75
DRAFT Monterey Bay Alternative Fuels Readiness Plan | Chapter 5 – Natural Gas Vehicles and Infrastructure v1 | page 5 - 1 Chapter 5: Natural Gas Vehicles and Infrastructure 5.1. Introduction to Natural Gas Vehicles and Fueling 5-2 5.2. Natural Gas Vehicle Types, Applications, and Deployment Trends 5-2 5.3. CNG Vehicle Economic Attributes 5-4 5.4. Future Natural Gas Fuel Pricing and Supply Scenarios 5-6 5.5. Nationwide Natural Gas Vehicle (NGV) Sales 5-7 5.6. Available Natural Gas Vehicles 5-8 5.7. Diesel to Natural Gas Conversion Strategies 5-10 5.8. Liquefied Natural Gas (LNG) Vehicles 5-12 5.9. CARB Natural Gas Vehicle Grants, Incentives, and Rebates 5-14 5.10. Propane Fuels and Vehicles 5-18 5.11. Attributes of Natural Gas and NGV Fueling Infrastructure 5-20 5.12. Natural Gas Fueling Infrastructure Cost Factors 5-25 5.13. Best Practices in Planning, Permitting, and Readiness for NGV Fueling Station Development 5-26 5.14. NGV Fueling Station Safety and Code Guidelines 5-29 5.15. Overview of Nationwide Natural Gas Fueling Infrastructure 5-31 5.16. California Natural Gas Fueling Infrastructure 5-32 5.17. Monterey Bay Area and Central Coast Natural Gas Fueling Infrastructure 5-34 5.18. California Energy Commission Support for NGV Fueling Infrastructure 5-35 5.19. The Policy Basis for Natural Gas Vehicle and Fueling Infrastructure Development in California 5-37 5.20. Overview of Natural Gas Emissions and GHG Impacts 5-38 5.21. Outlook for Enhanced Emissions Performance of NGVs and New CARB Mitigation Measures 5-41 5.22. The CARB Sustainable Freight Strategy 5-42 5.23. Opportunities for Coordinated Regional Action on NGV and Electric Powered Goods Movement 5-43 5.24. Potential for Biomethane Development to Reduce NGV Emissions 5-45 5.25. Biomethane Development Opportunities on the Monterey Bay 5-48 5.26. NGV Deployment in the Monterey Bay Region 5-51 5.27. Monterey Bay and Central Coast CNG Fleet Adoption 5-52 5.28. NGV Safety and Training for Technicians and First Responders 5-56 5.29. Summary of Key Issues and Tools for Fleet Adoption of NGVs 5-58 5.30. Recommended Actions to Support NGV Assessment and Readiness 5-62 5.31. Summary Discussion of Strategies for Clean Vehicle and Fleet Decision-Making 5-63 5.32. Information Resources on NGVs, Fueling Stations, Funding, and Local Readiness 5-65 Appendix 1 – Natural Gas Vehicle Emissions and Climate Impact Analysis A-1. Establishing a Risk Management Assessment Framework Relative to the Global Warming Potential (GWP) of Methane and Carbon Dioxide 5-67 A-2. Using “Breakeven Leakage Rate” to Guide Natural Gas vs. Diesel Fuel Pathway Choices 5-72 A-3. The Role of Methane Leakage in the Determination of Natural Gas Climate Impacts 5-73 A-4. The Emissions Profile of Emerging Natural Gas Engine Technologies 5-74 A-5. Summary of Diesel vs. Natural Gas Carbon Emissions Using the 100 Year Global Warming Timeframe and the 3% Leakage Rate 5-76 A-6. Prospects for Future Methane Leakage Reduction to Improve Emissions Profile of Natural Gas: 5-78

Chapter 5: Natural Gas Vehicles and Infrastructure - … Fueling Station Safety and Code Guidelines 5-29 ... Natural Gas Vehicles in ... A key ongoing challenge to NGV market growth

Embed Size (px)

Citation preview

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-1

Chapter5:NaturalGasVehiclesandInfrastructure5.1. IntroductiontoNaturalGasVehiclesandFueling 5-25.2. NaturalGasVehicleTypes,Applications,andDeploymentTrends 5-25.3. CNGVehicleEconomicAttributes 5-45.4. FutureNaturalGasFuelPricingandSupplyScenarios 5-65.5. NationwideNaturalGasVehicle(NGV)Sales 5-75.6. AvailableNaturalGasVehicles 5-85.7. DieseltoNaturalGasConversionStrategies 5-105.8. LiquefiedNaturalGas(LNG)Vehicles 5-125.9. CARBNaturalGasVehicleGrants,Incentives,andRebates 5-145.10. PropaneFuelsandVehicles 5-185.11. AttributesofNaturalGasandNGVFuelingInfrastructure 5-205.12. NaturalGasFuelingInfrastructureCostFactors 5-255.13. BestPracticesinPlanning,Permitting,andReadinessforNGVFuelingStationDevelopment 5-265.14. NGVFuelingStationSafetyandCodeGuidelines 5-295.15. OverviewofNationwideNaturalGasFuelingInfrastructure 5-315.16. CaliforniaNaturalGasFuelingInfrastructure 5-325.17. MontereyBayAreaandCentralCoastNaturalGasFuelingInfrastructure 5-34 5.18. CaliforniaEnergyCommissionSupportforNGVFuelingInfrastructure 5-35 5.19. ThePolicyBasisforNaturalGasVehicleandFuelingInfrastructureDevelopmentinCalifornia 5-375.20. OverviewofNaturalGasEmissionsandGHGImpacts 5-385.21. OutlookforEnhancedEmissionsPerformanceofNGVsandNewCARBMitigationMeasures 5-415.22. TheCARBSustainableFreightStrategy 5-425.23. OpportunitiesforCoordinatedRegionalActiononNGVandElectricPoweredGoodsMovement 5-435.24. PotentialforBiomethaneDevelopmenttoReduceNGVEmissions 5-455.25. BiomethaneDevelopmentOpportunitiesontheMontereyBay 5-485.26. NGVDeploymentintheMontereyBayRegion 5-515.27. MontereyBayandCentralCoastCNGFleetAdoption 5-525.28. NGVSafetyandTrainingforTechniciansandFirstResponders 5-565.29. SummaryofKeyIssuesandToolsforFleetAdoptionofNGVs 5-58 5.30. RecommendedActionstoSupportNGVAssessmentandReadiness 5-625.31. SummaryDiscussionofStrategiesforCleanVehicleandFleetDecision-Making 5-635.32. InformationResourcesonNGVs,FuelingStations,Funding,andLocalReadiness 5-65

Appendix1–NaturalGasVehicleEmissionsandClimateImpactAnalysisA-1. EstablishingaRiskManagementAssessmentFrameworkRelativetotheGlobalWarming

Potential(GWP)ofMethaneandCarbonDioxide 5-67A-2. Using“BreakevenLeakageRate”toGuideNaturalGasvs.DieselFuelPathwayChoices 5-72A-3. TheRoleofMethaneLeakageintheDeterminationofNaturalGasClimateImpacts 5-73A-4. TheEmissionsProfileofEmergingNaturalGasEngineTechnologies 5-74A-5. SummaryofDieselvs.NaturalGasCarbonEmissionsUsingthe100YearGlobalWarming

Timeframeandthe3%LeakageRate 5-76A-6. ProspectsforFutureMethaneLeakageReductiontoImproveEmissionsProfileofNaturalGas: 5-78

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-2

5.1.IntroductiontoNaturalGasVehicles(NGVs)andFuelingIssues:Petroleum-basedfuelshavelongdominatedU.S.transportation,withoilaccountingforapproximately93percentofdomestictransportationfuelconsumption.Withinthetransportationindustry,mediumandheavydutyvehiclesaloneaccountforapproximately22percentofalloiluse,andasignificantlyhigherproportionofharmfulemissions.Thesearchforpetroleumsubstituteshasalsogainednewurgencyduetotheneedtoreduceforeignoildependenceandmitigatetheriskofsupplydisruption,andtoreduceeconomicexposuretothepricevolatilityoftheoilmarket.Thankstoitsrelativelylowprice,abundantsupply,andpotentialforemissionsreduction,naturalgasisreceivingsignificantattentionasanalternativefuel--especiallyformediumandheavydutyvehicles.Whileelectricityshowsgreatpromisefordisplacingoilinthelight-dutyvehiclesector,untilbatteryenergydensitysignificantlyincreases,heavierdutytrucksposespecialchallengesforelectrification.Moreover,thedevelopmentofexpandedbiomethanefuelpathways–averylow-carbonsubstitutefornaturalgas–holdspromiseforreducingthecarbonintensityofnaturalgasandmitigatingfugitivemethaneleakagefromlandfills.Forallthesereasons,naturalgasmeritsseriousconsiderationasaviablealternativefuelandvehicletechnologyoption.

NaturalgashasbeennotablyinexpensiveandabundantonthedomesticU.S.marketinrecentyearsthankstotherecentboominhydraulicfracturing(“fracking”).Intermsofitsenvironmentalperformance,naturalgascansignificantlyreducetailpipeemissionsofsomecriteriapollutants(especiallyparticulatematter)asmuchas90%belowthatofconventionalpetroleumdiesel.Inaddition,someanalyseshavesuggestedthatnaturalgascouldreducegreenhousegasemissions(whicharechemicallydistinctfromcriteriapollutants)comparedpetroleumsources,dependingonavarietyoffactors--includingthemethaneleakagerateinthenaturalgasfuelsupplychain,therelativeefficiencyofnewnaturalgasenginetechnologies,andtherelativeperformanceofemergingcleandieseltechnologies.However,manyestimatesofnaturalgascarbonimpactsarecurrentlyundergoingrevision,raisingquestionsabouttheperformanceofnaturalgasvs.petroleumfromaclimateperspective.

