very high HDT; for the production of profiles that are used preferably in the electrical industry.VUP 4649 E/65 IPA/OPA Medium Increased elongation at break, good impact resistance and HDT.

blendAir drying resinUP 700/65 Medium With tack free curing properties; for highly filled industrial floor coverings and glossy topcoats.Chemical resistant resins which are dimensionally stable under heatVUP 4714/60 IPA-NPG Medium High HDT, high chemical suitability, good hot water resistance.UP 745/56 TPA-NPG Medium Highly heat resistant, chemical resistant TPS-NPG typeUP 746/58 IPA-NPG Medium Isophthalic acid/NPG resin with good chemical resistanceUP 495/48 Free of styrene as powder Bisphenol High Propoxylated Bisphenol A resin with good chemical resistance and high heat resistanceUP 797/59 HET-Acid Medium Hexachloroendomethylenetetrahydrophthalic acid-neopentyl glycol resin for the construction of

NPG chemical apparatusVUP 4652/67 Novolak High Exceptionally good chemical suitability, high HDT. Approval of the BAM-Berlin for lining tanks for the

Vinylester storage of aviation fuels and petrol in accordance with DIN 51600 and DIN 51607. Certificate of the Lloyd's Register of Shipping is available.

For paints and puttiesUP 151 Monomer-free resin for dye pastesUP 260B/62 B Medium Medium hard, amine preaccelerated resin for car repair putty.UP 192B/65 B Medium Medium hard, amine preaccelerated resin for car repair putty.UP 527E/68 E Medium Hard, air drying resin for spray fillers, putty with long potlife for metal and wood.VUP 2129B/65 B Medium Hard, amine preaccelerated resin for puttyVUP 4738B/65 B Low Soft, amine preaccelerated resin for car repair putty.VUP 4822 Low Styrene-free resin for putty and spray fillers.

Summary of types: Features, chemical structure, characteristics

Page 5: Chem Beständigkeits-Broschüre

Com

pone

nts

Cont

aine

rs a

nd p

ipes

Coat

ings

Boat

and

ship

bui

ldin

g

Cons

truct

ion

of ch

emica

l app

arat

us,

corro

sion

prot

ectio

nEl

ectri

cal i

ndus

tryGe

lcoat

sCa

stin

g re

sin m

ould

ed m

ater

ials

Dom

elig

hts a

nd li

ght p

late

s

Polye

ster

conc

rete

and

arti

ficia

l sto

ne

Publ

ic he

alth

sect

or, s

wim

min

g po

ols

Surfa

cers

and

put

ties

Tech

nica

l mou

lded

par

ts

Tran

spor

t and

mot

or ca

r sec

tor

Tool

and

mou

ld m

akin

g

Resin

for c

olou

r pas

tes

Clad

ding

syst

em fo

r fla

t roo

f

98

Viap

al™

type

s

UP 001

UP 002 UP 004 UP 064 UP 130 UP 179 UP 223 UP 242 UP 273 UP 303 UP 320 VUP4779/55 VUP4666/51 VUP4649E/65 UP 700/65 VUP4714/60 UP 745 UP 746 UP 495 UP 797 VUP4652/67 UP 151 UP 260 UP 192 UP 527 VUP 2129 VUP 4738 VUP 4822

Viap

al™

type

s

UP 001

UP 002

UP 004

UP 064

UP 130

UP 179

UP 223

UP 242

UP 273

UP 303

UP 320

VUP 4779/55

VUP 4666/51

VUP4649E/65

UP 700/65

VUP 4714/60

UP 745

UP 746

UP 495

UP 797

VUP 4652/67

UP 151UP 260

UP 192

UP 527

VUP 2129

VUP 4738

VUP 4822

Cast

ing

proc

ess

Man

ual p

roce

ssRe

sin fi

bre

spra

y pro

cess

Inje

ctio

n pr

oces

sCo

ld-m

ould

ing

proc

ess

Cont

. lam

inat

ing

Pultr

usio

nCe

ntrif

ugal

met

hod

Vacu

um in

ject

ion

proc

ess

Vacu

um p

roce

ssHo

t-pre

ssin

g pr

oces

s (BM

C,SM

C)

Filam

ent w

indi

ng p

roce

ss

Spra

ying

Fields of application Manufacturing processes

Page 6: Chem Beständigkeits-Broschüre

1110

Viapal™ types

UP 001/67 33 ± 2 1000 ± 150 30 20 ± 5 13 ± 3 33 ± 5 115 ± 15 5 ± 2 8 ± 2 180 ± 10UP 002/60 40 ± 2 300 ± 50 30 13 ± 3 9 ± 3 22 ± 4 160 ± 10 5 ± 2 7 ± 2 215 ± 10UP 004/64 36 ± 2 800 ± 100 32 27 ± 8 20 ± 5 30 ± 5 175 ± 15 4 ± 1 6 ± 1 225 ± 10UP 064 S/63 37 ± 2 625 ± 75 30 20 ± 4 14 ± 4 28 ± 5 140 ± 20 5 ± 2 8 ± 2 200 ± 10UP 130/65 35 ± 2 650 ± 100 20 13 ± 3 10 ± 3 30 ± 5 110 ± 15 5 ± 2 7± 2 175 ± 10UP 179 MT/57 43 ± 2 800 ± 150 6 30 ± 59) 21 ± 59) 45 ± 89) 50 ± 109) - - -UP 201 B/67 33 ± 2 1000 ± 200 30 9 ± 26) 7,5 ± 26) 10,5 ± 26) 140 ± 106) - - -UP 223 BS/65 35 ± 2 700 ± 100 30 30 ± 52) 25 ± 52) 50 ± 52) 45 ± 102) - - -UP 242 BMT/57 43 ± 2 thix. 30 35 ± 511) 13,5 ± 3,511) 38 ± 511) 115 ± 1511) - - -UP 273 BMT/57 43 ± 2 thix. 30 35 ± 511) 14 ± 311) 40 ± 511) 110 ± 1011) - - -UP 303 BMT/55 45 ± 2 thix. 30 35 ± 512) 22 ± 412) 35 ± 512) 170 ± 1012) - - -UP 303/65 35 ± 2 900 ± 100 32 25 ± 5 18 ± 4 25 ± 5 180 ± 10 3 ± 1 5 ± 1 220 ± 10UP 320/70 30 ± 2 2050 ± 300 30 25 ± 5 14 ± 4 20 ± 5 175 ± 15 5 ± 2 7 ± 2 215 ± 10VUP 4779/55 45,5 ± 2 215 ± 35 20 9,5 ±2,55) 9,5 ±2,55) 20 ± 55) 165 ± 155) - -VUP 4666/51 48 ± 2 800 ± 150 15 12 ±45) - - - - -UP 700/65 35 ± 2 2800 ± 600 14 31,5 ±3,55) - - - - -VUP 4649 E/65 35 ± 2 725 ± 145 27 13,5 ±2,55) - - - - -VUP 4714/60 40 ± 2 700 ± 100 14 8 ±35) 8 ± 3 20 ± 5 175 ± 15 - -UP 745/56 44 ± 2 650 ± 100 8 25 ± 5 16 ± 4 27 ± 5 190 ± 10 5 ± 2 7 ± 2 245 ± 10UP 746/58 42 ± 2 1250 ± 250 12 15 ± 3 17 ± 4 35 ± 5 150 ± 10 5 ± 2 8 ± 2 220 ± 10UP 495/48 50 ± 2 400 ± 100 10 45 ± 58) 35 ± 108) 40 ± 108) 160 ± 108) 12 ± 4 16 ± 4 215 ± 10UP 797/59 41 ± 2 400 ± 50 14 12 ± 35) 10 ± 35) 25 ± 55) 170 ± 105) 8 ± 2 10 ± 2 225 ± 5VUP 4652/67 33,5 ± 2 325 ± 85 5 20 ± 710) - - - - -UP 151 0 1650 ± 250 25 - - - - - - -UP 260 B/62 38 ± 2 450 - 670 18 - - - - - -UP 192 B/65 35 ± 2 320 - 420 17 7,5 ± 1,51) 10 ± 21) 115 ± 101) - - -UP 527 E/68 32 ± 2 630 - 950 30 - - - - - -VUP 2129 B/65 35 ± 2 320 - 420 17 7,5 ± 1,51) 10 ± 21) 115 ± 101) - -VUP 4738 B/65 35 ± 2 500 - 690 20 - - - - - -VUP 4822 0 2700 - 3700 29 - - - - - -

Characteristic data in delivery condition

Styrene content

DIN 16 945

[%]

Rotation according to

DIN EN ISO 3219 23˚C

[mPa.s]

Viscosity Acid value DIN 53 402

max. [mgKOH/g Lff.]

