90
Chapter 6 Chapter 6 Discrete-Time System Discrete-Time System

Chapter 6 Discrete-Time System

  • Upload
    neal

  • View
    74

  • Download
    2

Embed Size (px)

DESCRIPTION

Chapter 6 Discrete-Time System. 1. Discrete time system. Operation of discrete time system. where and are multiplier D is delay element. Fig. 6-1. 2. Difference equation. Difference equation. where and is constant or function of n. Example 6-1 Moving average - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter 6  Discrete-Time System

Chapter 6Chapter 6 Discrete-Time System Discrete-Time System

Page 2: Chapter 6  Discrete-Time System

2/90

Operation of discrete time system

1. Discrete time system1. Discrete time system

1 0( ) ( 1) ( )y n b y n a x n

where and are multiplier

D is delay element

0a

0a

1b

1b

Fig. 6-1.

Page 3: Chapter 6  Discrete-Time System

3/90

2. Difference equation2. Difference equation

Difference equation

0 0

( ) ( ) 0M N

k kk k

b y n k a x n k

0 0

( ) ( ) ( )M N

k kk k

y n a x n k b y n k

where and is constant or function of n ka kb

Page 4: Chapter 6  Discrete-Time System

4/90

Example 6-1– Moving average

Example 6-2– Integration

0 1 2( ) ( ) ( 1) ( 2)y n a x n a x n a x n

If 0 1 2 1/ 3a a a

1( ) ( ) ( 1) ( 2)

3y n x n x n x n

1 0 1( ) ( 1) ( ) ( 1)y n b y n a x n a x n

If 1 0 11, 1/ 2b a a

1( ) ( 1) ( ) ( 1)

2y n y n x n x n

Page 5: Chapter 6  Discrete-Time System

5/90

Functional relationship of discrete time system

3. Linear time-invariant system3. Linear time-invariant system

( ) ( ) ( )k

y n h k x n k

where is impulse response of system( )h n

Fig. 6-2.

Page 6: Chapter 6  Discrete-Time System

6/90

– The system is said to be linear if

– The system is said to be time-invariant if

1 1 2 2 1 1 2 2( ) ( ) ( )a x n a x n a y n a y

( ) ( )

( ) ( )

x n y n

x n k y n k

Page 7: Chapter 6  Discrete-Time System

7/90

Form and transfer function– Difference equation of discrete time system

0 0

( ) ( ) ( )M N

k kk k

y n a x n k b y n k

After z-transform

0 0

( ) ( ) ( )N M

k kk k

k k

Y z a z X z b z Y z

Page 8: Chapter 6  Discrete-Time System

8/90

– Transfer function

0

0

( )( )

( ) 1

Nk

kk

Mk

kk

a zY z

H zX z b z

( )H z

If 0kb

0

( ) ( )N

kk

y n a x n k

0

( )( )

( )

Nk

kk

Y zH z a z

X z

where is impulse response of systemka

Page 9: Chapter 6  Discrete-Time System

9/90

– Impulse response of discrete time system

1( ) ( ) , 0,1,2,h k H z k

If is power series( )H z

1 2

( ) ( )

= (0) (1) (2)

k

n k

H z h k z

h h z h z

In this case, ( ) ( )x n n

0

0

( ) ( ) ( )

= ( ) ( )

= (0) ( ) (1) ( 1) (2) ( 2)

= ( ), 0,1,2,

k

k

y n h k x n k

h k n k

h n h n h n

h n n

Page 10: Chapter 6  Discrete-Time System

10/90

Example 6-31

1

1( )

1 0.5

zH z

z

Using power series

1 2 3( ) 1 1.5 0.75 0.375H z z z z

(0) 1, (1) 1.5, (2) 0.75, (3) 0.375,h h h h

Page 11: Chapter 6  Discrete-Time System

11/90

Using other method

1 1( ) 0.5 ( ) ( ) ( )Y z z Y z X z z X z

( ) 0.5 ( 1) ( ) ( 1)y n y n x n x n

( ) ( ) ( 1) 0.5 ( 1)y n x n x n y n

Substitute , and initial value ( ) ( )x n n ( 1) 0y

1 0( )