InlightofthemanycomplexissuesparticulartoNGVs,thischapteroftheAlternativeFuelReadinessPlanwilladdressthesequestions:

§ Whatarelikelytrendsinnaturalgaspricing,vehicleavailability,andvehicleperformanceinthe2016-2025period?

§ Whatarekeybestpracticesinnaturalgasfleetmanagementandfuelinginfrastructuredevelopment?

§ WhatarethemostrecentestimatesandtrendsinNGVemissionsfroma“welltotank”perspective?(Notethatduetothecomplexityofthisdiscussion,someoftherelevantmaterialiscoveredinAppendix1tothisreport.)

5.2.NaturalGasVehicleTypes,Applications,andDeploymentTrends:TherearethreeprincipaltypesofNGVscurrentlydeployedintheUnitedStates.Theseinclude:

§ DedicatedNGVs–operatingon100percentnaturalgas,eitherintheformofCompressedNaturalGas(CNG)orLiquefiedNaturalGas(LNG).

§ Bi-FuelNGVs–operatingoneithergasolineornaturalgas(thebi-fuelvehicletypehastwocompletelyseparatefuelsystems).

§ Dual-FuelNGVs–NGVsthatoperateonnaturalgasbutusedieselfuelforpilotignition

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-3

assistance.Thisdesignisprimarilyusedinheavy-dutyvehicles.Despitetherecentabundanceoflow-costdomesticnaturalgassupplies,theUnitedStatesisoneofthelastindustrializedcountriestoembracenaturalgasasatransportationfuel.Worldwide,therearemorethan15.2millionnaturalgasvehicles–butaccordingtoNGVAmerica,therearejustover120,000NGVsofalltypesonU.S.roadstoday,asnotedinthechartbelow,whichincludesallNGVfuelingsystemconfigurations.NearlyallthedeployedNGVsintheU.S.arefueledwithCompressedNaturalGas(CNG)ratherthanLiquefiedNaturalGas(LNG),inpartbecausethepredominantlytruck-basedLNGdistributionsystemismoreexpensivethanpipeline-basedCNGdistribution,andtherearefewLNGequippedvehiclescurrentlyavailableonthemarketplace.NaturalGasVehicleRegistrationsintheUnitedStates

Source:U.S.EnergyInformationAdministration:http://www.eia.gov/renewable/

NaturalGasVehiclesinCalifornia:Asof2015,approximately13,500Class3-8trucksutilizingnaturalgasareregisteredwiththeCaliforniaDepartmentofMotorVehicles,alongwithnearly20,000CNG-fueledlight-dutyvehicles.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-4

DiversityofNGVApplications:CNGandLNGvehiclescanbedeployedtomeetdiversetransportationneeds,fromlightdutysedanstospecialtytrucks,buses,andoff-roadvehicles,asshowninthechartbelow.

DistributionofMedium-andHeavy-DutyNGVsintheU.S.ByApplication:Asshowninthechartbelow,medium-andheavy-dutyNGVsareusedpredominantlyintransitbuses,utilities,refuse,regionalhauling,andmunicipal/governmentapplications,withshuttle,schoolbus,anddeliveryapplicationsrepresentingsmallersegments.

Source: 2014 NGV Production and Sales Report, NGV America

5.3.CNGVehicleEconomicAttributes:Compressednaturalgas(CNG)wasinitiallyintroducedasatransportationfuelduringWorldWarII,whengasolinewasinshortsupply.However,NGVswerenotgenerallycommerciallyavailableuntilthe1980s,whentheywereintroducedprimarilyasatechnologytoreducecriteriaairpollutants–especiallynitrogenoxides(NOx)andparticulatematter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-5

(PM)–andtotakeadvantageofthepricedifferentialbetweennaturalgasanddiesel.NGVsstillenjoysubstantialadvantagesinmeetingcriteriaemissionstandardscomparedtoconventionaldiesel,butthegapwillnarrowsignificantlyascleandieselvehicleregulationstightenin2017andbeyond.(EmissionsdifferencesarediscussedindetailinAppendix1.)

Formostfleetmanagers,costisaprimaryconcernwhenchoosingbetweennaturalgasvs.dieselvehicles.However,relativefuelcostscanfluctuatesignificantly.NGVsoverthe2010-2014periodofferedadifferentialsavingsofasmuchas30%to50%lowerfuelcostthandiesel,aswellaslowermaintenanceandrepaircosts.However,crudeoilpricesin2015reachedan11yearlow,whichdoubledthepaybackperiodforUSnaturalgasvehiclescomparedtodiesel--fromaboutoneyearandeightmonthsinmid-2014toapproximatelythreetofouryearscurrently.1Asoflate2015,thefuelpricespreadbetweendieselandCNGislessthan$1pergallon-equivalentoffuelattheretaillevel.

CurrentretailpricesforCNGgenerallyrangefrom$2-$2.50pergasolinegallonequivalent(GGE)withinCaliforniaandmaybelowerforprivatefleets.Dieselfuelpriceshavebeenquitevolatileinrecentyears,varyingfrom$2.50to$3.50ormore.Althoughmanyanalystsexpectedcrudeoilpricestorise,theyhaveremainednearhistoriclowsasofearly2016.Naturalgascommoditypricesarealsoexpectedtoriseovertime(alongwithdiesel),evenasCNGisexpectedtoremaincheaperatthepumpthandieselorgasoline.Thelikelydifferentialbetweendieselandnaturalgasis,unfortunately,extremelydifficulttopredictassomanyunpredictablevariablesareatwork.

AkeyongoingchallengetoNGVmarketgrowthintheheavy-dutyarenaisthatlargefleetoperatorstypicallyreplacetheirvehicleseverythreetofouryears,leavingarelativelyshorttimetoamortizethehigherinitialcostofNGVvehiclesandgainthelonger-termbenefitfromtheirlowerfuelcosts.Forexample,dieselpricesinApril2014,beforetheoilpriceslump,werenearly$4.00pergallon,whilenaturalgaswas$1.81perdieselgallonequivalent(DGE)–aftertakingintoaccountthe15%lowerfueleconomyforthenaturalgasengine.Thespreadbetweenoilandgaspricesmeantthecostforfuelanddieselexhaustfluid(DEF)foraClass8heavydutytruckrunning100,000milesayearwasaround$58,063,whileitamountedto$30,420forthesamemileagewithnaturalgas.Optingfornaturalgasatthattimeofhigheroilpriceswouldhaveproducedsavingsof$27,643peryear.ConsideringthatClass8naturalgastruckscostabout$43,640moretopurchaseandmaintenancecostsarehigher,itwouldhavetakenaboutoneyearandeightmonthstopaybackthedifferencebetweenanaturalgasenginetruckandadieselenginetruck.

Takingadieselpriceof$2.78agallon,whichistowardsthelowerendofthepricerangeseeninmid-2015,thedieselcostperyearfor100,000milesisonly$40,608.Thisputsthefuelpricedifferencebetweenadieselandnaturalgasvehicleataround$10,188peryear,withapaybackperiodofbetweenfourandfiveyears.Thisisoutsidethetypicalthree-yearreplacementcyclefornewClass8vehicles,andwellbeyondthe~18monthpaybacktimeframesoughtbymanyfleetoperators.

Anotherfactorlimitingnatural-gas-poweredsalesisthearrivalonthemarketofnew,moreefficientdieselengines.Thefirstphaseofafederallymandated6%improvementinfueleconomyby2017tookeffectin2015,pushingheavy-dutytruckmileagecloserto7milespergallonfromabout6.5mpg.Continuousimprovementsindieselfuelefficiencyareexpectedintheforeseeablefuture,whichcouldfurtherreducetheoveralleconomicadvantageofNGVfueling.

1http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-6

5.4.FutureNaturalGasPricingandSupplyScenarios:RecentincreasesinbothoilandnaturalgassuppliesintheU.S.andgloballyhaveoccurredduetothefrackingboom.Theconsequentpricedecreaseshavealsonarrowedthespreadbetweendieselandnaturalgas.Futuredemandincreasesfornaturalgasarelikelyintheutilitysectorasmorecoalplantsarephasedout.Asalwayswithfuelpricepredictions,however,thereisnowaytoforeseeallthepotentialeconomicandpoliticalfactorsthatcouldeffectprices.AMiddleEasternconflictthatimpactsoiltransportthroughtheStraitsofHormuz,forexample,coulddramaticallyincreaseoilpricesvirtuallyovernight.Therefore,itisprudenttolookatavarietyofpricingscenariosfornaturalgas.

Accordingtoameta-analysisofrecentindustrystudiesbytheCleanSkiesFoundation–aresearchinstitutefocusedontheadoptionofcleanfuelsandenergyefficiency–the“highcase”forNGVadoptionanticipatesthatthetransportationshareoftotalnaturalgasdemandincreasesfromjust0.2percentin2013to2.3percentin2025.By2025,thehighcaseestimateisthatapproximately2.4millionNGVswillbeonU.S.roads,ofwhich480,000areheavydutytrucks.Thesevehicleswouldconsumeabout711Bcf(billioncubicfeet)ofgasannuallyby2025anddisplaceover180millionbarrelsofoil.TheanalysisconcludesthatthepricerisesattributabletothislevelofincrementalNGVdemandisatmost$0.25/Mcf(millioncubicfeet)by2025.Asillustratedinthechartbelow,thistranslatestoacontinuingsubstantialpriceadvantagefornaturalgasversuspetroleumfuels.