Gel time20˚C

DIN 16 945 (50 g batch

with 2%MEKP/36%+ 0.3% Co/1%)

[min]

Cold curing/25˚C DIN 16945

(2% MEKP/36%+0.3% Co/1%)

ta

[min]

tb

[min]

δmax.

[˚C]

Hot curing/80˚C* DIN 16945

(2% BP/50%)

ta

[min]

tb

[min]

δmax.

[˚C]

* The determinations are made using standard recipes, deviations being listedopposite. Checks are generally carried out with the same hardener/acceleratorsystem of a manufacturer, in order to be able to better detect differences in qualityof the resins. Different results may also be possible when using other producers'reaction agents.

1) 100 g batch with 2,5% BP/40%2) 50 g batch with 1,0% MEKP/33%5) 50 g batch with 2,0% MEKP/33%, 1,0% Co/1%6) 100 g batch with 5,0% BP-40-28) 100 g batch with 2,0% BP/50%, 2,0% DMA/10%9) 100 g batch with 2,0% Butanox LPT,

1,5% accelerator NL23A

10) 50 g batch with 2% MEKP/33%+3% Co/1%+1% DMA 10

11) 2,0% MEKP/36%12) 1,0% MEKP/36%

Characteristic data in delivery condition

Page 7: Chem Beständigkeits-Broschüre

Standard resinsUP 001/67 1110 85 50 ≈ 2 3600 5 110 70 90 0,15 1,5 PTI 600 1015 1013 0,05 3,2UP 002/60 1110 70 40 ≈ 2 3074 6 110 75 110 0,15 1,5 PTI 600 1015 1013 0,02 3,2UP 004/64 1130 95 60 ≈ 2 4400 8 110 100 125 0,16 1,5 PTI 600 1015 1013 0,03 3,2UP 064 S/63 1110 85 50 ≈ 2 3400 5 110 70 90 0,15 1,5 PTI 600 1015 1013 0,05 3,2Flexible resinsUP 130/65 1110 35 25 > 60 - 70 280 < 30 < 50 0,12 1,4 PTI 600 1015 1013 0,03 3,7UP 179 MT/57 1110 - 6 > 100 - - - < 30 < 50 - - - - - - -Resins for special applicationsUP 201 B/67 1110 90 60 ≈ 2 3496 6 115 65 100 0,15 1,4 PTI 600 1015 1013 0,03 3,3UP 223 BS/65 1110 90 55 ≈ 2 3423 8 115 70 80 0,14 1,4 PTI 600 1015 1013 0,02 3,0UP 242 BMT/57 1110 80 60 ≈ 2 4000 6 110 65 95 0,13 1,5 PTI 600 1015 1013 0,02 3,2UP 273 BMT/57 1110 80 60 ≈ 2 4000 6 110 65 95 0,13 1,5 PTI 600 1015 1013 0,02 3,2UP 303 BMT/55 1140 115 65 ≈ 2 4000 9 110 90 120 0,14 1,4 PTI 600 1015 1013 0,03 3,4UP 303/65 1140 120 80 ≈ 2 4000 15 110 105 130 0,14 1,4 PTI 600 1015 1013 0,03 3,6UP 320/70 1120 115 55 ≈ 2 4200 8 90 90 135 0,15 1,2 PTI 600 1015 1013 0,02 3,2VUP 4779/55 1140 1271) 671) 2,81) 29341) 901) 123VUP 4666/51 1130 874) 394) 1,34) 29124) 10 1324) 163VUP 4649 E/65 1110 1011) 541) 4,01) 21441) 10 611) 114Air-drying resinsUP 700/65 1110 1011) 641) 1,91) 33121) 8 641)

Chemical resistant resins which are dimensionally stable under heatVUP 4714/60 1130 1401) 501) 1,61) 30501) 14 901) 129UP 745/56 1130 90 50 = 2 4000 8 75 1313) 1464) 0,15 1,4 PTI 600 1015 1013 0,03 3,1UP 746/58 1140 115 60 ≈ 2 3600 15 90 901) 120 0,15 1,2 PTI 600 1016 1014 0,02 2,7UP 495/48 1140 120 55 ≈ 2 3000 7 70 1103) 150 0,16 1,4 PTI 600 1016 1014 0,01 3UP 797/59 1130 80 50 < 2 3900 7 100 1162) 1332) 0,16 1,2 PTI 600 1015 1013 0,01 3VUP 4652/67 1140 1495) 605) 2,05) 31755) 9 1425) 1475)

1312

Viapal™ types

Mechanical data of unreinforced moulding materials Thermal data of unreinforced moulding materials Electrical data of unreinforced moulding materialsDIN-type according

DIN 16 946Sheet 2

Flexuralstrength(MPa)

DIN EN ISO 178

Tensilestrength(MPa)

DIN EN ISO 527-2

Elongationat break (%)

DIN EN ISO 527-2

Flexuralmodulus E

MPa DIN EN ISO 178

Impactstrength(kJ/m2) DIN EN

ISO 179-1

Linear coeffi-cient of ther-mal expan-sion 0-70˚C

(1/106K) VDE 0304

HDT (˚C) DIN EN

ISO 75-2 A

Glass transition

temperatureTg (˚C)

DIN 53 445

Calorific con-ductibility(W/m·K)

DIN 52 612

Spec. heat 0 – 70˚C(kJ/kg·K) VDE 0335

Tracking (V)

DIN IEC 112

Spec. insula-tion resist-

ance (Ω cm)DIN 53 482

Surfaceresistance

(Ω) DIN 53 482

Dielectricloss factortan δ (-)106Hz

DIN 53 483

Relative permittivity

ε (-),106Hz

DIN 53 483

Legend: post thermal treatment (10 h) temperatures :1) 70°C, 2) 100°C, 3) 120°C, 4) 130°C, 5) 140°C

Physical properties of unreinforced moulded parts

Page 8: Chem Beständigkeits-Broschüre

1514

Standard resinsUP 001/67 160 220 420 110 170 320 ≈ 2 ≈ 2 ≈ 2 9000 11000 20000 32 21 14 0,17 0,19 0,23 1,2 1,1 1,0UP 002/60 180 270 430 100 180 350 ≈ 2 ≈ 2 ≈ 2 7000 9000 18000 35 25 13 0,17 0,19 0,25 1,2 1,1 1,0UP 004/64 190 250 420 130 160 300 ≈ 2 ≈ 2 ≈ 2 10000 12000 25000 30 23 12 0,18 0,21 0,27 1,2 1,1 1,0UP 064 S/63 160 220 420 110 170 320 ≈ 2 ≈ 2 ≈ 2 9000 11000 20000 32 21 14 0,16 0,17 0,22 1,2 1,1 1,0Flexible resinsUP 130/65 - - - - - - - - - - - - - - - - - - - - -UP 179 MT/571) - - - 10 - - 35 - - 150 - - - - - - - - - - -Resins for special applicationsUP 201 B/67 160 230 400 120 150 320 ≈ 2 ≈ 2 ≈ 2 8000 10000 22000 36 27 15 0,17 0,19 0,25 1,2 1,1 0,9UP 223 BS/65 - - - - - - - - - - - - - - - - - - 1,2 1,1 1,0UP 242 BMT/57 170 245 400 130 150 250 ≈ 2 ≈ 2 ≈ 2 9000 11000 25000 35 25 13 0,15 0,17 0,22 1,2 1,1 1,0UP 273 BMT/57 170 245 400 130 150 250 ≈ 2 ≈ 2 ≈ 2 9000 11000 25000 35 25 13 0,15 0,17 0,22 1,2 1,1 1,0UP 303 BMT/55 190 270 430 100 150 300 ≈ 2 ≈ 2 ≈ 2 10000 12000 22000 33 25 16 0,15 0,16 0,20 1,2 1,1 0,9UP 303/65 210 280 480 100 150 300 ≈ 2 ≈ 2 ≈ 2 11000 14000 22000 33 25 16 0,15 0,16 0,20 1,2 1,1 0,9UP 320/70 170 230 420 110 170 340 ≈ 2 ≈ 2 ≈ 2 9000 11000 22000 32 23 12 0,17 0,19 0,24 1,0 0,9 0,8Chemical resistant resins which are dimensionally stable under heatUP 745/56 160 220 400 110 120 310 ≈ 2 ≈ 2 ≈ 2 9000 11000 21000 35 26 14 0,17 0,19 0,22 1,2 1,1 0,9UP 746/58 200 260 410 120 150 340 ≈ 2 ≈ 2 ≈ 2 10000 12000 23000 30 21 12 0,18 0,20 0,26 1,0 0,9 0,8UP 495/48 200 260 550 120 160 350 ≈ 2 ≈ 2 < 2 7000 9000 25000 35 25 13 0,18 0,21 0,27 1,0 0,9 0,8UP 797/59 160 200 400 100 120 320 < 2 < 2 < 2 8000 10000 20000 35 22 13 0,19 0,21 0,28 1,0 0,9 0,9