0 0

nn

n

(0) 1y

(1) (1) (0) 0.5 (0) 0 1 0.5 1.5y x x y

(2) (2) (1) 0.5 (1) 0.5 ( 1.5) 0.75y x x y

(3) (3) (2) 0.5 (2) 0.5 0.75 0.375y x x y

(0) 1, (1) 1.5, (2) 0.75, (3) 0.375,h h h h

Page 12: Chapter 6  Discrete-Time System

12/90

Example 6-4

1 0( ) ( 1) ( )y n b y n a x n

Using z-transfrom

11 0( ) [ ( ) ( 1)] ( )Y z b z Y z y a X z

11 0 1( )(1 ) ( ) ( 1)Y z b z a X z b y

0 11 1

1 1

( ) ( ) ( 1)( )

1 1

a X z b yY z

b z b z

Using inverse z-transfrom

10 1 1

0

( ) ( ) ( ) ( ) ( 1)n

n k n

k

y n a b x k b y

Page 13: Chapter 6  Discrete-Time System

13/90

If initial value ( 1) 0y

01

1

( )( )

1

a X zY z

b z

01

1

( )1

aH z

b z

Using inverse z-transfrom

0 1( ) ( )nh n a b

Page 14: Chapter 6  Discrete-Time System

14/90

System stability– BIBO(bounded input, bounded output)

[ ]k

h k

Bounded )()(then

Bounded; )( if

)()(

)()()(

kx

x

k

k

khBny

Bnx

knxkh

knxkhnypf)

Page 15: Chapter 6  Discrete-Time System

15/90

Raible tabulation1 2

1 2 1 0( ) 0n nn nD z a z a z a z a z a

Table 6-1. Raible’s tabulation

Page 16: Chapter 6  Discrete-Time System

16/90

– If part or all factor is 0 in the first row, then this table is ended

• Singular case

– Using substitution

»

(1 )z z

(1 ) (1 )n n nz n z

n th order case

Page 17: Chapter 6  Discrete-Time System

17/90

Example 6-52( ) 0.25 0D z z z

Page 18: Chapter 6  Discrete-Time System

18/90

Example 6-6

3 2( ) 3.3 3 0.8 0D z z z z

Page 19: Chapter 6  Discrete-Time System

19/90

– Singular case3 2((1 ) ) (1 3 ) 3.3(1 2 ) 3(1 ) 0.8 0D z z z z

0 0 00 : 0, 0, 0b c d

0 0 00 : 0, 0, 0b c d

Page 20: Chapter 6  Discrete-Time System

20/90

Example 6-73 2( ) 1 0D z z z z

3 2[(1 ) ] (1 3 ) (1 2 ) (1 ) 1 0D z z z z

Page 21: Chapter 6  Discrete-Time System

21/90

Discrete time system transfer function H(z)

4. Description of Pole-Zero 4. Description of Pole-Zero

1 2

1 2

1 20 1 2

20 1 2

( )( )

( )

( )( ) ( ) =

( )( ) ( )

=

N

N

N N NN

N N NN

Y zH z

X z

K z z z z z z

z p z p z p

a z a z a z a

b z b z b z b

where K is gain

Zeros of at :

Poles of at : ( )H z

( )H z1 2, , , Nz p p p

1 2, , , Nz z z z

Page 22: Chapter 6  Discrete-Time System

22/90

– Description of pole and zero in z-plane

( 1)( )

( 0.5 0.5)( 0.5 0.5)( 0.75)

K zH z

z j z j z

Fig. 6-3.

Page 23: Chapter 6  Discrete-Time System

23/90

Example 6-81 2

1 2 3

1 2( )

1 1.75 1.25 0.375

z zH z

z z z

( 2)( 1)( )

( 0.5 0.5)( 0.5 0.5)( 0.75)

z z zH z

z j z j z

Fig. 6-4.

Page 24: Chapter 6  Discrete-Time System

24/90

Example 6-9

2

2

2

1 2

( )( )( )

( 0.5 0.5)( 0.5 0.5)

( 1) =

0.5

(1 ) =

1 0.5

K z j z j zH z

z j z j

K z

z z

K z

z z

K=0.2236

Fig. 6-5.