NaturalGasFuelPriceHistory&Outlook:2005-2035

SOURCE:EIAAnnualEnergyOutlook2012HeavyDutyVehicleReferenceCase:TransportationFuelPrices.http://www.cleanskies.org/wp-content/uploads/2013/04/driving-natural-gas-report.pdf

IncrementalNGVvs.DieselPurchaseandOperatingCosts:Theincrementalupfrontcostsfornaturalgasenginesinthetrucksegmentvarysignificantlybyenginesizeandsupplier--buttypicallyareinthelowthousandsforlighter-dutyvehiclesand$40,000ormoreforheavy-dutyClass8vehiclesduetothecostofhigh-pressuretanks.Asaresult,naturalgasenginesaremosteconomicalinvehicleapplicationswherefuelcostsconstituteahighershareofoverallvehiclecosts,andare

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-7

especiallyattractiveforheavy-dutytrucksthattraveltensofthousandsofmilesperyear.Thekeyvariablesinthecostefficiencyequationarefuelandmaintenancecosts,annualmileage,andtheownershipperiodofthevehicle.Oncetheincrementalcostdifferenceispaidoff,thetruckownercanbenefitfromsignificantsavingsinfuelcostsovertheusefullifeoftheNGVtruckandengine,whichiscomparabletodieselvehicles.

Onthedieselside,initialpurchasecostsmayincreasefasterthanNGVsinfutureyears,becausetechnologieshavegrownmuchmorecomplexduetorequirementsfortheuseofselectivecatalyticreduction(SCR)andothertechnologiesthatincreaseoperatingcosts.Asalways,consumersandfleetmanagersmustassessproductofferingscarefullyinlightofindividualusecasesandtheavailabilityandcostofrelevantfuelinginfrastructureinordertoarriveatarationaldecisionregardingNGVvs.dieselorotheralternativefuelvehicleadoption.Pleasenotethatmoredetaileddataonfuel,refuelinginfrastructure,andvehiclecostwillbeaddressedlaterinthischapter,alongwithlinkstoonlinetoolsthatcanassistwithTotalCostofOwnership(TCO)calculationsandvehiclecomparisons.

5.5.NationwideNaturalGasVehicleSales:NavigantResearchisprojectingthatsalesofmedium-duty(MD)andheavy-duty(HD)NGVsinNorthAmerica,includingtrucksandbuses,willshowaCompoundedAnnualGrowthRate(CAGR)of3.2percentbetween2014and2024,with18,195unitsbeingsoldin2014,increasingto23,283annuallyin2024.Bycontrast,forlight-duty(LD)vehicles,NavigantprojectsaCAGRof6.1percentbetween2014and2024,withsalesofnaturalgascarsgrowingataCAGRof4.7percentandsalesofnaturalgasLightDutytrucks,mainlypickupsandvans(includingbothdedicatedandbi-fuelvehicles),growingataCAGRof6.3percent.TheprojectionsarecontainedinNavigant’sreport:NaturalGasPassengerCars,LightDutyTrucksandVans,Medium/HeavyDutyTrucksandBuses,andCommercialVehicles:GlobalMarketAnalysisandForecasts.

Source:NaturalGasPassengerCars,LightDutyTrucksandVans,Medium/HeavyDutyTrucksandBuses,andCommercialVehicles:GlobalMarketAnalysisandForecasts,Navigant.2

ThesenumbersremainatinyfractionofoverallnewvehiclesalesintheUnitedStates,whichtopped17millionnewvehiclesalesin2015.Between2013and2014,light-dutynaturalgasvehiclesintheUSexperiencedasharpsalesdecline,inpartduetothelowerdifferentialbetweennaturalgasandgasolineprices,whilegrowthwasstrongestintheheavy-dutysegment.However,overallunitvolumewasdownmorethan6%acrossallNGVsegments.

2http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-8

CorporateSustainabilityGoalsDrivingSomeNaturalGasSales:DespitetheongoingchallengesfacingtheNGVmarketintheU.S.,anumberofhigh-profilefleetsremaincommittedtoNaturalGasVehicles.UnitedParcelServicein2015orderedapproximately300NG-poweredheavy-dutytrucks,addingtoafleetof700NGClass8tractorspurchasedin2014.ThetrucksoperateprimarilyinWestCoastandSoutherncorridorswithsufficientnaturalgasstations,someofwhichwerefinancedwithUPSassistance.By2016,about2%ofUPS's100,000vehiclesworld-widewillbepoweredbynaturalgas.

Inaddition,Wal-Mart,Lowes,OfficeDepot,andProcter&GambleareamongagrowingnumberofcompaniesrequestingthattheirtruckingsuppliersusealternativefuelvehiclestocomplywithcorporatepoliciestoreduceCO2emissionsandcriteriapollutioncausedbydieselfuel.ForAT&T’sglobalfleetofmorethan70,300vehicles,thecompanyannouncedplansin2009toinvestupto$565millionaspartofalong-termstrategytodeployapproximately15,100alternative-fuelvehiclesthrough2018.Thisincludesagoaltoreplaceupto8,000servicevehicleswithCNGvehicles.ThecompanyopenedaprivateCNGrefuelingstationinLosAngeleslastyearandisworkingwiththeDepartmentofEnergy,localandregionalCleanCitiescoalitions,andindustrystakeholderstoencouragethedevelopmentofpubliclyavailablerefuelingfacilitiesthroughoutCalifornia.3

Despitesomehigh-profilesuccesses,CNGpurchasesaredwarfedbythesheernumberofnewdiesel-poweredtrucksbeingsold.NorthAmericansalesofdiesel-poweredtrucksareforecasttorise17%to281,620in2015.Twoyearsago,manyforecastersexpectedasmuchas20%oftheheavy-dutytruckssoldannuallyinNorthAmericabytheendofthedecadewouldbenatural-gaspowered,whereasthepercentageofcurrentsalesremaininthesingledigitrange.4

5.6.AvailableNaturalGasVehicles:Majorautomakershavebeensellingdedicatedlight-dutynaturalgasvehiclesinEurope,SouthAmerica,andelsewhereforyears,butAmericanmarketavailabilityhasbeenlimitedduetolackofdemand.IntheU.S.,onlyahandfuloflightdutyvehicleshavebeenavailable,predominantlylargerpickupsandvans.Inthelight-dutysedansegment,theChevroletImpalaandtheHondaCivicGXhavebeentheonlyofferingsrecently,butHondawillendproductionoftheCNGHondaCivicwiththe2016modelyear.Forthe2014-15modelyears,thechartonthenextpageindicatestheCNGlight-dutyvehiclesavailableforpurchasefromOEMs.

3http://www.automotive-fleet.com/article/story/2012/04/great-fleets-share-best-practices.aspx4http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-9

2015LightDutyNaturalGasVehicles,IncludingPick-UpsandVans

Source:2015CleanCitiesVehicleBuyer’sGuide,p.15http://www.afdc.energy.gov/uploads/publication/2015_vehicle_buyers_guide.pdfForthemostcurrentinformationonavailablevehicles,itisrecommendedtoconsultthecurrentCleanCitiesVehicleBuyer’sGuideprovidedatthefederalAlternativeFuelDataCenter,aswellasmanufacturerwebsitesforlocaldealerinformation.MediumandHeavyDutyVehicles:ThereareanumberofOEMcertifiednaturalgasenginemodelsbeingusedinavariousmediumandheavy-dutyvehiclemodels.Theengineslistedbelowcanbe

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-10

installedbycertifiedconversioncompaniesknownasQualifiedVehicleModifiersorQVMs.5Theseprogramsaretypicallyveryrigorousandqualityishigh.AQVMqualificationregimeisdescribedontheFordMotorswebsiteathttp://www.fleet.ford.com/showroom/limo-livery-and-funeral/qualified-vehicle-modifiers/,andistypicalformajormanufacturerQVMrelationships.

§ CumminsWestportISLG8.9L(250–320hp)§ CumminsWestportISX12G12L(320–400hp)§ FordMotorCompany2.0LL-4§ FordMotorCompany5.4LV-8§ FordMotorCompany6.8LV-10§ GeneralMotors3.0L§ GeneralMotors6.0LV-8§ BAFTechnologies6.8Source:2015CleanCitiesBuyer’sGuidehttp://www.afdc.energy.gov/uploads/publication/2015_vehicle_buyers_guide.pdf

5.7.DieseltoNaturalGasConversionStrategies:Today’sprimaryNGVmarketsarepublictransitbuses(thelargestconsumerofnaturalgasasatransportationfuel),andwastecollectionandtransfervehicles(thefastestgrowingmarketsegment).Manyairportsandothergovernmentfleetshavealsoadoptednaturalgas.Privatefleetstypicallyadoptnaturalgasprimarilyforservicevehiclesthatreturntobasedaily.Althoughtherearearelativelysmallnumberofnaturalgasenginemodels,thesearetypicallyinstalledintoawidevarietyofvehiclebodytypesbyvehiclemanufacturersandretrofitproviders.Forexample,thesameCumminsnaturalgasenginemaybeusedinarefusetruck,abus,orastreetsweeper.

TherearenumerousaftermarketengineconversionkitswhicharecertifiedbytheCaliforniaAirResourcesBoardandavailableforawiderangeofvehicleplatformsandclasses.Mostconversionkitsallowforbi-fueling(CNG/gasoline)oreventri-fueling(CNG/gasoline/E85)capability.AswithnewOEMvehicles,paybackperiodsvarybutcanbelessthantwoyears,dependingonannualmilestraveled,currentfuelpricedifferentials,andretrofitcosts.