Viapal™ types

Mechanical data of reinforced moulding materials Thermal data of reinforced moulding materials

Flexural strength (MPa) DIN EN ISO 14125

Tensile strength (MPa) DIN EN ISO 527-4

Elongation at break (%) DIN EN ISO 527-4

Flexural modulus E MPa DIN EN ISO 14125

Lin. coefficient of thermal expansion0 – 70˚C (1/106K) VDE 0304

Calorific conductibility (W/m·K) DIN 52 612

Spec. Heat, 0-70˚C (kJ/kg·K)VDE 0335

Mat S.B.* ≈ 30%glass

Mat I.B.* ≈ 45%glass

Rovingfabric ≈ 65%glass

Mat S.B.* ≈ 30%glass

Mat I.B.* ≈ 45%glass

Rovingfabric ≈ 65%glass

Mat S.B.* ≈ 30%glass

Mat I.B.* ≈ 45%glass

Rovingfabric ≈ 65%glass

Mat S.B.* ≈ 30%glass

Mat I.B.* ≈ 45%glass

Rovingfabric ≈ 65%glass

Mat S.B.* ≈ 30%glass

Mat I.B.* ≈ 45%glass

Rovingfabric ≈ 65%glass

Mat S.B.* ≈ 30%glass

Mat I.B.* ≈ 45%glass

Rovingfabric ≈ 65%glass

Mat S.B.* ≈ 30%glass

Mat I.B.* ≈ 45%glass

Rovingfabric ≈ 65%glass

* S.B. = Soluble binder;I.B. = insoluble binder;Glass = Glass mass proportion

1) Complete roof cladding system with polyester non-woven fabric(e.g. DuraSpun Typ 101/160, Johns Manville) as reinforcing material

Physical properties of reinforced moulded parts

Page 9: Chem Beständigkeits-Broschüre

1716

Comments to some selected physical parametersComments to some selected physical parameters

Mechanical data

DIN-type according to DIN 16 946 Sheet 2This standard is used to classify UP thermoset resin moulding materials. Classification is madeaccording to mechanical, thermomechanical and other properties.

Flexural strength (MPa) according to DIN EN ISO 178Determination of flexural stress σfM required to break a specimen of prescribed dimensionaccording to standard DIN EN ISO 178 (Plastics – Determination of flexural properties).Flexural strength depends amongst others on temperature.

Tensile strength (MPa) according to DIN EN ISO 527-2Determination of longitudinal stress σM required to break a specimen of prescribed dimensionaccording to standard DIN EN ISO 527-2 (Plastics – Determination of tensile properties).Tensile strength depends amongst others on temperature.

Elongation at break (%) according to DIN EN ISO 527-2Determination of elongation εM at the moment of break carried out according to standardDIN EN ISO 527-2 (Plastics – Determination of tensile properties).

l0 = length before test, l = length at the moment of breakElongation at break depends amongst others on temperature.

Modulus of elasticity (Young’s modulus) Ef (MPa) according to DIN EN ISO 178Determination of bending modulus Ef carried out according to standard DIN EN ISO 178(Plastics – Determination of flexural properties).

σf2 = flexural stress at deflection s2, σf1 = flexural stress at deflection s1

εf2 = strain of the outer fibre at deflection s2, εf1 = strain of the outer fibre at deflect. s1

The numerical value of E increases with increasing resistance of the polymer against deforma-tion. A material with high E is therefore stiffer, a material with low E more flexible. E dependsamongst others on temperature. Determination of modulus of elasticity has to be carried outat very small strains to approximate to the linear gradient of the stress-strain curve.

Impact strength (kJ/m2) according to DIN EN ISO 179-1Determination of Charpy impact strength carried out according to standard DIN EN ISO 179-1(Plastics – Determination of Charpy impact properties). Impact strength is the ability to with-stand a physical shock loading or the work required to fracture under shock loading of aspecified test specimen in a specified manner. Impact strength depends amongst others ontemperature.

Thermal data

Glass transition temperature Tg (˚C) according to DIN 53 445The temperature region over which the material changes from a rigid, glassy solid to a moreflexible, elastomeric solid. The glass transition region is denoted by Tg, the glass transitiontemperature.Data are determined by dynamic-mechanical analysis (DMA). DMA-experiments are conduct-ed by applying a small periodical torsional deformation to a sample over a wide temperaturerange. The DMA test provides as direct parameters storage modulus (G'), loss modulus (G")and tan delta (tan δ). Tg is determined by tan delta reaching its maximum.tan Delta = G"(ω)/G'(ω)Storage Modulus G': Measurement of energy stored during deformation and related to the

solid-like or elastic portion of the polymer.Loss Modulus G": Measurement of energy lost (usually lost as heat) during deformation

and related to the liquid-like or viscous portion of the polymer.

Heat distortion temperature according to DIN EN ISO 75-2 method AHeat distortion temperature is the property of a polymeric specimen to maintain its shapeunder a specific static load and a specified heating speed.The values are determined by loading a specimen with a maximum bending moment of1,8 MPa. The specimen is immersed into a silicon oil bath and heated with a heating rate of120 K * h-1. Heat deflection temperature is reached, when a deflection of 0,32 – 0,36 mm isreached (depending on thickness of specimen 3,8 – 4,2 mm).

Linear coefficient of thermal expansion 0-70˚C (1/106K) according to VDE 0304

The coefficient of linear thermal expansion is defined as the fractional increase in length perunit rise in temperature.

Caloric conductibility [W/(m·K)] according to DIN 52 612Caloric conductibility is a substance specific physical property which describes the heat trans-fer of a substance by heat conduction. The data are determined under stationary conditions,meaning that temporarily the temperature in the measurement system does not change. Bychoosing the right geometry, temperature is only a function of one coordinate. In this case theequation can be simplified to

λ = caloric conductibility, q = heat flow, x = thickness of specimen,A = area of specimen, ∆T = temperature difference

Caloric conductibility was determined by plate apparatus according to DIN 52 612

Specific heat 0 – 70˚C (kJ/kg·K) according to VDE 0335Specific heat is that heat quantity which has to be applied to a body in order to raise its tem-perature by 1°K (referring to the mass of the body).

c = specific heat, Q = heat quantity, m = mass, ∆T = temperature difference

εM = * 100l – l0l

Ef =σf2 – σf1

εf2 – εf1

λ =q * x

A * ∆T

c =Q

m * ∆T

Page 10: Chem Beständigkeits-Broschüre

19

UP Resins for Paints and Fillers

Viapal UP 151: Monomer free, liquid, low odour, for the manufacture of concentratedcolour pastes which are highly resistant to storage for dyeing UPresins and paints; very good wetting of the pigments; pigment con-tent up to approx. 65% possible in the case of titanium white pastes.

Viapal UP 260 B/62: Preaccelerated UP resin as sole binding agent for the manufacture ofhighly loaded car repair putty, with very good resistance to storageand rapid and very good sandability after short curing periods, evenat low processing temperatures.