Page 25: Chapter 6  Discrete-Time System

25/90

Frequency response of system

– Method for calculation

– Method for geometric calculation

5. Frequency response5. Frequency response

( ) ( )

= ( ) ( )

j T

n

z en

j T j T

n

H z h n z

H e h n e

Page 26: Chapter 6  Discrete-Time System

26/90

Example 6-10

• Method for calculation

– Substitution of and using Euler’s formular

1( )

0.5

zH z

z

j Tz e

1( )

0.51 cos( ) sin( )

=cos( ) 0.5 sin( )

j Tj T

j T

eH e

eT j T

T j T

Page 27: Chapter 6  Discrete-Time System

27/90

– Substitution of

0

0( ) 2 / 0.5 4 0jH e

/ 8, 8 4

ss T T

41 cos( / 4) sin( / 4)

( )cos( / 4) 0.5 sin( / 4)

=2.51 51.2

j jH e

j

4 2( ) ( )=1.26 71.6sj T j

H e H e

3 3

8 4( ) ( )=0.55 82.1sj T j

H e H e

2( ) ( )=0 0sj T jH e H e

Page 28: Chapter 6  Discrete-Time System

28/90

Fig. 6-6.

Page 29: Chapter 6  Discrete-Time System

29/90

• Method for geometric calculation

0 1 2( )( )j T jAH e e

B

0( )j T AH e

B

Magnitude response

01 2( )j TH e

Phase response

Fig. 6-7.

Page 30: Chapter 6  Discrete-Time System

30/90

6. Realization of system6. Realization of system

( ) ( 1)y n x n

Unit delay

Adder/subtractor

( ) ( ) ( )w n x n y n

Constant multiplier

( ) ( )y n Ax n

Branching

1

2

( ) ( )

( ) ( )

y n x n

y n x n

Signal multiplier

( ) ( ) ( )w n x n y n

Fig. 6-8.

Page 31: Chapter 6  Discrete-Time System

31/90

Direct form

– Direct form 1

0

1

( )( )

( ) 1

Ni

ii

Ni

ii

a zY z

H zX z b z

0 0

( ) ( ) ( )N N

i ii i

y n a x n i b y n i

Page 32: Chapter 6  Discrete-Time System

32/90Fig. 6-9.

(a)

(b)

Page 33: Chapter 6  Discrete-Time System

33/90

– Direct form 2

( )( )

( )

N zH z

D z

( ) ( )( ) ( ) ( )

( )

N z X zY z H z X z

D z

( )( )

( )

X zW z

D z

( ) ( ) ( )Y z N z W z

1

( ) ( ) ( )N

ii

w n x n b w n i

0

( ) ( )N

ii

y n a w n i

Inverse transform

poles

zeros

Page 34: Chapter 6  Discrete-Time System

34/90Fig. 6-10.

(a)

(b)

Page 35: Chapter 6  Discrete-Time System

35/90

Example 6-11

– Direct form 1

– Direct form 2

1 2

1 2

3 3.6 0.6( )

1 0.1 0.2

z zH z

z z

( ) 3 ( ) 3.6 ( 1) 0.6 ( 2) 0.1 ( 1) 0.2 ( 2)y n x n x n x n y n y n

( ) ( ) 0.1 ( 1) 0.2 ( 2)w n x n w n w n

( ) 3 ( ) 3.6 ( 1) 0.6 ( 2)y n w n w n w n

Page 36: Chapter 6  Discrete-Time System

36/90

Fig. 6-11.

(a)

(b)

Page 37: Chapter 6  Discrete-Time System

37/90

Quantization effect of parameters– Quantization error of parameters

• Input signal quantization

• Accumulation of arithmetic roundoff errors

• Coefficient of transfer function quantization

Page 38: Chapter 6  Discrete-Time System

38/90

Cascade and parallel canonic form– Cascade canonic form or series form

0 1 2

01

( ) ( ) ( ) ( )

= ( )

l

l

ii

H z a H z H z H z

a H z

11

11

1( )

1i

ii

a zH z

b z

1 21 2

1 21 2

1( )

1i i

ii i

a z a zH z

b z b z

first order

second order

Page 39: Chapter 6  Discrete-Time System

39/90

Fig. 6-12.

Fig. 6-13.

(a)

(b)

Page 40: Chapter 6  Discrete-Time System

40/90

– Parallel canonic form

1 2

1

( ) ( ) ( ) ( )

= ( )

r

r

ii

H z A H z H z H z

A H z

first order

second order

01

1

( )1

ii

i

aH z

b z

10 1

1 21 2

( )1

i ii

i i

a a zH z

b z b z

Page 41: Chapter 6  Discrete-Time System

41/90

Fig. 6-14.

Page 42: Chapter 6  Discrete-Time System

42/90

Fig. 6-15.