Retrofitoptionsareexpanding--thanksinparttostateandfederalinvestmentinR&D.MediumandheavydutyenginemanufacturerssuchasCumminsWestport,Volvo,andNavistarhavereceivedCaliforniaEnergyCommissionfundstodevelopnewnaturalgasengineswhicharebeingintegratedintoanumberofheavierdutyvehiclechassis,suchasPeterbiltandKenworth.Productofferingsintheheavy-dutysegmentareexpectedtoincreaseinfutureyearsbasedonstrongeremissionsrequirementsfordiesel(whichwillincreasetheirrelativepurchasepricevs.CNG)--andthereturnoflargerfuelpricedifferentialsbetweendieselandnaturalgas.

Qualifiedsystemretrofitters(QSRs),alsoreferredtoasupfittersorinstallers,caneconomicallyandreliablyconvertmanylight-andmedium-dutyvehiclesfornaturalgasoperation.TobecertifiedasaQSR,manufacturersmustprovideacomprehensivetrainingprogramanddetaileddocumentationtotheirowntechniciansaswellastoQSRtechnicianstoensurethatequipmentandcomponentsareinstalledproperly,andtheQSRmustobtaintherelevantemissionscertificationsandtamperingexemptions.

5http://www.baaqmd.gov/~/media/Files/Strategic%20Incentives/Alt%20Fuels/CNG%20and%20LNG%20Best%20Practices%209-30-14%20FINAL.ashx?la=en

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-11

Typically,certifiedinstallerswillonlyperformaCNGconversiononnewornearlynewvehicles.Also,CNGconversionkitsmustmeetorexceedthesameemissionsstandardsthatapplytotheoriginalvehicleorengineaccordingtostringentEnvironmentalProtectionAgency(EPA)and/orCaliforniaAirResourcesBoard(CARB)requirements.Forthisandotherreasons,itisimportantthatconversionsbeperformedbyreputableQSRs.Thetradeassociation,NGVAmerica,offersinformationonlight-,medium-,andheavy-dutyNGVsandenginesavailabledirectlyfromOEMsorviaconversionsystemscertifiedbytheEPAorCARB.TheyalsoprovidemanufacturerandQSRcontactinformationathttp://www.ngvamerica.org/vehicles/vehicle-availability/.

NGVManufacturersandRetrofitProviders

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-12

Source:NGVAmericaWebsitehttp://www.ngvamerica.org/vehicles/vehicle-availability/

5.8.LiquefiedNaturalGas(LNG)Vehicles:Liquefiednaturalgas(LNG)istheliquefiedformofnaturalgas,producedbycoolingnaturalgastotemperaturesbelow-260°F.Asafuelsource,itisbothcleanerburningandmoreeconomicalthantraditionalpetroleumfuels,includingdiesel.Theenergycontentofagivenamountofnaturalgasremainsthesameregardlessofwhetheritisintheliquid(LNG)orgaseous(CNG)state.However,LNGhashigherenergydensitythanCNGandthusofferssignificantpotentialinNGVmarketsegmentswherelongdrivingrangeisrequired.However,thepotentialforLNGvehicleshasnotyetbeenfullyrealizedduetothehighinitialcostandlimiteddistributionofLNGinfrastructureandvehicles.BecauseLNGmustbestoredatextremelylowtemperatures,largeinsulatedtanksarerequiredtomaintainthesetemperaturesinstationaryfuelstorageandinvehicles.ThismakesLNGmostappropriateforheavy-dutyvehicles,whichcanaccommodatethevolumeneededforLNGstorage.LNGalsorequiresfairlyconsistentvehicleuseasthefuelslowlyheatsfromthetank’swarmersurroundings,whichcanleadtotankventingandlossoffuel.TypicalLNGfueltankholdtimesareaboutoneweekifthevehicleisnotdriven,althoughventingwillnotoccurifthevehicleisdriveneveryfewdays.OutlookforLNG:LiquefiedNaturalGasorLNGasavehiclefuelhasthepotentialtobesuccessfulinselectvehiclemarketsegmentsbaseduponfavorableeconomicsandstronggovernmentsupportforexpandedinfrastructure.Asnoted,themostpromisingmarketsarelong-haulheavy-dutytrucking,aswellastransitandrefusevehicles,andmarineandrailroadapplications.Currentlytherearefewerthan4,000LNGvehiclesnationwideandfewerthan200LNGstations.TosupportexpansionofLNG,anintegratednetworkofpublicaccessstationsandLNGinfrastructureacrossthecountrywillbeneeded.LNGFeedstocksandFuelingInfrastructure:FeedgasforLNGmaycomefromthenaturalgaswellhead,frompipelines,orfromsourcesofrenewablenaturalgas(landfillsoranaerobicdigestors).LikeCNG,LNGhasawiderangeofenvironmentalprofilesdependingonthesourceofgas(fossilvs.biogasorothersources.)SuccessfulLNGinfrastructureimplementationwillneedtominimizethethreemaincostcomponentsoftheLNGsupplychain:feedgascost,liquefactionandupgradecost,andtransportationcost.Feedgascostislargelydeterminedbymarketforces,althoughgovernmentsupportforbiogaswillbeimportanttocreatescaleinthesustainablegassegment.Liquefactionmaybeperformedatoneofawidevarietyoffacilities,butdistributionofLNGisprimarilyperformedbytankertrucksthatdeliverthefuelfromtheliquefactionfacilitytothevehiclefuelingstation.Aswithotheralternativefuels,sustainableLNGfuelingsystemdevelopmentwillrequirecarefulselectionofstationlocationsandcapacitiesandwidespreaduseofstandardizeddesigns,whiletargetingthemostpromisingmarketsegmentsforLNGpenetration.LNGstationsthatdispenseLCNG(CNGproducedfromLNG)havethebenefitofsupportingbothnaturalgasfueltypes.WithstrategicexpansionofanLNGinfrastructure

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-13

networkinspecificregions,successfulpenetrationoftheLNGClass8truckmarketcouldachieveattractiveeconomicsandmuchlargermarketuptake.LNGStationDesign:LNGfuelingstationsgenerallyreceivetheirLNGsupplyfromaliquefactionplantviatankertruckspeciallydesignedtodistributecryogenicfuels.Atthefuelingsite,LNGisoffloadedintothefacility’sstoragesystem.InmostLNGstations,thefuelpassesthroughapumptoanambientairvaporizerthatservesasaheatexchangerwherebythetemperatureoftheLNGisincreased.Thepressureincreasesatthesetemperatures,butthefuelremainsaliquid.Thisprocessiscalledconditioning.Afterconditioning,LNGisstoredinlargecryogenicvesselsthatcanbeconfiguredhorizontallyorvertically,andaretypicallyfoundincapacitiesof15,000or30,000gallons.Whenneeded,LNGisdispensedasaliquidintocryogenictanksonboardthevehicle.LNGfuelingissimilartoCNGfastfuelingintermsoftimeandconvenience,exceptthatusersareadvisedtouseglovestoprotectagainstthecold,andtheyshouldreceiveanorientationtocryogenicfuelhandling.LNGstationsareverycostlyastheymustaddressuniquedesignandfunctionalityrequirements,includingtanktruckoffloading,fuelconditioning,cryogenicfluidstorageandprocessing,vapormanagementandventingminimization,codesandstandardscompliance,andspecialmeteringanddispensingneeds.CostefficienciesarebeingdevelopedthroughnewtechnologythatproducesLNGatwarmertemperatures,whichcouldreducecomponentcostsinthesystem.LNGstationdesigners,someofwhomarealsocryogenicequipmentmanufacturers,havedevelopedstandardizedstationdesigns.However,moststationsinstalledtodatehavebeencustomdesignedtoaccommodateparticularsiterequirements.FurtherprogresstowardinstallingLNGstationsattruckstopsandbuildingmore“greenfield”stationswillenableincreaseduseofstandardizeddesigns.AsimplifiedviewofanLNGstationisprovidedbelow,followedbyamorecomplextechnicaldiagram.SimplifiedLNGStationView

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-14

TypicalLNGStationDesignSchematic

Source:NGVAmericawebsite,http://www.ngvamerica.org/stations/lnglcng/OperationalLNGStation

Source:U.S.DepartmentofEnergy,AlternativeFuelsDataCenterLNGFuelTaxParity:OnekeybarriertobroaderuseofLNGpoweredtruckswasremovedin2015whentheU.S.Congresspassedlegislationrequiringthatliquefiednaturalgasbetaxedonadieselgallonequivalent(DGE)basis,puttingitonanequalfooting,energy-wise,withdiesel.Untilthenewchange,fleetsoperatingLNG-poweredtruckswereeffectivelytaxedfortheirfuelatarate70%higherthanthatofdieselfuelbecausethetaxwasbasedonvolumeratherthanenergycontent.ThenewtaxationapproachbringsLNGintoparitywithdiesel,reducingtheexcisetaxonLNGfromapproximately41.3centsperDieselGallonEquivalent(DGE)to24.3centsperDGE.Anaturalgastrucktraveling100,000milesperyearat5milesperDGEtypicallyconsumesabout20,000DGEperyear.Priortothepassageofthenewlaw,theLNGtruckwouldhaveahighwayfueltaxbillofapproximately$8,262.Withthischange,theLNGtruckwillnowpay~$4,860ayearinfueltaxes,asavingsof$3,402peryear.6

6“LNGTaxFixPassedbyUSCongress,”FleetsandFuels,July2015,http://www.fleetsandfuels.com/fuels/ngvs/2015/07/lng-tax-fix-passed-by-u-s-congress/?utm_source=Fleets-Fuels+August+5%2C+2015&utm_campaign=fleetsfuelsnewsbrief&utm_medium=email