Viapal UP 192 B/65: Preaccelerated UP resin as sole binding agent for the manufacture ofhighly loaded car repair putty, with very good resistance to storage,even when using spec. aluminium powders; good sandability aftershort curing periods, even at low processing temperatures.

Viapal UP 527 E/68: Air-drying UP resin not preaccelerated for the manufacture of thick-layered spray fillers and putty with long potlife and good sandabilityfor metal and wood; the curing is a cobalt-hydro-peroxide system;sufficient elasticity for use as sole binding agent.

Viapal VUP 2129 B/65: Preaccelerated UP resin for the manufacture of highly loaded carrepair putty, predominantly mixed with special elastic UP resins; verygood resistance to storage; good sandability after short curing peri-ods, even at low processing temperatures.

Viapal VUP 4738 B/65: Highly elastic, preaccelerated UP resin for the manufacture of highlyloaded putty; very good resistance to storage, excellent adhesion onmetal, even at curing or drying temperatures of above 100°C; excel-lent degradability during grinding; the UP resin is predominantly usedmixed with Viapal 2129 B/65, in order to achieve the required elastic-ity stage of the putty in each case

Viapal VUP 4822: Styrene-free and therefore particularly environmentally friendly UPresin for the manufacture of spray fillers and highly loaded car puttywith very good resistance to storage and good sandability. The resinis not preaccelerated. We recommend curing with ketone peroxideand Co accelerators and IR radiation for forced drying.

The complete system always comprises Viapal UP 179 reinforced witha suitable polyester mat (non-woven fabric / e.g. DuraSpun Typ101/160 from Johns Manville) and is used to seal flat or slightlypitched roofs. Agreement no. 359/89 issued by the BAM in accor-dance with the U.E.A. t.c. guidelines is available. Installation mustonly be carried out by trained specialist companies.

Note regardingViapal UP 179 roofcladding system:

18

Comments to some selected physical parameters

Electrical data

Tracking (V) according to DIN IEC 112Due to deposited dust or adsorbed moisture electrical conductivity of insulators will increase.If there is an electrical voltage applied, there may emerge an electrical current, spark dis-charges or even arcs on the insulators surface.Electrical currents generated in this way are called creeping currents. Under influence ofcreeping currents the insulator may decompose and degrade due to thermal oxidation. Thusthere are electrical conductive (carbonized) paths generated. The term tracking resistancemeans the resistance of an insulator against formation of tracks. The given parameter isnamed proof tracking index and is determined according to DIN IEC 112.

Specific insulation resistance (Ω cm) according to DIN 53 482The specific insulation resistance can be described as the ratio of the applied voltage to thetotal current between two electrodes in contact with a specific polymer sample under pre-scribed conditions of test.

ρ = specific insulation resistance, R = resistance, A = Area, l = Length

Surface resistance (Ω) according to DIN 53 482Surface resistance is defined as the resistance between electrodes which are attached to thesurface in a definite way. Surface resistance depends on the level of the applied voltage,residence time of the applied voltage, material, constitution & form of the electrodes as wellas water content and temperature of the sample.

Dielectric loss factor tan δ (-) 106Hz according to DIN 53 483When an alternating voltage with the frequency f is applied, a resonance oscillation isinduced into dipoles, which generates heat. The ratio between active current and wattless cur-rent of the dielectric, located in the alternating field, is the Dielectric loss factor tan δ. Hedepends on frequency and temperature. The bigger εr the bigger is also tan δ.

Relative permittivity εr (-), 106Hz according to DIN 53 483When a dielectric (e.g. polyester sheet) is brought between the plates of a capacitor with thesurface area A and the distance d, the capacity will increase by the factor εr according to:

C = capacity, εr = relative permittivity, ε0 = relative permittivity of free space, A = area of theelectrodes, d = distance between electrodesThe relative permittivity for vacuum is by definition one. The value of εr depends on frequencyand temperature. For polymers with permanent dipoles (such as unsaturated polyesters) εr

will decrease with increasing frequency or temperature.

ρ = R * AI

C = εr ε0Ad

Page 11: Chem Beständigkeits-Broschüre

20 21

Chemical resistance of glass-fibre reinforced Viapal types

Notes: The details in the summary refer to tests and practical experiences with FR-UP lami-nates. The list reproduces the maximum continuous service temperatures. In those cases wherethe media are not stored at higher temperatures, the test was carried out naturally at roomtemperature only. A distinction must be made between three groups as regards the demandsimposed by chemicals:

a) Less aggressive media which do not tend to diffuse

b) Less aggressive media with strong diffusion

c) Aggressive media with and without diffusion.

Containers and pipes for group a) are usually produced with a gelcoat or non-woven fabriclayer and the following, supporting laminate. In the case of groups b) and c) we first of all recommend that a chemical protective layer be constructed and only then that the supportinglaminate be produced. The wall thickness of the chemical protective layer (CPL) should beat least 2.5 mm, it is not included in the calculation. The diffusion to be observed and thechemical protective layers (CPL 1-3) to be used, if applicable, are referred to in each case in thesummary.

The values indicated are given as a guide for pure media and presuppose perfect processing ofthe laminates. A conclusion cannot be drawn from this information regarding the conduct ofFR-UP with respect to mixing or alternate storage of the various media in all cases. Please con-tact us with any problems you may have, even if your desired media are not included in thissummary. We would be happy to help you find the suitable solution. This list does not affectthe provisions of food law. All the necessary protective measures are to be taken during pro-cessing.

OPA = orthophthalic acidIPA = isophthalic acidTPA = terephthalic acidHET = hexachloroendomethylene-

tetrahydrophthalic acidBisphenol = Bisphenol A, propoxylatedhc = highly cross-linkedmc = medium cross-linked

RT = in Germany in the shadow occuring temperatures

e.g. 40 = maximum service temperature is40°C

- = is not recommendedaq. = aqueous solutionn.n.o. = neutral, not oxidising

medium

1st layer2nd layer

3rd layer

CPL 1* CPL 2 CPL 3

Chemical resistance of glass-fibre reinforced Viapal types

CPL 1* CPL 2 CPL 31st layer E- or C-glass-fabric and, Optionally, gelcoat or layer of non-woven

possibly, also gelcoat fabric with ECR-, E- or C-glass or synthetic fibres

2nd layer Textile glass mat** with a percentage C-glass staple fabric by weight of glass of 25-35% or mat made of ECR glass

with a percentage by weight of 25-35%

3rd layer Textile glass mat with a percentage by weight of glass of 25-35%

* Thixotropic agent not permitted ** no emulsion binder

Structure of the chemical protective layers (CPL):generally comprising 3 individual layers, the 1st layer being turned towards the medium.

Explanation of symbols

Page 12: Chem Beständigkeits-Broschüre

22 232322

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Acetic acid anhydride x 1 RT - RT - - - - -Acetic acid aq. 10% x 2 95 (25%) 60 80 60 60 60 RT RT RTAcetic acid aq. 30% x 2 60 80 60 60 60 - -Acetic acid aq. 50% x 2 80 40 60 40 40 40 - -Acetic acid aq. 80% x 1 60 (75%) - RT RT RT RT - -Acetic acid conc., 98% x - - - - - - -Acetic ester x 1 - RT - - - - -Acetone x - - - - - -Acetophenone 2 RT RT RT RT RT - -Acrylic acid, 10% x 1 35 (25%) RT RT - - - - -Adipic acid aq. 1 80 60 60 60 60 RT -Alcohol (ethanol), 96% not denatured x 2 35 40 40 40 40 40 RT RT RTAlkylbenzene sulphonic acid and sodium salts aq. 2 60 60 80 60 40 RT RT RTAlum aq. 80 60 60 60 60 RT RT RTAluminium salts (n.n.o.) aq. 60 60 60 60 60 RT RT RTAmmonia (see ammonium hydroxide) x 2 -Ammonium carbonate aq. x 2 60 40 50 40 RT 40 RT RT -Ammonium hydroxide aq., 10% x 2 60 RT RT - - - - -Ammonium hydroxide aq., 5% x 2 80 RT RT RT RT RT - -Ammonium hydroxide saturated, 25% x 2 RT RT RT - - - - -Ammonium peroxodisulphate 80 50 65 40 40 40 - -Ammonium salts aq. (n.n.o.) 80 95 80 60 80 40 RTAmmonium sulphide aq. 40% x 2 RT RT - - - - -Ammonium thiosulphate aq. x 2 RT - RT - - - - -Amyl acetate x 1 50 RT RT RT RT RT RT RT -Amyl alcohol 1 90 40 RT 40 40 40 RT 40 -Aniline x 1 RT RT RT RT RT RT - -Anone (cyclohexanone) x 1 - RT RT RT RT RT -Antimony pentachloride 1 - RT - - - -Antimony trichloride 1 40 60 40 RT 40 - -Apple juice RT RT RT RT RT RT RTAqua dist. (distilled water) x 1 100 60 70 60 60 60 40 40 RTAqua regia x 3 RT RT RT - - - -Arsenic acid 60 80 60 60 60 40 40 RT