(a)

(b)

Page 43: Chapter 6  Discrete-Time System

43/90

Example 6-12

– Cascade canonic form

1 2

1 2

3 3.6 0.6( )

1 0.1 0.2

z zH z

z z

3( 1)( 0.2)( )

( 0.5)( 0.4)

z zH z

z z

1

1 1

1( )

1 0.5

zH z

z

1

2 1

1 0.2( )

1 0.4

zH z

z

1 2

1 1

1 1

( ) ( ) ( )

1 1 0.2 =

1 0.5 1 0.4

H z H z H z

z z

z z

Quantization error of parameter is decreased

Page 44: Chapter 6  Discrete-Time System

44/90

– Parallel canonic form

31 2( ) 3( 1)( 0.2)

( 0.5)( 0.4) 0.5 0.4

AA AH z z z

z z z z z z z

1 2 33, 1, 7A A A

1 1

1( )

1 0.5H z

z

2 1

7( )

1 0.4H z

z

Page 45: Chapter 6  Discrete-Time System

45/90

Fig. 6-16.

(a)

(b)

Page 46: Chapter 6  Discrete-Time System

46/90

Example 6-132

2

2( 1)( 1.4 1)( )

( 0.5)( 0.9 0.81)

z z zH z

z z z

1

1 1

1( )

1 0.5

zH z

z

1 2

2 1 2

1 1.4( )

1 0.9 0.81

z zH z

z z

Fig. 6-17.

Page 47: Chapter 6  Discrete-Time System

47/90

Example 6-142

2

2( 1)( 1.4 1)( )

( 0.5)( 0.9 0.81)

z z zH z

z z z

2

2

3 41 22

( ) 2( 1)( 1.4 1)

( 0.5)( 0.9 0.81)

=0.5 0.9 0.81

H z z z z

z z z z z

A z AA A

z z z z

1 24.94, 2.19A A

3 4 3.17A A

3 4 6.26A A Substitute 1, 1z z

3 44.72, 1.55A A

1 1

2.19( )

1 0.5H z

z

1

2 1 2

4.72 1.55( )

1 0.9 0.81

zH z

z z

Page 48: Chapter 6  Discrete-Time System

48/90

Fig. 6-18.

Page 49: Chapter 6  Discrete-Time System

49/90

FIR system– Direct form

• Tapped delay line structure or transversal filter

1

( ) ( )N

ii

y n a x n i

Fig. 6-19.

Page 50: Chapter 6  Discrete-Time System

50/90

– Cascade canonic form

1 20 1 2

0 1

( ) ( ) ( )sNN

nk k k

n k

H z h n z a a z a z

where ( 1) / 2sN N

Fig. 6-20.

Page 51: Chapter 6  Discrete-Time System

51/90

– Linear phase FIR system structure

• N is even : type 1 and type 3

( ) ( ) 0,1, ,h n h N n n N

( ) ( ) 0,1, ,h n h N n n N or

0

( ) ( ) ( )N

k

y n h n x n k

/2 1

0 /2 1

/2 1 /2 1

0 0

( ) ( ) ( / 2) ( / 2) ( ) ( )

( ) ( ) ( / 2) ( / 2) ( ) ( )

N N

k k N

N N

k k

h k x n k h N x n N h k x n k

h k x n k h N x n N h N k x n N k

Page 52: Chapter 6  Discrete-Time System

52/90

– Type 1

– Type 3

• N is odd : type 2 and type 4– Type 2

– Type 4

/2 1

0

( ) ( ) ( ) ( ) ( / 2) ( / 2)N

k

y n h k x n k x n N k h N x n N

/2 1

0

( ) ( ) ( ) ( )N

k

y n h k x n k x n N k

( 1)/2

0

( ) ( ) ( ) ( )N

k

y n h k x n k x n N k

( 1)/2

0

( ) ( ) ( ) ( )N

k

y n h k x n k x n N k

Page 53: Chapter 6  Discrete-Time System

53/90

Fig. 6-21.

(a)

(b)

Page 54: Chapter 6  Discrete-Time System

54/90

Lattice structure– Lattice structure of FIR filter

1 21 2( ) 1 N

NH z a z a z a z

1 2( ) ( ) ( 1) ( 2) ( )Ny n x n a x n a x n a x n N

Difference equation

1

ˆ( ) ( ) ( ) ( ) ( )N

kk

y n x n x n x n a x n k

Error between and( )x n ˆ( )x n

FIR filter use linear predictor

1

ˆ( ) ( )N

kk

x n a x n k

where is prediction coefficient ka

Page 55: Chapter 6  Discrete-Time System

55/90

• N=1, output of FIR filter

– Single-stage FIR lattice structure

1( ) ( ) ( 1)g n k x n x n

1( ) ( ) ( 1)y n x n a x n

1( ) ( ) ( 1)y n x n k x n

where is reflection coefficient 1k

Fig. 6-22.