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-15

5.9.CARBNaturalGasVehicleGrants,Incentives,andRebates:TheCaliforniaEnergyCommissionhasprovidedfundingfornaturalgastruckdeploymentprojects,aswellabuy-downincentivethathistoricallyprovidedsubsidiesforbothnaturalgasandpropanevehicles.However,propaneincentiveswereendedafterthe2014-15investmentplanyear,duetouncertaintyabouttheiremissionsbenefitscombinedwithlimitedvehicleavailability.Availableincentivesformediumandheavy-dutyvehiclesaretemporarilyexhaustedundertheNGVIncentiveProject(NGVIP),butmaybereinstatedlaterin2016.GiventheverylimitednumberofnaturalgaslightdutyOEMvehiclesavailableforsaleintheU.S.(onlytheChevyImpalawillremainin2016),thefocusoftheCECrebateprogramwilllikelyremainonmedium-andheavy-dutyvehicles.Thesearedefinedasvehicleswithagrossvehicleweightrating(GVWR)above10,000lbs.Whilethesevehiclesclassesaccountforonly936,000outofCalifornia’s28.4milliontotalvehicles,or3%,becauseoftheirlowerefficiencyandhighervehiclemilestravelled(VMT)peryear,theyareresponsiblefor30%ofon-roadGHGemissions.7From2009tomid-2015,theCEChassubsidizedthedeploymentofatotalof1,361naturalgasvehicles,summarizedinthetablebelow.Theseincludelargeone-timeawardsundertheAmericanRecoveryandReinvestmentActof2009,aswellastwosolicitations(PON-10-604andPON-11-603)thatofferedfirst-come,first-servedbuy-downincentivesforbothnaturalgascarsandtrucks.Themostrecentbuy-downincentivesolicitation(PON-13-610)hasfurtherrefinedincentivelevelsbasedonthefueldisplacementforeachGrossVehicleWeight(GVW)classperCECdollar.Asnotedabove,asoflate2015,fundshavebeenexhaustedunderthisfirst-come,first-servedsolicitation.However,CECmaintainsawaitlist,asitispossiblethatsomevehiclereservationsmaynotactuallybeutilizedifanapplicantdoesnotfollowthroughontheirpurchase,thusreleasingtheincentiveforthenexteligibleapplicant.InadditiontothePON-13-610funding,theEnergyCommissionisdevelopinganagreementwithUCIrvinetoprovideanincentivedirectlytovehiclepurchasersusingadditionalavailablefundsfrompreviousinvestmentplans.Detailsonanyprogramextensionsarelikelytobeannouncedin2016,andadditionalfundingtoreopentheprogramcouldbeallocatedlaterintheyearorin2017.

CEC Funding for Natural Gas Vehicle Deployment (2009-2015)

Funding Agreement or Solicitation Vehicle Type # of Vehicles

Funding (in millions)

San Bernardino Associated Governments (ARV-09-001)

Heavy-duty trucks 202 $9.3

South Coast Air Quality Management District (ARV-09-002)

Heavy-duty drayage trucks 120 $5.1

Buydown Incentives PON-10-604 and PON-11-603 (Reflects all approved incentives)

Up to 8,500 GVW 245 $0.7

8,501-14,000 GVW 137 $1.1

14,001-26,000 GVW 211 $4.2

26,001 GVW and up 446 $12.9

Up to 8,500 GVW 1,616 $1.6

72015-16InvestmentPlanUpdatefortheAlternativeandRenewableFuelandVehicleTechnologyProgram,CaliforniaEnergyCommission,May2015,p.52.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-16

Buydown Incentives PON-13-610 (In Progress) (Reflects approved reservations only, not claimed or approved incentives)

8,501-16,000 GVW 628 $3.8

16,001-26,000 GVW 314 $1.9

26,001-33,000 GVW 0 $0

33,001 GVW and up 551 $13.8

UC Irvine Agreement (Pending) TBD TBD $10.2

Total 4,470 (+ TBD) $64.6 Source: California Energy Commission, 2015-16 Investment Plan.

RequirementsUndertheCECNaturalGasVehicleIncentiveProject(NGVIP):Asarticulatedinits2015-16InvestmentPlanfortheAlternativeandRenewableFuelandVehicleTechnologyProgram(ARFVTP),theCEC’slong-termgoalforitsnaturalgasincentiveprogramis“toincreaseconsumerfamiliarityandsupplierproductiontoapointwherevariousnaturalgasvehicletypescangrowinthemarketwithoutfurthersubsidy.”Withthisgoalstillsomedistanceinthefuture,theCommissionallocated$10millionforFY2015-2016tosupportongoingNGVdeploymentviatheNaturalGasVehicleIncentiveProject(NGVIP).Priortothisfundingbeingexhausted,incentiveswereavailablethroughtheNGVIPexclusivelyforvehiclesmeetingallofthefollowingrequirements.(ItisexpectedthatintheeventthatNGVIPisre-funded,thesecriteriawillcontinuetoapply.)

§ Vehiclesmustbenew,on-roadnaturalgaslight-,medium-,orheavy-dutyvehicles.§ VehiclesmustbepurchasedonorafterAugust7,2015.§ VehiclesmustmeetallemissionrequirementsoftheCaliforniaAirResourcesBoard(ARB).§ VehiclesmustberegisteredandoperatedonnaturalgasinCalifornia(atleast90percentofthe

time)foratleast3years.§ Vehiclesmustbefullywarranted."Fullywarranted"meansthatallvehiclecomponents,

includingthenaturalgasfuelsystem,arecoveredexclusivelybytheOriginalEquipmentManufacturer(OEM)orcoveredunderseparatewarrantiesbytheOEMandthefuelsystemupfitterthattogetherprovidewarrantyforthecompletevehicle.

§ Eligiblevehiclesmusthaveenginespreppedfornaturalgas.§ TransitbusesarenoteligibleforincentivesundertheNGVIP.§ Theindividualincentiveamountsbygrossvehicleweight(GVW)areasfollows:

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-17

AsingleApplicantiseligibleforuptoamaximumof30incentives.ThiscapmaybemodifiedorremovedduringthetermoftheNGVIPbytheCEC.Forthepurposesofthislimit,asingleApplicantisdefinedasanysingleindividualorbusinessentityincludingallsubsidiaries.OnceanApplicantexceedsthismaximumincentivecap,theEnergyCommissionandtheNGVIPAdministratorreservetherighttorejectincentivereimbursementrequestsassociatedwithApplicantsexceedingthecap.Moreinformationisavailableat:https://ngvip.its.uci.edu/docs/ngvip-application-manual-2015-08-03-rev2.pdf

CECSupportforMedium-andHeavy-DutyVehicleTechnologyDemonstrationsandScale-Up:InadditiontothestandardvehiclerebatesandNGVIPprogramdescribedabove,theCEChasprovidedsupportfornaturalgasvehicleswithinitsbroaderalternativefuelmedium-andheavy-dutyvehicletechnologydemonstrationandscale-upprogram.Thisisacompetitive,project-basedprogramavailablebyapplicationonly–notastandardizedrebateprogram.Sincetheprogram’sinception,theEnergyCommissionhasprovided$58.7millionforthebroadportfolioofvariousAFVprojectsdescribedbelow,including$8.3Mforfournaturalgastruckdemonstrationprojects(totalingfivedemonstrationvehicles)showninbluebelow.

Medium-andHeavy-DutyTruckDemonstrationProjectsSupportedbytheCEC(allAFVfueltypes)

Vehicle/TechnologyType #ofProjects #ofUnits CECFunding(inmillions)

Medium-DutyHybrids,PHEVsandBEVs 8 164 $15.8

Heavy-DutyHybrids,PHEVsandBEVs 6 14 $11.3

ElectricBuses 4 17 $6.3

NaturalGasTrucks 4 5 $8.3

FuelCellTrucksandBuses 3 6 $4.5

Vehicle-to-Grid 3 TBD $5.3

Off-RoadHybrids 2 2 $4.5

E85Hybrids 1 1 $2.7

TOTAL 31 209+ $58.7

Source:CaliforniaEnergyCommission,2015-16InvestmentPlan.