Barium hydroxide aq. 1 65 60 60 60 60 60 40 40 -

Chemical resistance Ac–Ba

Page 13: Chem Beständigkeits-Broschüre

24 252524

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Barium salts aq. (n.n.o.) 100 (BaCl2) 80 80 60 60 60 40 40 RTBattery acid 3 80 80 60 60 80 RT RT RTBeer RT RT RT RT RT RT -Benzaldehyde 1 RT - RT RT RT RT RT RT -Benzene x 1 RT - - - - RT - -Benzoic acid aq. 2 100 80 80 80 60 80 40 40 RTBenzoyl chloride 1 RT RT RT RT RT RT RT -Benzyl alcohol 1 RT RT RT RT RT RT RT RT -Benzyl chloride 1 RT RT RT RT RT RT - -Benzyl octyl adipate 2 40 50 50 40 50 RT -Bleaching liquor (Sodium hypochlorite,up to 16% active chlorine) x 1 RT RT RT RT RT - -Borax aq. 60 60 40 40 40 RT RT RTBoric acid aq. 100 60 60 40 40 40 RT RT RTBromine gas, moist x 1 RT - RT - - - - -Bromine water aq. 47% 1 - 40 40 40 - -Butanoic acid x 2 40 40 40 40 40 RT RT RTButanol 2 50 RT 50 50 50 50 RT RT -Butyl acetate x 2 RT - RT RT RT RT - -Butyl diglycol 2 40 40 40 40 40 RT RT -

Calcium chloride aq.1) 100 80 100 80 60 80 40 40 RTCalcium formiate aq. 2 60 60 60 60 60 RT RT RTCalcium hydroxide aq. 1 80 60 60 60 60 60 RT RT RTCaprolactum aq. 40-80% 1 50 50 50 50 50 - -Caprylic acid 2 90 50 60 50 50 50 RT RT RTCarbon disulphide x - - - - - - -Carbon tetrachloride x 1 70 RT RT RT RT RT RT RT RTCastor oil 80 80 80 80 80 40 RTChlorinated lime, aq. 2 40 RT RT RT RT - -Chlorine bleaching liquor, 16% active chlorine x 1 RT RT RT RT RT - -Chlorine dioxide x 1 65 RT 55 RT RT RT - -Chlorine gas, moist x 1 100 100 95 80 60 80 - -Chlorine water x 1 60 90 60 RT 60 - -Chloroacetic acid, up to 85% x 2 RT RT RT RT RT - -Chlorobenzene x 1 RT - - RT RT - - RTChlorofluorocarbon x 1 - 70 - - - -

1) Also applies to calcium nitrate and sulphate

Chemical resistance Ba–Ch

Page 14: Chem Beständigkeits-Broschüre

2626

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

2727

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

Standard glycol resins

Chloroform x - - - - - - - -Chromate bath 3 - 95 60 60 RT RT -Chromic acid aq., 10% 1 60 (20%) - 90 60 RT 60 - -Chromic acid aq., 30% 1 - RT RT RT RT RT RTChromium sulphate aq. 80 60 65 60 60 60 RT RTChromium sulphuric acid 395:395 g/l 3 - 60 RT RT RT - -Cinnamic aldehyde 1 RT RT RT RT RT RT RT -Citric acid aq. 1 100 80 100 80 60 80 RT RT -Cobalt salts aq. (n.n.o.) 80 80 80 60 80 40 40 RTCopper salts aq. (n.n.o.) 100 (CuSO4) 80 80 80 60 80 40 RTCresol, > 1% aq. x - - - - - - -Cresol, 0.1% aq. x 1 RT RT RT RT RT - -Cresol, 1% aq. x 1 RT RT RT RT - - -Crude oil2) x 2 80 RT RT RT RT RT -Cyclohexane 1 60 50 50 50 50 50 RT RT RTCyclohexanol 1 RT 40 40 RT 40 RT RT -Cyclohexanone (anone) x 1 RT RT RT RT RT RT RT -Cyclohexyl amine 1 RT RT RT RT RT RT RT -

Dibutyl phthalate 2 60 60 60 60 60 RT RT RTDicotyl phthalate 2 50 50 50 50 50 RT -Diesel fuel3) x 1 RT RT RT RT RT RT RT -Diethanol amine 50 60 40 40 40 RT RT -Diethlyene triamine (DETA) x 1 - RT - - - - -Diethyl amine aq., 50% x 1 RT - RT RT - - -Diethyl amine conc. x - - - - - - -Diethyl aniline 1 RT RT RT RT RT - -Diethyl ether x - - - - - - - -Diethyl glycol x 1 - RT - - - - -Diethyl phthalate 2 60 60 60 60 60 RT RT RTDiethylene glycol 1 100 90 90 90 60 90 50 50 RTDiisobutylene 1 RT RT 40 RT RT RT RT RT -Dimethyl acetamide, 70% 1 40 65 40 40 40 - -Dimethyl formamide x - - - - - - -Dimethyl phthalate 2 50 50 50 50 50 RT RT -Dimethyl sulphoxide x - - - - - - -Dimethylamine, 4% x 1 - 55 - - - - -

2) Storage generally only at room temperature3) Storage usually only at room temperature, otherwise see heating oil

Chemical resistance Ch–Di

Page 15: Chem Beständigkeits-Broschüre

28 292928

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Dimethylaniline 1 RT - RT RT RT - -Dioxan x - - - - - - -Dispersions aq. (pH 5-8)4) 1 RT RT RT RT RT RT RTDodecyl benzene sulphonic acid 1 80 65 50 RT 50 RT RT RT

Epoxy resins (solvent-free) 2 RT RT RT RT RT RT RT -Ethanol aq. < 20% x 1 40 40 40 40 40 RT RT RTEthanol aq. 50% x 1 65 40 40 40 40 40 RT RT RTEthanol conc. x 2 35 (95%) 40 40 40 40 40 RT RT RTEthanolamine 1 40 RT RT RT RT - -Ether x - - - - - - - -Ethoxyethyl alcohol5) 1 RT RT RT RT RT RT -Ethyl acetate (Acetic ester) x - - - - - - -Ethyl chloride x 1 RT - RT - - - - -Ethylamine, aq. 35% x 1 - RT RT RT - - -Ethylamine, aq. 70% x - - - - - - -Ethylbenzene 1 - RT RT RT RT RT RT -Ethylene chlorohydrine, 100% x 1 - 90 - - - - -Ethylene dichloride x - - - - - - -Ethylene glycol 2 100 80 100 80 60 80 40 40 RTEthylenediamene, 70-80% x - - - - - - -Eythylenediamine tetraacetic acid (EDTA) 1 RT 80 80 80 60 80 40 RT RT

Fats and higher fatty acids (approx. C16) 2 100 90 100 80 80 100 40 40 RTFluorosilic acid, aq., 25% x 26) 30 (35%) RT RT RT RT RT RT RT -Formaldehyde aq., 35% x 1 65 50 65 50 50 50 RT RT -Formic acid 10% x 2 80 60 60 60 60 60 RT RT RTFormic acid 100% x RT - - - - - - -Formic acid 50% x 2 40 40 50 40 50 - -Formic acid 85% x 2 RT RT - - - - -Fruit juices 2 RT RT RT RT RT RT RTFurfural x 1 - - RT - - - - -Furfuryl alcohol x 1 RT - RT - - - - -