Page 56: Chapter 6  Discrete-Time System

56/90

• N=2

2 1 2 1

1 2 1

1 1 2 2

( ) ( ) ( 1)

= ( ) ( 1) ( 1) ( 2)

= ( ) ( ) ( 1) ( 2)

y n y n k g n

x n k x n k k x n x n

x n k k k x n k x n

2 2 1 1

2 1 2 1

2 1 1 2

( ) ( ) ( 1)

= ( ) ( 1) ( 1) ( 2)

= ( ) ( ) ( 1) ( 2)

g n k y n g n

k x n k k x n k x n x n

k x n k k k x n x n

Fig. 6-23.

Page 57: Chapter 6  Discrete-Time System

57/90

• N=3

3 1 1 2 2 3

2 1 3 1 2 3 3

( ) ( ) ( ) ( 1)

+( ) ( 2) ( 3)

y n x n k k k k k x n

k k k k k k x n k x n

3 3 2 1 3 1 2 3

1 1 2 2 3

( ) ( ) ( ) ( 1)

+( ) ( 2) ( 3)

g n k x n k k k k k k x n

k k k k k x n x n

Substitution 1 1 1 2 2 3 2 2 1 3 1 2 3 3 3, , b k k k k k b k k k k k k b k

3 1 2 3( ) ( ) ( 1) ( 2) ( 3)y n x n b x n b x n b x n

3 3 2 1( ) ( ) ( 1) ( 2) ( 3)g n b x n b x n b x n x n

Fig. 6-24.

Page 58: Chapter 6  Discrete-Time System

58/90

• M-stage lattice structure

0

( ) ( )M

M ii

y n b x n i

0

( ) ( )M

M M ii

g n b x n i

If ( ) ( )x n n

0

( )M

iM i

i

Y z b z

0

( )M

iM M i

i

G z b z

1

( ) ( )MM MG z z Y

z

Page 59: Chapter 6  Discrete-Time System

59/90

– Calculating filter coefficient

» m-stage

1

0

( )M

M ii

Y z b z

11 1( ) ( ) ( )m m m mY z Y z k z G z

11 1( ) ( ) ( )m m m mG z k Y z z G z

1 11 1

( ) ( )( ) m m m

m m m

G z k Y zY z Y k z

z

1 2

( ) ( )( ) , 1

1m m m

m mm

Y z k G zY z k

k

1 2

( ) (1/ )( )

1

mm m m

mm

Y z k z Y zY z

k

1( ) ( ),M

M MG z z Yz

M m

Page 60: Chapter 6  Discrete-Time System

60/90

Fig. 6-25.

Page 61: Chapter 6  Discrete-Time System

61/90

Example 6-15

(1)

1 22 ( ) 1 0.9 0.8Y z z z

2M

22 2

2 2

1 2

1( ) ( )

= (1 0.9 0.8 )

=0.8 0.9

G z z Yz

z z z

z z

Page 62: Chapter 6  Discrete-Time System

62/90

(2) M Mk b

2 2 0.8k b

1 1 2 1k k k b

1 10.8 0.9k k

1 0.5k

Fig. 6-26.

Page 63: Chapter 6  Discrete-Time System

63/90

Example 6-16

– in example 6-15

1 22 ( ) 1 0.9 0.8Y z z z

22 2 2

1 22

1 2 2 2

2

1

( ) (1/ )( )

1

(1 0.9 0.8 ) 0.8 (1 0.9 0.8 ) =

1 (0.8)

=1 0.5

Y z k z Y zY z

k

z z z z z

z

2 0.8k

1 0.5k

Page 64: Chapter 6  Discrete-Time System

64/90

– Generalization of calculating filter coefficient

» Substitute for

» Substitute for

0

( )M

iM Mi

i

Y z b z

m

0

( )m

im mi

i

Y z b z

1/ z z

M

0

(1/ )m

im mi

i

Y z b z

,0

(1/ )m

m im m m i

i

Y z b z

Page 65: Chapter 6  Discrete-Time System

65/90

» At 3m

1 2 33 30 31 32 33( )Y z b b z b z b z

2 33 30 31 32 33(1/ )Y z b b z b z b z

1 2

( ) (1/ )( )