Amongthenaturalgastruckprojectsidentifiedabove,theEnergyCommissionpartneredwiththeSouthCoastAirQualityManagementDistricttosupportdevelopmentanddemonstrationofaCumminsWestportnaturalgasenginewithNOxemissionlevelsthatare90percentlowerthan2010engineemissioncertificationstandards.SupportforthesetechnologydemonstrationprogramsaretypicallydevelopedviapartnershipsofOEMs,technologyproviders,AirQualityManagementDistricts,CalSTARTandotherindustrygroups,researchlabs,oruniversities.Suchprojectsaretypicallyfocusedonnewtechnologydevelopmentanddemonstrationratherthanscaleddeploymentinfleetsettings.AdditionalFuelIncentivesforCNG–LocalTaxExemptionandSoCalGasDiscounts:CNG(aswellaselectricity)thatlocalagenciesoroperatorsusetooperatepublictransitservicesisexemptfromapplicableusertaxesthatacountynormallyimposes.(SeetheCaliforniaRevenueandTaxationCode7284.3)TheSouthernCaliforniaGasCompany(SoCalGas)alsooffersnaturalgasatdiscountedratestocustomersfuelingNGVs.KnownasScheduleG-NGVR,theNaturalGasServiceforHomeRefuelingofMotorVehiclesisavailabletoresidentialcustomersonly.CommercialcustomerscanutilizetherateknownasG-NGV,NaturalGasServiceforMotorVehicles.Formoreinformation,seetheSoCalGasNGVswebsite.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-18

5.10.PropaneFuelsandVehicles:Propane,alsoknownasliquidpetroleumgas(LPG),isproducedasabyproductofnaturalgasprocessingandcrudeoilrefining.Mostwidelyusedinruralareasforheatinghomesandpoweringfarmandindustrialequipment,lessthan3%ofpropaneproducedintheU.S.iscurrentlyusedinvehicles.However,propaneisthemostcommonlyusedalternativemotorfuelintheworld,anditspricehashistoricallybeenlowerandmorestablethangasoline.Localpricingcanvarywidelydependingonsupplyanddemand.Propane’senergycontentisapproximately25%lessthangasoline.However,duetoitslowercost,propanestillremainsanattractivechoiceforfleetoperators.Asofearly2016,Californiapropanepricesvariedfrom$1.60to$2.80,withmostpricescloserto$2.00/gallon.Atlowerprices,costsavingscanquicklyoffsetincreasedpurchaseprice.Propane-fueledvehiclesproduceabout10%fewergreenhousegasemissionsthanequivalentconventionalvehicles.Propaneisavailableatmorethan2,600stationsthroughoutthecountry,and~1,500stationsinCalifornia,accordingtotheCaliforniaEnergyCommission.8TheCECallocatedseveralmilliondollarsforavehiclepurchaseincentiveprogramaimedatencouragingpropanevehicleusageinCalifornia.However,thefundingforthisprogramhasbeenexhaustedandtheCEChasnoplanstoreinstatesupportduetoconcernsaboutpropane’senvironmentalattributesrelativetootheralternativefueloptions.PropanevehicleoptionsfromOEMsarequitelimited,asindicatedinthechartbelow.However,enginesandfuelingsystemsarewidelyavailableforupgradingheavy-dutyvehiclessuchasschoolbuses,shuttlebuses,andstreetsweepers.

Source:2015CleanCitiesVehicleGuide,p.11.

8CaliforniaEnergyCommission,DriveCleanwebsite,http://www.energy.ca.gov/drive/technology/propane.html

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-19

ConvertingVehiclestoPropane:AccordingtotheU.S.DepartmentofEnergy(DOE)CleanCitiesVehicleGuide,avarietyofoptionsareavailabletoconvertavehicletopropanewithminimalimpactonhorsepower,towingcapacity,orfactorywarranty–iftheconversionisperformedbyanauthorizedtechnician.AllconversionsmustmeetemissionsandsafetystandardsinstitutedbyEPA,theNationalHighwayTrafficSafetyAdministration,CARB,andrelevantstateagencies.Manynewandusedconven-tionallight-dutyvehiclescanbeconvertedtorunonpropane(orCNG)foracostofabout$4,000to$12,000pervehicle.ThetablebelowlistsconversioncompaniesthatoffercertifiedCNGorpropaneconversionsystems.ThelistsofsystemscertifiedbyEPAand/ortheCaliforniaAirResourcesBoard(CARB)areupdatedregularly.VisitEPA’s“AlternativeFuelConversion”page(epa.gov/otaq/consumer/fuels/altfuels/altfuels.htm)andCARB’spageonCertificationofAlternativeFuelRetrofitSystemsatarb.ca.gov/msprog/aftermkt/altfuel/altfuel.Htmforthemostcurrentlistsofcertifiedsystemsforvehiclesofallmodelyears.AdditionalinformationonvehicleconversionsisavailableatthefederalAlternativeFuelDataCenteratafdc.energy.gov/vehicles/conversions.html.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-20

5.11.AttributesofNaturalGasandNGVFuelingInfrastructure:Naturalgasisprimarilycomposedofmethane(88to93percent)butitalsocontainsanumberofothercomponentsinsmallerquantities,includingethane,propane,butane,andinertgases.Initsnaturalstate,naturalgasisnoncorrosive,colorless,andodorless.Naturalgasisalsoanasphyxiantand,insufficientquantities,cancausesuffocation.Naturalgasmayalsocontainwater(measuredinmillionsofpartspercubicfoot)andforeignmaterialsuchasscalefromtransportationpipelines.Sincebothofthesematerialscouldharmengines,dessicantdryersthatremovemoisturearetypicallystandardequipmentinCNGfuelingstations.Filtersmayalsobeaddedtoremoveotherimpurities.Naturalgasishighlycombustibleatlowlevelsofconcentration(4to16percentofvolume)andburnswithablueflame.Becauseitislighterthanair,wheneverthereisareleaseofgasitquicklydissipatesintotheair.BasedontheNationalFireProtectionActSection49,AppendixB(NFPA),naturalgasisclassifiedasextremelyhazardousforflammability,slightlyhazardousforhealth,andnon-hazardousintermsofreactivity.TheamountofanexplosivegasinagivenvolumeofairismeasuredbytheLowerExplosionLimit(LEL)andtheUpperExplosionLimit.Fornaturalgasthelowerexplosionlimitis5%byvolumeandtheupperlimitis15%byvolume.Toavoidconcentrationofnaturalgasabovesafelevels,ventingandpressurereliefdevicesarerequired,aswellasmethanegasdetectionsystems.Asanadditionalsafetymeasure,asubstanceknownasmercaptanisaddedasanodorantinthegasutilitytransmissionpipelinesothatleakscanbedetected.Themercaptancreatesthedistinctive“rottenegg”odorassociatedwithagasleak.Facilitieswherenaturalgasisbeingused(includingvehiclemaintenanceandrepairfacilities)mustmeetstringentbuildingcodestandardsforexplosionproofing,fireproofing,andaircirculation.Naturalgasdoesnotliquefyunderpressurealone,butanyreleasesofpressurizedgasesarequiteloudandcanbeverydangerous.Forexample,apressurizedhosethathasagasreleasecanwhiparoundandcausebodilyinjuryorpropertydamage.Naturalgas-fueledexplosionsandflamescannotbefoughteffectivelywithwater,butmustbeextinguishedwithcarbondioxide,drychemicals,orhalocarbon.(Moreinformationonnaturalgassafetyproceduresandtrainingareprovidedlaterinthischapter.)NaturalGasFuelDistribution:Naturalgasistransportedfromthewelltothegasutilityinundergroundtransmissionpipelinesthatflowat150to450poundspersquareinchgauge(psig).Atthedistributionlevelthepressureisreducedto15to45psig.ThegasdispensedtocustomersismeasuredbythelocalutilityusingaMeterSetAssemblyorMSAwhichservesasthemeterandcashregisterfortheutility.AnemergencygassupplyshutoffisalsoinstalledattheMSAincaseofanearthquakeorothercatastrophicevent.Todeterminewhethertheexistingdistributionsystemwillsupportanewnaturalgasstation,aprospectivestationdevelopermustassesstheinletpressureatthepointofconnectiontothedistributionsystem.HomeNaturalGasFueling:Homenaturalgaspressureisverylowandismeasuredin“inchesonthewatercolumn”whichislessthanonepoundpersquareinch.Thispressurelevelisadequateforcookingandheatingorcoolingandcanalsobeusedforaconsumer-levelvehiclerefuelingappliance.DevicessuchastheBRCorHonda“Phil”homerefuelingproductprovideanovernightfuelingsolution.Commercialstationsrequiremuchhigherinletpressures—typicallyaminimum14.5poundspersquareinch.Poundspersquareinchisalsoknownasa“bar.”HowNaturalGasMovesfromPipelinetoVehicle:NaturalgasmovesthroughmultiplestepsinpreparationanddeliveryfromthepipelinetotheinletonaCNGvehicle.AsdescribedintheCNG

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-21

InfrastructureGuidedevelopedbytheAmericanGasAssociation,9fromafuelinginfrastructureperspective,theprocessbeginsatthegasutilityconnectiontotheCNGstationsite.Thegasismeteredatthisconnection,andthenthefollowingstepsaretypicallyrequiredtomakethegas“vehicleready”.InletGas:Themunicipal“inlet”gasconnectionwillrequiresufficientflowrateandpressureforthedesignedapplication.ManyCNGinfrastructureapplicationscanusethestandardlowpressureavailableinmunicipalgaslines,butitisimportanttoknowthepressureavailableatthelineandiftheenvisionedapplicationwillrequirealargerlineormorepressure.Itisrecommendedthatpotentialstationowners/operatorscheckwiththelocalutilityand/orgassuppliertodeterminethe“guaranteed”minimuminletpressureavailableatyourselectedlocation.GasQuality:Thequalityofinletgasprimarilyconcernsmoisturecontent,andscaleorotherforeignmatter that may be contained in the inlet line.Moisture content in natural gas ismeasuredinmillionsofpartspercubicfoot.Inletgaswithhighmoisture contentwillrequire “drying” in order tomake it serviceable for fueling vehicles, and dryersarestandardequipmentinmostfuelingapplications.Further,a filtermayoccasionallybenecessaryifthereisaquantityofpipe scale orforeignmatterinthegasline.Filterscomestandardonmanymodelsofcompressors.GasCompression:Driedandfilteredinletgasiscompressedbyoneormorecompressorsandoftenstoredintanks,ordelivereddirectlytoafueldispenser.Thispressurizedgasisnow“CompressedNaturalGas”readyforvehiclefueling.PriorityDistribution:MovingtheCNGfromthecompressortostoragetanksordirectlytothevehiclerequiresdirectedcontrol,andthisfunctionissuppliedbyacomputerized“prioritypanel.”PrioritypanelsdirecttheflowofCNGfromthecompressortoon-sitestoragetanks.SequentialpanelsdirecttheflowofCNGfromthecompressorortankstofueldispenserunitsand/orvehicles.Basedonthepressuremeasuredinthevehicletank,theprioritypanelswitchesbetweenthelow,medium,andhighpressuretankstoensureacompletefill.GasStorage:FastfillCNGapplicationswillrequirepressurizedgastobestoredinhighpressuretankstoaccommodatemorevehiclesfuelingfaster.CNGstoragetanksoftencomeincascadesofuptothreetanksina“bank”orinspheres.Cascadebanksaremostoftenmaintainedatthreedifferentpressurelevels(high,medium,low)toaccommodatefastervehiclerefueling,andensureaproperfill.Naturalgasstoragetanksarerequiredbylawtobeinstalledaboveground.DispensingCNG:CNGdispenserscomeinmanydifferentsizes,shapes,andvarieties.However, theyallconformtoeitherafastfilloratimefillconfigurationandareavailableindifferenthoseconfigurationsandwithdifferentflowratesandmethodsofmetering.Timefillunitstypicallydispensefuelthroughafixedpressureregulator.Whenthefuelflowreachesaminimumrate,thefuelflowisshutoff.Fastfillunitsmeasurethepressureinthetank,thenasmallamountofpreciselymeasuredfuelisdispensedintothetankandthepressureriseismeasured.Fromthesefigures,thevolumeofthetankiscalculatedandthetankisfilledrapidlytothislevel.Whenthetankisfulltheflowisshutoff.Manydispenserscomewithtemperaturecompensatorsthatensureacompletefillincoldenvironments.