Gasoline (containing aromatics) x 1 60 60 60 RT 60 30 30 RTGasoline (containing methanol) x - - - - - - - -Glacial acetic acid x 1 RT - RT - - - - -

4) Higher temperatures do not occur5) Ethylene glycol monoethyl ether 6) Only use non-woven synthetic fabric

Chemical resistance Di–Gl

Page 16: Chem Beständigkeits-Broschüre

30 313130

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Glycerin 2 100 80 100 80 60 80 40 40 RTGlycol 2 80 100 80 60 80 40 40 RTGlyoxal, 40% 1 RT RT RT RT RT RT - -

Heating oil (EL)7) x 2 90 60 80 60 60 60 RT 40 RTHeptane, hexane x 1 80 (heptane) 60 70 60 60 60 RT RT -Hexamethylene tetramine, 28% x 2 RT RT RT RT RT - -Hydrazine hydrate aq., 20% x 28) RT RT RT RT - -Hydrazine hydrate aq., 50% x 29) RT RT RT RT RT - -Hydrobromic acid, 10% x 1 60 60 60 RT 60 RT RT RTHydrochloric acid (for footnote see other entry for hydrochloric acid) x 1 60 (37%) RT RT RT RT RT RT -Hydrochloric acid, all concs.10) x 1 60 (37%) RT RT RT RT RT RT RT -Hydrocyanic acid 100 60 100 60 60 60 30 30 RTHydrofluoric acid aq., 10% (caution glass!) x (2)11) 65 RT 35 RT RT RT - -Hydrofluoric acid aq., 40% x - - - - - - -Hydrogen chloride (anhydrous) x 1 100 RT 100 RT RT RT RT -Hydrogen fluoride gas (caution glass!) x (2)12) RT 35 RT RT RT - -Hydrogen peroxide aq., 30% 1 60 RT RT RT RT RT - -Hydrogen sulphide 2 100 RT RT RT RT RT RT RT -Hydroxylammonium sulphate aq. 1 60 100 60 60 60 RT RT -Hypochlorous acid, aq. 10% 2 RT 40 40 40 - -

Iodine, solid x 1 RT RT RT RT RT RT RT -Iron chloride 2 100 60 50 50 50 50 RT RT -Isoamyl acetate 1 RT RT RT RT RT RT RT -Isoamyl alcohol 2 RT RT RT RT RT RT RT -Isopropanol x 1 60 60 60 60 60 RT RT -

Kerosene 1 80 60 60 60 60 40 30 -

Lactic acid, 10%, aq. 2 80 95 80 60 90 40 40 RTLactic acid, 80%, aq. 2 100 RT 70 40 RT 40 RT RT -Lauryl ether sulphate aq. 2 60 60 60 60 60 RT RT -Lead salts aq. 100 (acetate) 80 80 60 60 60 40 40 RTLime, aqueous suspension 1 80 60 60 60 60 RT RT RTLinseed oil 60 95 80 80 80 40 40 RT

7) Storage usually at room temperature8) Gelcoat without fleece9) Gelcoat without fleece

10) No inclusions of air! Do not change media instorage containers!

11) Only use non-woven syntheticfabric, no pyrogenic silicic acid asthixotropic agent

12) Only use non-woven syntheticfabric, no pyrogenic silicic acid asthixotropic agent

Chemical resistance Gl–Li

Page 17: Chem Beständigkeits-Broschüre

32 333332

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Lithium chloride aq. 100 80 80 80 60 80 50 50 RTLysol x 2 RT RT RT RT RT RT RT -

Machine oil 2 90 100 100 100 50 50 RTMagnesium salts aq. (n.n.o.) 100 (MgSO4) 80 80 80 60 80 40 40 RTMaleic acid aq. 2 100 80 95 60 60 60 RT RT -Manganese salts aq. (n.n.o.) 80 80 80 60 80 40 40 RTMargarine 80 100 80 80 40 40 RTMelamine resins aq.13) RT RT RT RT RT 50 RT -Mercury 100 100 80 100 50 50 40Mercury salts aq. (n.n.o.) 80 90 80 60 80 40 40 RTMethanol x 2 RT RT RT RT - RT - -Methyl ethyl ketone x RT - - - - - - -Methyl glycol acetate x - - - - - - -Methyl isobutyl ketone x - - - - - - -Methylene dichloride x - - - - - - -Milk 80 80 80 80 RT RT RTMineral water 80 90 80 60 80 40 40 RTMMA (methyl methacrylate) x - - - - - - -Molasses 80 95 80 60 80 40 RTMonochloro acetic acid, < 85% x 2 - RT RT RT RT RT - -Monoethanolamine x 1 40 RT RT RT RT - -Monoethylaniline x 1 RT RT RT RT RT - -Mono-iso-propylamine aq. 50% x 1 - RT RT RT - - -Mono-iso-propylamine conc. x - - - - - - -Mono-n-butyl amine aq. 50% x 1 RT RT - - - - -Mono-n-butyl amine conc. x - - - - - - -Mono-n-propylamine, aq. 50% x 1 - RT RT RT - - -Mono-n-propylamine, conc. x - - - - - - -Monostyrene x 1 40 - - - - RT - -

Nickel salts aq. (n.n.o.) 100 (NiSO4) 80 80 80 60 80 40 RTNitric acid aq., < 30% x 3 60 (20%) 40 50 40 RT 40 RT RT -Nitric acid aq., 30-50% x 3 RT (40%) RT RT RT RT RT - -Nitric acid aq., 50-70% x 3 - RT - - - - -

Octane, octene14) x 1 RT RT RT RT RT RT RT RT13) Higher temperatures do not occur14) Only tested at room temperature

(but comparable with hexane, heptane, benzene)

Chemical resistance Li–Oc

Page 18: Chem Beständigkeits-Broschüre

34 353534

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Oils, mineral 80 80 80 80 80 80 40 40 RTOils, plant 80 80 80 80 80 40 40 RTOleic acid 80 80 100 80 80 100 50 50 RTOleum - - - - - - - -Oxalic acid, aq 100 60 80 60 60 60 40 40 RTOzone x 1 - RT RT RT - -

Palmitic acid 100 90 100 100 80 120 50 50 RTParaffin oil 80 100 80 80 100 50 50 40Perchloric acid aq. 20% 2 RT (30%) RT RT RT RT RT - -Perchloric acid aq. 70% 1 RT RT RT RT RT - -Perchloric acid aq., 20% 2 RT (30%) RT RT RT RT RT - -Perchloric acid aq., 20-70% 1 RT RT RT RT RT - -Perchloroethylene x 1 RT RT RT RT RT RT RT RT -Petroleum x 2 80 RT RT RT RT RT RTPetroleum x 1 80 60 60 60 60 RT RTPetroleum ether x 1 80 60 60 60 60 RT RT RTPetroleum gasoline x 1 60 60 60 60 30 30 RTPhenol aq., < 1% x 2 RT RT RT RT RT - -Phenol aq., > 1% x RT (10%) - - - - - - -Phenolsulphonic acid aq. 2 - RT RT RT RT - -Phosphoric acid aq., <50% 3 80 90 80 60 100 50 40 RTPhosphoric acid aq., 50-95% 3 90 (100%) 80 80 80 60 80 40 40 RTPhosphorus oxychloride x - - - - - - -Phosphorus trichloride x - - - - - - - -Phthalic acid aq. 2 80 100 80 60 100 RT RT RTPhthalic acid ester x 1 60 50 60 60 60 RT RT -Picric acid aq.15) 2 RT RT RT RT RT RT RT RTPolyester resins (e.g. Viapal)16) x 1 RT RT - RT RT -Potassium bichromate aq. 100 60 95 80 60 80 RT RT -Potassium cyanide aq. 60 80 60 60 60 40 40 RTPotassium hydroxide solution aq. 10% 40 - - - - - -Potassium hydroxide solution, 20% 65 (25%) 40 - - - - - -Potassium hydroxide solution, 40% 80 40 - - - - - -Potassium permanganate aq. 1 100 60 65 60 60 60 RT RT -Potassium persulphate aq. 2 100 RT RT RT RT RT RT - -Potassium salts (n.n.o.) aq. 100 (K2SO4) 80 95 80 60 80 40 40 RT

