17
Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter Objec@ves 1. Learn techniques for represen3ng discrete-)me periodic signals using orthogonal sets of periodic basis func3ons. 2. Study proper3es of exponen)al, trigonometric and compact Fourier series, and condi3ons for their existence. 3. Learn the Fourier transform for non-periodic signal as an extension of Fourier series for periodic signals 4. Study the proper)es of the Fourier transform. Understand the concepts of energy and power spectral density.

Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Chapter5.FourierAnalysisforDiscrete-Time

SignalsandSystems

ChapterObjec@ves

1.  Learntechniquesforrepresen3ngdiscrete-)meperiodic

signalsusingorthogonalsetsofperiodicbasisfunc3ons.

2.  Studyproper3esofexponen)al,trigonometricandcompact

Fourierseries,andcondi3onsfortheirexistence.

3.  LearntheFouriertransformfornon-periodicsignalasan

extensionofFourierseriesforperiodicsignals

4.Studytheproper)esoftheFouriertransform.Understandthe

conceptsofenergyandpowerspectraldensity.

Page 2: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

5.2Exponen@alFourierSeries(EFS)

!x(t) = ckejkω0t

k=−∞

Synthesisequa@on:

Analysisequa@on:

ck =1T0

!x(t)e− jkω0t dtt0

t0+T0∫

Con@nue-TimeFourierSeries

!x[n]= ckej(2π /N )kn

k=0

N−1

Synthesisequa@on:

Analysisequa@on:

ck =1N

x[n]e− j(2π /N )kn

n=0

N−1

Discrete-TimeFourierSeries

Page 3: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Linearity

5.2.7Proper@esofFourierSeries

x(t) ℑ← →⎯ ck

Wherea1anda2areanytwoconstants

Con@nue-TimeFourierSeries Discrete-TimeFourierSeries

y(t) ℑ← →⎯ dk

a1x(t)+ a2y(t)ℑ← →⎯ a1ck + a2dk

x[n] ℑ← →⎯ ck

y[n] ℑ← →⎯ dk

a1x[n]+ a2y[n]ℑ← →⎯ a1ck + a2dk

Page 4: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

TimeshiL

5.2.7Proper@esofFourierSeries

Con@nue-TimeFourierSeries Discrete-TimeFourierSeries

!x(t) = ckejkw0t

k=−∞

!x(t −τ ) = [cke− jkw0τ ]e jkw0t

k=−∞

!x[n]= ckej(2π /N )kn

k=0

N−1

!x[n−m]= ckej(2π /N )kn

k=0

N−1

∑ e− j(2π /N )km

Page 5: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

5.3AnalysisofNon-periodicCon@nuous-TimeSignals

Discrete-TimeFourierTransform

X(Ω) = x[n]e− jΩn

n=−∞

∑x[n]= 12π

X(Ω)e jΩn dΩ−π

π∫

Synthesisequa@on(inverse): Analysisequa@on(forward):

2πk2M +1

− >Ω

Page 6: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

5.3AnalysisofNon-periodicCon@nuous-TimeSignals

X(ω) = x(t)e− jwt dt−∞

∞∫

x(t) = 12π

X(ω)e jwt dw−∞

∞∫

Synthesisequa@on(inverse):

Analysisequa@on(forward):

Con@nue-TimeFourierTransform Discrete-TimeFourierTransform

X(Ω) = x[n]e− jΩn

n=−∞

x[n]= 12π

X(Ω)e jΩn dΩ−π

π∫

Synthesisequa@on(inverse):

Analysisequa@on(forward):

Page 7: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

IsitalwayspossibletodeterminetheFourierseriescoefficients?

5.3.2ExistenceofFourierTransform

²  Absolutesummable:

x[n] <∞n=−∞

²  Square-summable:

x[n] 2 <∞n=−∞

Page 8: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Linearity:

5.3.5Proper@esofFourierTransform

x1[n]ℑ← →⎯ X1(Ω) and

Wherea1anda2areanytwoconstants

Periodicity:

x2[n]ℑ← →⎯ X2(Ω)

α1x1[n]+α2x2[n]ℑ← →⎯ α1X1(Ω)+α2X2(Ω)