9CNGInfrastructureGuide,America’sNaturalGasAllianceandtheAmericanGasAssociation,pp.5-6.https://www.aga.org/sites/default/files/sites/default/files/media/cng_infrastructure_guide.pdf

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-22

CNGFuelingStationStorageandFillingTechnologies:CNGstationsaredistinctfromgasolineanddieselstationsinsofarastheyincludeuniquecomponentssuchasgasdryersandhighpressurestoragesystemsthatmustconformtorelevantcodesandstandards.Asnotedabove,gasmaybedispenseddirectly(“directfill”)fromthecompressortothevehiclethroughafuelinghose(knownasbufferstorage)orstoredinlargehighpressurevessels(knownascascadestorage).Directfillisabetterchoiceforstationswitharelativelysteadyflowofvehicles,whereasthecascadestorageapproachismoresuitableforstationswithsharppeaksindemand.

Storagevesselsforcascadestoragearetypicallysoldinbanksofthreevessels--eachofwhichtypicallyholdatotalof30,000standardcubicfeet(scf)eachorapproximately240gasolinegallonsequivalent(gge).Athreevesselbankconsistsofhigh,mediumandlowpressurevesselsaswellasthecomputerizedprioritypanelthatdirectsgasfromtheappropriatebanktothedispenserhose.Sincegasmovesinresponsetounequalpressure,thehigherpressuregasinthestoragevesselswillmovetofillthelowerpressurevehicletank.Bufferstorageconsistsofsmallertanksthatprovidefuelforaveryshortperiod(lessthanaminute)whilethecompressorrampsup.

NaturalGasCompressionandVehicleFillingStrategies:Naturalgasvehicletanksaregenerallyfilledat3600psi,butambienttemperature,aswellastheheatofcompressionandpumping,maycausenaturalgastoexpand,reducingthepressureinthevehicletankbelow3600psi.Asaresult,thevehiclemaynotfillcompletely.Inordertorectifythissituation,thegasmaybeinitiallycompressedtoasmuchas5500psitocompensateforheat-relatedexpansion.Analgorithmcontrolsthisprocess--knownastemperaturecompensation--sothatvehiclesreceiveacompletefill.

LiquefiedNaturalGas:Liquefiednaturalgas(LNG)ismethanethatischilledto-270degreesFahrenheit.Thecoldtemperaturescauseotherimpuritiesinthegastodropout--creatingafuelthatisapproximately97percentmethane--resultinginhigherenergydensity.LNGisstored,transported,anddispensedasaliquid.10ThishigherenergydensitymakesLNGapotentialfuelofchoiceforlongdistancevehicles,suchasheavy-dutyClass8tractortrailers.Todate,however,LNGhashadextremelylimiteduptakeintheUnitedStates,withjust~3300vehiclesregisteredasof2010,vs.~113,000CNGvehicles.

LNGintheU.S.hasbeenproducedinlargecentralizedplantsandthentruckedlongdistancestofuelingstationswhereitmustbestoredatverycoldtemperaturesandusedwithinafewdaystoavoidevaporation.TheuseoflongdistancetruckingtodeliverLNGreducestheemissionsbenefitsofthefuelandcanleadtoweather-relateddeliveryproblems.Newdevelopmentsaremakingvarioussizesofon-siteliquefactionplantsmorepractical,althoughtheseproductsareintheearlystagesofmarketintroduction.LNGisalsomoredifficulttoodorizethanCNGandmustbeodorizedonsiteasasafetyprecaution.BecauseofthecomplextechnologyandcosthurdlesfacingtheLNGdistributionsystem,projectedgrowthintheLNG-fueledvehiclesegmentisexpectedtobeverylimitedoverthe2015-2025period.(AdditionalinformationonLNGvehiclesandusecasesisprovidedlaterinthischapter.)

RenewableNaturalGasandBioMethane:Conventionalnaturalgasisnotconsideredtobearenewablefuel.However,biomethaneorrenewablenaturalgascanbeproducedfromorganicmaterialfoundindairies,landfills,andwastewatertreatmentfacilities,leadingtoGHGemissionreductionsofupto85%comparedtoconventionalnaturalgas.(Furtherdiscussionofbiomethaneproductionopportunitiesisprovidedlaterinthischapter.)

10Duetoitscryogenicstate,LNGeasilyevaporates--anditcanalsobegasifiedtocreatewhatisknownasL/CNG(LNGthathasbeenconvertedbacktoCNGforfuelingofCNGvehicles).However,theextracostoftransportingLNGintankertrucksmakesconversionofLNGtoCNGeconomicallyinefficientcomparedtothedirectuseofCNGdistributedbyexistinggaspipelines.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-23

TheNaturalGasFuelingExperience:RefuelingofNaturalGasVehiclescanbeeasierandsaferthanwithgasolineordiesel–ittakesaboutthesameamountoftime,butliquidspillsandstainsdonotoccurasCNGfuelisinagaseousstate.Inthecaseofbi-fuelcars(shownbelow),theCNGfuelinletmaybepairedwiththeliquidfuelinlet,whileindedicatedCNGvehicles,thereisnooptionforliquidfueling.

OEMbi-fuelcarsoftenhavethenaturalgasfuelinletpairedwiththeliquidfuelinlet.

Source:NGVGlobalwebsite.http://www.iangv.org/refuelling_ngvs/

ThefuelingprocessdiffersonlyslightlyforCNG,LNG,orablendofhydrogenandCNG(HCNG).Inallcases,therefuelingnozzleclicksontothereceptacleonthevehicleandtheuserisreadytofill.Whenthecylinderisfull,thedispenserautomaticallyshutsoffandtheuserisreadytodisconnectagain.WithLNG,itisusuallynecessarytowearglovesduetotheextremecoldtemperaturesofthefuel(theuserdoesnotcomeintocontactwiththefuelbuttheequipmentusuallyconductsthecold).Optionsforrefuelingincludepublicstation,depotbasedandhomerefueling.Theprincipaldifferencebetweeneachoptionisthevolumeandspeedatwhichthefuelisdispensedandthemeansofpayingforthefuel.PublicRefueling:PublicCNGstationsoperatemuchlikegasolineordieselstations.Thedriverpullsupatadispenser,switchestheengineoffandthenconnectsthenozzletothereceptacle.However,somenozzleshaveanisolatorfitted,whichpreventstheenginefrombeingswitchedonwhileconnectedtothedispenser.Insomeconvertedvehicles,therefuelingreceptaclemaybelocatedunderthehoodorinthetrunk.InmostOEMvehicles,thereceptacleislocatedwherethegasolineordieselinletis.Refuelingusuallytakesthesameamountoftimeasagasolineordieselvehicle,thoughifdemandisparticularlyhigh,aresultingpressuredropmayslightlyextendthetimetorefuel.PublicCNGrefuelingstationsareusuallysuppliedeitherbypipednaturalgas,orbytrucksknownas“tubetrailers.”Astationsuppliedbyatubetrailerispartofwhatisknownasa“mother-daughter”system,inwhichthefueliscompressedatthemotherstationanddeliveredviatubetrailertothedaughterstation.Mother-daughtersystemsaretypicallyusedwhenpipednaturalgasisnotavailable.DepotBasedRefueling:AdepotbasedCNGstationusuallyservesalimitedfleet,thoughfacilitiesareoftensharedwithfleetsorprivatevehicleownersthatarenotrelatedtothedepot.Depotbasedrefuelingmaydeployeithera“fast-fill”ora“time-fill”(akaslow-fill)system.Afast-fillCNGsystemwillrefuelavehicleinapproximatelyfiveminutesorless.Atime-fillsystemfillsthevehicleoveraperiodofhours,oftenovernight,dependingonthespecificsystempressurelevelandvehicletanksize.Time-fillsystemsareusuallyusedforvehiclesthathaveregularextendedperiodsofnon-operation–suchasrefuseandutilitytrucks,couriervans,privatevehicles,schoolbuses,andotherfixedroutevehicles.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-24

AprivateTime-Fill(akaslow-fill)refuelingdepotcanfillmultiplevehicles

concurrentlyviasinglepostswithmultipledispensers.Source:NGVGlobal.