1

mm m m

mm

Y z k z Y zY z

k

0

( )m

im mi

i

Y z b z

0

(1/ )m

im mi

i

Y z b z

Page 66: Chapter 6  Discrete-Time System

66/90

,10 0

1, 20

,0 0

2

1

=1

m mi m m i

mi m m m imi i i

m ii m

m mi i

mi m m m ii i

m

b z k z b zb z

k

b z k b z

k

Divided by iz

,1, 2

,1

mi m m m im i

m

b k bb

k

0,1, , 1i m

, 1, , 2,1, 1mm M M k

m mmk b

Page 67: Chapter 6  Discrete-Time System

67/90

Example 6-17

1 2 33( ) 1 0.5 0.2 0.5Y z z z z

3m 1 2 3

3 31 32 33( ) 1Y z b z b z b z

3 33 0.5k b

Page 68: Chapter 6  Discrete-Time System

68/90

– Calculating of coefficient

• At

,1, 2

,1

mi m m m im i

m

b k bb

k

2 ( )Y z

3, 0m i

30 3 3320 2

3

2

1

1 ( 0.5)( 0.5) = 1

1 ( 0.5)

b k bb

k

Page 69: Chapter 6  Discrete-Time System

69/90

• At

• At

3, 1m i

31 3 3221 2

3

2

1 ( )

0.5 ( 0.5)(0.2) = 0.8

1 ( 0.5)

b k bb

k

3, 2m i

32 3 3122 2

3

2

1 ( )

0.2 ( 0.5)(0.5) = 0.6

1 ( 0.5)

b k bb

k

2 22k b

Page 70: Chapter 6  Discrete-Time System

70/90

– Calculation of

• Go first stage

2 ( )Y z

1 22 21 22

1 2

( ) 1

1 0.8 0.6

Y z b z b z

z z

21 2 2111 2

2

2

1 ( )

0.8 (0.6)(0.8) = 0.5

1 (0.6)

b k bb

k

1 11k b

Page 71: Chapter 6  Discrete-Time System

71/90

Fig. 6-27.

Page 72: Chapter 6  Discrete-Time System

72/90

– Lattice structure of IIR filter• All-pole system

1 21 2

1( )

1 NN

H za z a z a z

Difference equation

1 2( ) ( ) ( 1) ( 2) ( )Ny n x n a y n a y n a y n N

1 2( ) ( ) ( 1) ( 2) ( )Nx n y n a x n a x n a x n N

1

( ) ( ) ( )N

kk

y n x n a x n k

Page 73: Chapter 6  Discrete-Time System

73/90

– N=1

1( ) ( ) ( 1)y n x n k y n

1( ) ( ) ( 1)g n k x n y n

Fig. 6-28.

Page 74: Chapter 6  Discrete-Time System

74/90

– N=2

1 2 2( ) (1 ) ( 1) ( 2) ( )y n k k y n k y n x n

2 2 1 2( ) ( ) (1 ) ( 1) ( 2)g n k y n k k y n y n

Fig. 6-29.

Page 75: Chapter 6  Discrete-Time System

75/90

– N th order

( ) ( )Ny n x n

1 1( ) ( ) ( 1), , 1, , 2,1m m m my n y n k g n m N N

1 1( ) ( ) ( 1), , 1, , 2,1m m m mg n k y n g n m N N

0 ( ) ( )g n y n

Fig. 6-30.

Page 76: Chapter 6  Discrete-Time System

76/90

• General IIR system function

0

1

1

( )( )

( )1

Mi

ii

N

ii

b zB z

H zA za z

All-pole lattice structure

Ladder structure

1/ ( )A z

( )B z

Page 77: Chapter 6  Discrete-Time System

77/90

– Lattice-ladder structure

» System output

» System transfer function

0

( ) ( )M

m mm

y n d g n

0

( )( )

( )

( ) ( ) =

( ) ( )

Mm

mm

Y zH z

X z

G z B zd

X z A z

Page 78: Chapter 6  Discrete-Time System

78/90

0

0

0 0

0

( )( )

( ) ( )

( ) ( ) =

( ) ( )

1 = ( )

( )

Mm

mm

Mm

mm

M

m mm

G zB zd

A z X z

G z G zd

G z X z

d G zA z

where 0

( )( )

( )m

m

G zG z

G z

0

( ) ( )M

m mm

B z d G z

Page 79: Chapter 6  Discrete-Time System

79/90

Fig. 6-31.