15) Yellow discolouration! Only checked at room temperature16) Dye opaque

Chemical resistance Oi–Po

Page 19: Chem Beständigkeits-Broschüre

36 373736

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Propionic acid, conc. 1 RT RT RT RT RT RT - -Propylene glycol 2 100 90 100 80 60 80 RT 40 RTPyridine x - - - - - - - -

Salicylaldehyde 1 RT RT RT RT RT RT RT -Salicylic acid aq. 2 80 80 80 60 80 40 40 RTSaline solutions, stable, n.n.o. 80 80 80 60 80 40 40 RTSea water 90 90 80 60 80 40 40 RTSilicone oil 100 100 80 60 100 40 40 RTSilver nitrate aq.17) 40 RT 40 40 RT RT RT RTSoda aq. 1 80 (0-35%) 40 40 60 RT 60 RT -Sodium acetate aq. 100 60 60 40 RT 40 RT RTSodium bicarbonate aq. 80 60 60 40 RT 40 RT RTSodium hydrogensulphide aq. x 1 80 40 70 RT RT RT - -Sodium hydroxide solution 80 (50%) 40 - - - - -Sodium hypochlorite, 12% x 1 80 (5-16%) RT RT RT RT RT - -Sodium perborate aq. 80 60 40 RT 40 RT RTSodium peroxide aq. 3 - RT RT RT - -Sodium salts aq. (n.n.o.) 100 (Na2SO4) 80 95 80 60 80 40 RTSpent sulphite liquor x 2 60 60 60 60 60 40 40 RTSpirit x 2 35 (95%) 40 40 40 40 RT RT -Spirits 2 65 (50%) RT RT RT RT RT RT -Starch aq. 80 90 80 60 80 50 50 RTStearic acid, stearine 100 80 100 80 80 100 50 50 RTStyrene x 1 40 - - - - RT - -Succinic acid aq. (n.n.o.) 80 60 60 60 60 RT RT RTSulphamic acid 2 60 70 60 60 60 RT RT -Sulphite spent liquor (paper manufacture) x 2 60 60 60 60 60 40 40 RTSulphur dioxide gas, conc. 2 100 40 40 RT 40 RT RT -Sulphur trioxide 3 100 60 60 - - - - -Sulphuric acid aq., <60% 3 100 (25%) 60 60 60 60 60 40 40 RTSulphuric acid aq., >80% - - - - - - - -Sulphuric acid aq., 60-70% 3 80 (70%) 40 60 60 60 60 40 - -Sulphuric acid aq., 75% 3 30 - RT RT RT RT - -Sulphurous acid, diluted x 3 50 (10%) RT RT RT RT RT RT RT RTSulphurous acid, saturated x 3 RT RT RT RT RT RT RT -Sulphuryl chloride - - - - - - -

17) Discolouration!

Chemical resistance Pr–Su

Page 20: Chem Beständigkeits-Broschüre

38 393938

Chemical resistance ofglass-fibre reinforced Viapal™ types

Neopentyl glycol resins

Bisphenol Aresin

Vinylester

UP 797HET-Acid

UP 495VUP 4652CPLDiffusion

Media

UP 746IPA

VUP 4714IPA

UP 745TPA

VUP 4649IPA/OPA

Blend

UP 004UP 303UP 320OPA hc

UP 001UP 002UP 042UP 064UP 242UP 273OPA mc

Standard glycol resins

Tannic acid 2 80 100 80 60 80 40 40 RTTartaric acid aq. 1 100 80 100 80 60 80 RT RT -Tert. butyl chloride 2 RT RT RT RT RT - -Tetrahydrofuran x - - - - - - -Thinoyl chloride x - - - - - - - -Tin salts aq. (n.n.o.) 3 80 80 80 60 80 40 40 RTToluene x 1 50 - RT - - RT - -Toluene-p-sulphonic acid, aq. 65% 2 60 60 60 60 60 RT RT -tr1,1,2-Trichloro-1,2,2-trifluoroethane (Frigen 113) 1 RT RT RT RT RT RT -Trichloroacetic acid, <85% x 2 90 (50%) - RT RT RT - -Trichloroethane x - - - - - - -Trichloroethyl phosphate x 1 RT RT RT RT RT RT RT RTTrichloroethylene x - - - - - - - -Triethanolamine 2 RT RT RT RT RT RT RT RTTriethylamine aq. x 1 RT RT RT RT RT - -Triethylene glycol 2 90 100 80 60 80 40 40 RTTrimethylamine x 1 RT RT RT RT RT - -Tri-n-butylamine x 1 RT RT RT RT RT - -Tri-n-propylamine x 1 RT RT RT RT RT - -Triphenyl phosphite 1 50 50 40 40 40 - -Turpentine x 2 90 60 50 50 RT 50 RT RT -

Urea aq. (pH 5-8) 1 60 (50%) 60 65 60 60 60 RT RT RTUrea formaldehyde solution18) 2 RT RT RT RT RT RT RT

Vinyl sulphonate, aq. 25% 2 RT RT RT RT RT RT RT -Washing raw materials and additives (see next page) 2 80 80 80 60 80 - -Waste water (domestic) 219) 60 40 40 40 40 40 -Water (distilled) x 1 100 80 70 60 60 60 40 40 RTWater (sea) x 1 100 90 95 80 60 80 40 40 RTWater (swimming pool) x 1 40 40 40 40 RT RT RTWater glass 1 60 60 60 60 60 RT RT -Wine RT RT RT RT RT RT RT

Xylene x 1 50 RT RT RT RT RT RT RT

Zinc salts (n.n.o.) aq. 100 (ZnSO4) 80 80 80 60 80 40 40 RT18) Higher temperatures do not occur19) CPL3 with high sulphuric acid proportion

Chemical resistance Ta–Zi

Page 21: Chem Beständigkeits-Broschüre

4140

Chemical resistance of glass-fibre reinforced Viapal UP 797 in metal salt solutions for plating processes

Chemical resistance of glass-fibre reinforced Viapal types in electrolysis of alkali-metal chlorides

Medium Temp. (˚C) Pressure (bar) Suitable FR-UP resin moulded material

Crude brine with 315g/l NaCl, 85 9.5 FR-Viapal UP 797polluted, pH = 7-10

Weak brine with 255-285 g/l 85 5.5 FR-Viapal UP 797NaCl 20mg/l Cl2, pH = 2-10

Mixed brine with 275 g/l NaCl, 85 5.5 FR-Viapal UP 797containing Cl2, pH 5-10

Washing water with max. 100g/l 85 5 FR-Viapal UP 797NaCl traces of Hg

Anolyte with 255-285g/l NaCl, 85 5.5 FR-Viapal UP 797saturated with Cl2, pH = 2

Barium chloride solution, 10% with 85 5 FR-Viapal/PVC hard275 g/l NaCl

Barium carbonate solution, 10% 85 2 FR-Viapal/PVC hardwith 315 g/l NaCl

Sodium bisulphite solution, 10% 40 3.5 FR-Viapal/PVC hard

Cl2 outlet air, moist 85 0.95 FR-Viapal UP 797

Cl2 gas, moist 85-95 0.95 FR-Viapal UP 797

Bleaching liquor, NaOCl solution 60 8.5 FR-Viapal/PVC hardwith 150g/l active chlorine

Sulphuric acid 78%, saturated with Cl2 70 6.5 FR-Viapal/PVC hard

Hydrochloric acid, 30% 40 6 FR-Viapal/PVC hard

Waste water, containing Hg 60 9.5 FR-Viapal/PVC hard

Soft water with max. water hardness 40 8 FR-Viapal/PVC hardof 0.5˚ dH (German standard)

Hydrogen with traces of HCl 80 1 FR-Viapal/PVC hard

Explanation:FR-Viapal/PVC hard = compound systems with PVC (hard) liner and glass-fibre reinforced, highly cross-linked Viapaltypes

Chemicals Temp. (˚C) Resistance ref.