X(Ω+ 2πr) = X(Ω)

forallintegersr

Page 9: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

5.3.5Proper@esofFourierTransform

TimeShiLing:

x[n] ℑ← →⎯ X(Ω) x[n−m] ℑ← →⎯ X(Ω)e− jΩm

FrequencyShiLing:

x[n]e− jΩ0n ℑ← →⎯ X(Ω−Ω0 )x[n] ℑ← →⎯ X(Ω)

Page 10: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Convolu@onProperty:

5.3.5Proper@esofFourierTransform

x1[n]ℑ← →⎯ X1(Ω)

x1[n]* x2[n]ℑ← →⎯ X1(Ω)X2(Ω) X1(Ω)*X2(Ω)

ℑ← →⎯ x1[n]x2[n]

x2[n]ℑ← →⎯ X2(Ω)

Page 11: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Parseval’sTheorem:

5.4EnergyandPowerinFrequencyDomain

Foraperiodicpowersignalx(t)

1T0

x(t) 2 dt = ck2

k=−∞

∑t0

t0+T0∫

Foranon-periodicpowersignal

x(t) 2 dt =−∞

∞∫ X( f ) 2 df

−∞

∞∫

Con@nue-Time

1N

x[n] 2

k=0

N−1

∑ = ck2

k=0

N−1

Discrete-Time

Con@nue-Time Discrete-Time

x[n] 2

k=0

N−1

∑ =12π

X(Ω) 2 dΩ−π

π∫

Page 12: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

PowerSpectralDensity:

5.4EnergyandPowerinFrequencyDomain

Sx (Ω) = 2π ck2δ(Ω− kΩ0 )

k=−∞

Page 13: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Autocorrela@onFunc@on:

5.4EnergyandPowerinFrequencyDomain

Foraenergysignalx(t)theautocorrela@onfunc@onis

rxx[m]= x[n]x[n+m]n=−∞

Page 14: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Systemfunc@on(frequencyresponse)

5.5SystemFunc@onConcept

Impulseresponse(h[n]) Systemfunc3on(H(Ω))FourierTransform

H (Ω) =ℑ h[n]{ }= h[n]e− jΩn

n=−∞

Ingeneral,H(w)isacomplexfunc3onofw,andcanbewriJeninpolarformas:

H (Ω) = H (Ω) e jΘ(Ω)

Page 15: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

5.8DiscreteFourierTransform

x[n]= ckej(2π /N )kn

k=0

N−1

Synthesisequa@on(inverse):

ck =1N

x[n]e− j(2π /N )kn

n=0

N−1

DTFS DTFT

X(Ω) = x[n]e− jΩn

n=−∞

x[n]= 12π

X(Ω)e jΩn dΩ−π

π∫

Analysisequa@on(forward):

DFT

x[n]= 1N

X[k]e j(2π /N )kn

k=0

N−1

X[k]= x[n]e− j(2π /N )kn

n=0

N−1

k=0,1,….,N-1

n=0,1,….,N-1

k=0,1,….,N-1

n=0,1,….,N-1

Page 16: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

5.8DiscreteFourierTransform

DTFT

X(Ω) = x[n]e− jΩn

n=−∞

DFT

X[k]= x[n]e− j(2π /N )kn

n=0

N−1

Rela@onshipoftheDFTtotheDTFT

TheDFTofalength-NsignalisequaltoitsDTFTevaluatedatasetofNangularfrequenciesequallyspacedintheinterval[0,2π).Letanindexedsetofangularfrequenciesbedefinedas

Ωk =2πkN, k = 0,1,.....,N −1

X[k]= X(Ω) = x[n]e− j(2π /N )kn

n=0

N−1

Page 17: Chapter 5. Fourier Analysis for Discrete-Time Signals and Systemsyadwang/ECE351_Lec13.pdf · 2017-01-05 · Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

5.8DiscreteFourierTransform

WhydoweneedDFT?

²  Thesignalx[n]anditsDFTX[k]eachhaveNsamples,makingthediscreteFouriertransformprac3calforcomputerimplementa3on.

²  Fastandefficientalgorithm,knowasfastFouriertransforms(FFTs),

areavailableforthecomputa3onoftheDFT.

²  DFTcanbeusedforapproxima3ngotherformsofFourierseriesandtransformsforbothcon3nuous-3meanddiscrete-3mesystem.

²  Dedicatedprocessorsareavailableforfastandefficient.

computa3onoftheDFTwithminimalornoprogrammingneeded.