Page 80: Chapter 6  Discrete-Time System

80/90

Example 6-18

1 2 3

1( )

1 0.5 0.2 0.5H z

z z z

3 2 10.5, 0.6, 0.5k k k

Fig. 6-32.

Page 81: Chapter 6  Discrete-Time System

81/90

Example 6-19

– Equation for each node

1 2 3

1 2 3

1( )

1 0.5 0.2 0.5

z z zH z

z z z

1 2 33

1 22

11

0

( ) 0.5 0.2 0.5

( ) 0.6 0.8

( ) 0.5

( ) 1

G z z z z

G z z z

G z z

G z

Page 82: Chapter 6  Discrete-Time System

82/90

• Comparison of coefficients

1 2 3

0 0 1 1 2 2 3 3

1 1 20 1 2

1 2 33

0 1 2 3

1 2 3

( ) 1

= ( ) ( ) ( ) ( )

= (0.5 ) (0.6 0.8 )

+ ( 0.5 0.2 0.5 )

=( 0.5 0.6 0.5 )

+( 0.8 0.2 )

B z z z z

d G z d G z d G z d G z

d d z d z z

d z z z

d d d d

d d d z

1 2 32 3 3( 0.5 )d d z d z

0 1 2 3

1 2 3

2 3

3

0.5 0.6 0.5 1

0.8 0.2 1

0.5 1

1

d d d d

d d d

d d

d

Page 83: Chapter 6  Discrete-Time System

83/90

Fig. 6-33.

Page 84: Chapter 6  Discrete-Time System

84/90

– Advantage of digital filter compare with analog filters• Digital filter can have a truly linear phase response

• The performance of digital filters does not vary with environmental change

• The frequency response of a digital filter can be automatically adjusted if it is implemented using a programmable processor

• Several input signals or channels can be filtered by one digital filter without the need to replicate the hardware

• Both filtered and unfiltered data can be saved for further use

7. Introduction to digital filter 7. Introduction to digital filter

Page 85: Chapter 6  Discrete-Time System

85/90

• Advantage can be readily taken of the tremendous advancement in VLSI technology to fabricate digital filters and to make them small in size, to consume low power, and to keep the cost down

• In practice, the precision achievable with analog filters is restricted

• The performance f digital filters is repeatable from unit to unit

• Digital filters can be used at very low frequencies

Page 86: Chapter 6  Discrete-Time System

86/90

– Disadvantage of digital filters compare with analog filters• Speed limitation

• Finite wordlength effect

• Long design and development times

– Block diagram of digital filter with analog input and output

Fig. 6-34.

Page 87: Chapter 6  Discrete-Time System

87/90

Types of digital filters : FIR and IIR filters– IIR filter

– FIR filter

0

( ) ( ) ( )k

y n h k x n k

0

( ) ( ) ( )N

k

y n h k x n k

Page 88: Chapter 6  Discrete-Time System

88/90

– IIR filtering equation is expressed in recursive form

– Alternative representations for FIR and IIR filters

0 0 1

( ) ( ) ( ) ( ) ( )N M

k kk k k

y n h k x n k b x n k a y n k

where and are coefficient of filterska kb

IIR is feedback system of some sort

0

( ) ( )N

k

k

H z h k z

0

1

( )1

Nk

kk

Mk

kk

b zH z

a z

These transfer functions are very useful in evaluating their frequency responses

Page 89: Chapter 6  Discrete-Time System

89/90

Choosing between FIR and IIR filters– Relative advantages of the two filter type

• FIR filters can have an exactly linear phase response

• FIR filters are always stable. The stability of IIR filters cannot always be guaranteed

• The effect of using a limited number of bits to implement filters such as roundoff noise and coefficient quantization errors are much less severe in FIR than in IIR

• FIR requires more coefficients for sharp cutoff filters than IIR

• Analog filters can be readily transformed into equivalent IIR digital filters meeting similar specifications

• In general, FIR is algebraically more difficult to synthesize

Page 90: Chapter 6  Discrete-Time System

90/90

– Guideline on when to use FIR or IIR• Use IIR when the only important requirements are sharp cutoff filters

and high throughput

• Use FIR if the number of filter coefficients is not too large and, in particular, if little or no phase distortion is desired