Brass planishing bath: 3% copper cyanide, 1% zinc cyanide 82 Band 5.6% sodium cyanide, 3% sodium carbonateCadmium cyanide bath: 3% cadmium oxide, 10% sodium 94 Bcyanide; 1.2% sodium hydroxide Chrome bath: 19% chromic acid with sodium fluorosilicate 94 B•and sodium fluorosulphate Copper cyanide bath: 10.5% copper cyanide and 14% 82 Usodium cyanide, 6% Rochelle saltsCopper dipping bath: 30% FeCl3; 19% hydrochloric acid 82 BCopper etching bath:20% sulphuric acid (solution no. 1) 94 B10% Fe2(SO4)3; 10% sulphuric acid (solution no. 2) 82 BCopper plating bath: 82 B•45% Cu (BF4)2, 19% copper sulphate; 8% sulphuric acidGold plating bath: 23% potassium ferrocyanide with 94 Bpotassium gold cyanide and sodium cyanideIron and steel etching bath: 82 B9% hydrochloric acid, 23% sulphuric acidIron plating bath: 82 B45% FeCl2, 15% CaCl2; 20% FeSO4, 11% (NH4)2 SO4Lead plating bath, acid: 94 B•8% lead with fluoroboric and boric acidLead plating bath, alkaline: 82 U8% Pb (C2H3O)2; 20% sodium hydroxideNickel and monel etching bath:15% hydrochloric acid, 2% CuCl2 (solution no.1) 82 B4% hydrochloric acid, 10% Fe2 (SO4)3 (solution no. 2) 82 BNickel plating bath: 94 B11% nickel sulphate, 2% nickel chloride, 1% boric acidSilver plating bath: 94 B4% silver cyanide, 7% potassium cyanide and 5% sodium cyanide; 2% potassium carbonateTin fluoroborate bath: 18% tin fluoroborate, 7% tin; 94 B•9% fluoroboric acid, 2% boric acidZinc cyanide bath: 9% zinc cyanide and 4% sodium cyanide 82 U9% sodium hydroxideZinc fluoroborate bath: 49% zinc fluoroborate, 94 B•5% ammonium chloride; 6% ammonium fluoroborate

Explanation of symbols:B = chemical resistant, U = not chemical resistant; • = use synthetic non-woven fabric

Page 22: Chem Beständigkeits-Broschüre

4342

Physical units and conversion tablesPhysical units and conversion tables

force (mech.)SI-unit: N (newton)

1 N = 1 J/m = 1 kgm/s2 = 0,2248 lb f (pound force)1 lb f = 4.4482 N

N kp dyn

1 N 1 0.102 105

1 kp 9.81 1 0.981·106

1 dyn 10-5 1.02·10-6 1

work (energy)SI-unit: J (joule)

1 J = 1 Ws = 1 Nm = 107 erg

J kWh kpm cal Btu

1 J 1 0.278·10-6 0.102 0.239 9.48·10-4

1 kWh 3.6·106 1 367·103 860·103 3412.11 kpm 9.81 2.72·10-6 1 2.34 9.29·10-3

1 cal 4.19 1.16·10-6 0.427 1 3.97·10-3

1 Btu 1055.1 2.93·10-4 107.59 252 1

normal stressSI-unit: Pa (pascal)

Pa N/mm2 kp/mm2

1 Pa 1 10-6 1.02·10-7

1 N/mm2 106 1 0.1021 kp/mm2 9.81·106 9.81 1

pressure (stress)SI-unit: Pa (pascal)

1 Pa = 1 N/m2 = 10-5 bar = 145·10-6 psi (pound force per sq. inch)1 psi = 1 lb f/in2 = 6894.76 Pa

Pa bar at atm Torr psi

1 Pa 1 10-5 10.2·10-6 9.87·10-6 7.5·10-3 145·10-6

1 bar 105 1 1.02 0.987 750 14.5041 at 98.1·103 0.981 1 0.968 736 14.2231 atm 101.3·103 1.013 1.033 1 760 14.6961 Torr 133.3 1.333·10-3 1.359·10-3 1.316·10-3 1 1.93·10-2

1 psi 6894 6.89·10-2 7.03·10-2 6.80·10-2 51.715 1

volumeSI-unit: m3 (cubic meter)

1 m3 = 1000 l1 dm3 = 1 l1 cm3 = 1 ml

dm3 UK gal US gal UK fl oz US fl oz

1 dm3 1 0.2199 0.2642 35.19 33.811 UK gal (gallon) 4.546 1 1.201 160 153.721 US gal (gallon) 3.785 0.8327 1 133.23 1281 UK fl oz (fluid ounce) 28.41·10-3 6.25·10-3 7.506·10-3 1 0.96081 US fl oz (fluid ounce) 29.57·10-3 6.505·10-3 7.812·10-3 1.0408 1

powerSI-unit: W (watt)

1 W = 1 J/s = 1 Nm/s

W kpm/s PS kcal/h cal/s

1 W 1 0.102 1.36·10-3 0.860 0.2391 kpm/s 9.81 1 13.3·10-3 8.43 2.341 PS 736 75 1 632 1761 kcal/h 1.16 0.119 1.58·10-3 1 0.2781 cal/s 4.19 0.427 5.69·10-3 3.6 1

lengthSI-unit: m (meter)

1 inch = 103 mils

m in yd ft

1 m 1 39.37 1.0936 3.28081 in (inch) 2.54·10-2 1 1/36 1/121 yd (yard) 0.9144 36 1 31 ft (foot) 0.3048 12 1/3 1

Decimal multiples and sub-multiples of units

factor name symbol

1012 tera T109 giga G106 mega M103 kilo k102 hecto h10 deca da10-1 deci d10-2 centi c10-3 milli m10-6 micro µ10-9 nano n10-12 pico p

temperatureunit: Kelvin, ºC (Celsius degree)

Kelvin ºC ºF ºF KelvinºC

244 -29 -20 -4 253250 -23 -10 14 263255 -18 0 32 273261 -12 10 50 283266 -7 20 68 293272 -1 30 86 303277 4 40 104 313283 10 50 122 323289 16 60 140 333294 21 70 158 343300 27 80 176 353305 32 90 194 363311 38 100 212 373339 66 150 302 423366 93 200 392 473394 121 250 482 523422 149 300 572 573450 177 350 662 623

massSI-unit: kg (kilogram)

kg lb oz

1 kg 1 2.2045 35.271 lb (pound 0.453 1 161 oz (ounce) 28.35·10-3 1/16 1

densitySI-unit: kg/m3 (kilogram/cubic meter)

1 g/cm3 = 1000 kg/m3

1 lb/in3 (pound/cubic inch) = 27.6799 g/cm3 viscosityunit: Pa·s (Pascal · Second)

1 mPa·s = 1 cp (centipoise)1 Pa·s = 1000 cp (centipoise)1 Pa·s = 10 poise

Conversion: ºC =5 (ºF - 32)

9ºF = 32 + (ºC x 1.8)

Units printed in italics are not part of the SI-System

Page 23: Chem Beständigkeits-Broschüre

4544

Space for own notesSpace for own notes

Page 24: Chem Beständigkeits-Broschüre

4746

Surface Specialties Ltd127/32, Panjathani Tower, 27 Floor,Nonsee Road, ChongnonseeYannawa, Bangkok 10120ThailandTel.: +662 266 9100Fax: +662 266 [email protected]

Surface Specialties SA/NVAnderlechtsstraat 33B-1620 Drogenbos (Belgium)Tel.: +32 2 334 5618Fax: +32 2 377 [email protected]

Surface Specialties Germany GmbH & Co. KGIndustriepark Kalle-AlbertRheingaustraße 190 - 196D-65203 Wiesbaden (Germany)Tel.: +49 611 962 7530Fax: +49 611 962 [email protected]

Surface Specialties Chemicals International Trading Co. LtdSuite 1508, United Plaza1468, Nanjing Xi RoadShanghai 200040 PR ChinaTel.: +86 21 6247 0318Fax: +86 21 6289 [email protected]

Data contained in this publication are based on careful investigations and are intended forinformation about our products and their possible applications only. Any user is obliged tocarry out tests under his own responsibility as to the suitability of the product for a particularuse and to investigate the possible violation of industrial property rights of third parties.Information is therefore not binding and cannot be construed as guaranteeing specificproperties of products as established by law. Any liability as to the exactness andcompleteness of data is thus excluded. We apply our General Sales Conditions.March 2005

Addresses of the major sales offices

Page 25: Chem Beständigkeits-Broschüre