CNGStationConfigurations:Intotal,therearefourpredominantconfigurationsofCNGstations:

§ CascadeFast-Fill§ BufferFast-Fill§ Time-Fill§ Combination-Fill,whichcombinestwoofthethreeconfigurations

Asnotedabove,fast-fillstationstypicallyrefuelvehiclesinapproximatelythesametimeasagasolinestationunlessconcurrentdemandisunusuallyhigh.Bycontrast,Time-Fill(akaslow-fill)stationsrefuelvehiclesinamatterofhours–typicallyovernight.TheadvantageofTime-Fillissignificantlyreducedupfrontsystemcosttoestablishafueldepot(costvariationsaredetailedbelow).CascadeFast-Fillstationsprimarilyfillfromstoragetanksandaretypicallyusedforretailapplicationsorvehiclesthatrequirerefuelingatvaryingtimes.Unlikegasstationswhichkeepthousandsofgallonsinundergroundstorage,CNGstationsoftenhavethree-packsofabovegroundstoragevesselsinwhich240to300gallonsofcompressedgasarestoredafterdeliveryfromapipelineortruck(inthoselocationswherepipelineinfrastructureisnotavailable).Vehiclesarefilledeitherfromthestoragevesselsordirectlyfromthecompressor,dependingonthecompressorequipmentmanufacturer.Typically,thecompressorwillrefillthestorageduringoff-peakperiodswhiletherearenovehiclesfueling.LargerfleetsandmostpublicCNGstationsutilizethecascadefast-fillconfigurationbelow.

Source:U.S.DepartmentofEnergy,AlternativeFuelsDataCenter,http://www.afdc.energy.gov/

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-25

Time-Fillvs.Fast-FillStationConfigurations:MostTime-FillstationsuseSingleHoseFuelingPostsasinthediagrambelow.Asneedschange,Time-FillstationscanbemodifiedtobecomeFast-FillstationswiththeadditionofasmallamountofstorageandFast-Filldispensingequipment.Time-fillstationsareconsiderablysimplerinconstruction,andincludejustthecomponentsillustratedbelow.

5.12.NaturalGasFuelingInfrastructureCostFactors:ThecostassociatedwithconstructingaCNGrefuelingstationcanvarysignificantbasedonlandcosts,size,andapplicationandrangesfrom$675,000to$1,000,000ormore(notcountingland),dependingoncapacityandthroughput.ThetablebelowprovidesestimatesofequipmentandinstallationcostsforoneTime-FillandtwoFast-Fillstations,andillustratesseveralscenariosforthenumberandtypeofvehiclesthatcanberefueledatthestation.Sincelandcostsvarywidely,theyareexcluded.ItisrecommendedthatFast-Fillstationsincorporateredundanciesintheirdesign,thereforethetablealsoshowsaFast-Fillstationwithtwocompressors.Itisimportanttonotethatthecostsassociatedwithcombination-fillstationswillincorporatethecostsofbothfastandtime-fillstations.

Source:AmericanGasAssociationCNGInfrastructureGuide.https://www.aga.org/sites/default/files/sites/default/files/media/cng_infrastructure_guide.pdf

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-26

CostBreakoutforComponents:ThefollowingcostrangesarerepresentativeofrecentlowandhighcostsofconstructingaCNGfuelingstationandaresuggestedasageneralguideline.Eachspecificsitewillhaveitsuniquerequirementsandassociatedcosts.Notethatinternalprojectmanagementcostsandlandcostsarenotincluded.

Component EstimatedCosts,$GasSupplyLine 20,000-150,000CompressorPackage 200,000-400,000NoiseAbatement 0-40,000GasDryer 50,000-80,000Storage(3or6ASME) 100,000-200,000Dispenser(1or200M-hose) 60,000-120,000CardReaderInterface 20000-30,000Engineering 25,000-75,000Construction 300,000—600,000Contingencies 10—150,000EstimatedTotal(Excludes,landcost) 805,000–1,845,000Source:AmericanGasAssociationCNGInfrastructureGuide.

CostComponentsofFuel:Thecostoffuelincludesmultiplecomponents,ofwhichthenaturalgasitselfisjustoneelement.Notethatthereisnoprofitmarginbuiltintothiscalculation,thusreflectingaprivatedepotprice,notapubliccommercialstationprice.

NaturalGasFuelPricingElements low highNaturalgas(gallon) $ 0.64 $ 0.91GasCommodity $ 0.52 Transportationtolocaldistributioncompanies(LDCs)viainterstatepipelinestoLDC's"citygate"

$ 0.04

$ 0.04

Local gas company service fee to transport gas tocustomermeter

State/localreceipts/usetaxesand/orspecialassessments

Electricityforcompression $ 0.09 $ 0.30Maintenance/repair $ 0.15 $ 0.30CapitalAmortization $ 0.35 $ 0.50Federalmotorfuelsexcisetax $ 0.18 $ 0.18Statemotorfuelexcisetax $ 0.08 $ 0.30Taxablefuelsales $ - $ 0.10Total $ 2.05 $ 2.63Notes:assumesnograntsorotherbuydownsofequipmentcostandnoprofitmargin.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-27

5.13.BestPracticesinPlanning,Permitting,andReadinessforNGVFuelingStationDevelopmentCNGfuelingstationdesignsvarywidelyandareconstructedinavarietyofformfactors,withminimalstandardization.Todeterminenecessarycapacityandflowrates,CNGstationdesignersmustconsideraparticularfleetapplicationand/orlocalconsumerdemand,aswellastechnicalfactorsrelatedtotheexistingpressureinthepipelinegasdistributionsystem(ifany)ataparticularlocation.AdditionalCNGstationsitingfactorsincludeproximitytofleetvehiclesorconcentrationsofprivateCNGvehicles,andlocalzoningandpermittingrequirements.NotethattheguidanceforCNGstationsissubstantiallysimilartotheguidanceforhydrogenstationdevelopment--asitdrawsontheGovernor’sOfficeofPlanningandResearchprotocolsforH2stationdevelopment.11TheseguidelinesalsoreflectinformationintheCNGInfrastructureGuideproducedbytheAmericanNaturalGasAssociationandtheCaliforniaStatewideAlternativeFuelandFleetsProjectguidancedocument:PermittingCNGandLNGStations:BestPracticesGuideforHostSitesandLocalPermittingAuthoritiespreparedbyCleanFuelConnection,Inc.Allguidancedocumentsagree:itiscriticaltostartthepermittingprocessearly—atleastninemonthsbeforetheanticipatedconstructiondate!Priortobeginningthepermittingandconstructionprocess,stationdevelopersareadvisedtotakeallrelevantstepstoensurethattheprojectisfeasible--andtoselectequipmentandinstallationvendorsbasedonabiddingprocessthatwillsurfaceavailableoptionsandpriceranges.Onceselected,theequipmentvendorandinstallationcontractorwillhelpaddresspermitting,construction/installation,andstartup/commissioningprocesses.

StepA.Startthepermittingandvendor/installerselectionprocessearly:Priortobeginningthepermittingandconstructionprocess,projectdeveloperswilllikelywanttoensurethattheprojectisfeasible.Developersareadvisedtoselectexperiencedequipmentandinstallation vendorsthatcaninturnhelpassessanddemonstratefeasibility--andtrouble-shootpermittingprocesses. Mostdevelopersorownerswillestablishabiddingprocess toassessavailableoptionsandprices.Onceselected,theequipmentvendorandinstallation contractorwillhelpnavigatepermittingandinstallationandotherstartupprocesses.

StepB.SetupaninitialmeetingbetweentheenduserapplicantandthePlanningorCommunityDevelopmentDepartment:Theagendashouldincludetheseitems:

§ Zoningclassificationofproposedstationtodetermineifitisapermitteduse§ Anyapprovalsrequiredtoallowthestationasapermitteduse–e.g.ageneralplan

amendment, variance,oraconditionalusepermit§ Basedonthezoningregulations,determinewhatsetbacksarerequiredfromthepropertyline§ Defineanyspecialclearancesrequiredforexplosionproofing§ Definethelevelofenvironmentalreview,ifany,requiredundertheCaliforniaEnvironmental

QualityAct (CEQA)§ Identifyanynoiseorodorissuesbasedontheneighboringproperties.NotethattheCNG

stationnoisestandardis85dBa(OSHAlimitwithouthearingprotection);andthiscanbereducedto70dBaatthepropertylinewithenclosuresoranoisereductionpackage

§ ReviewthescopeofCNGstationproject§ Identify anyadditionaltrafficorcirculationissuescreatedbythestation

11CaliforniaGovernor’sOfficeofPlanningandResearch,H2Readiness:BestPracticesforHydrogenStationsinEarlyAdopterCommunities,April2014.http://cafcp.org/sites/files/H2-Best-Practices_Final-Single-Page.pdf

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-28

§ Defineapprovalprocessesandtimelines.Approvalsforconstructionpermitswilltypicallyberequired fromthesedepartments:

o Planningo BuildingandSafetyo PublicWorkso FireDepartmento Traffico Landscaping,architectural, ordesignreview

§ Identifythenumberofsetsofplansandcalculationstobesubmitted§ Identifyfeeschedules§ Confirmthattheend-userhascontactedthelocalgas utilitytoobtaininletpressureandany

otherutilityrequirementsfornaturalgasdeliverytothe site§ Considervisitingsimilarsitesormeetwiththelocalgasutilityrepresentativeforan

orientation. ( Alistofresourcesforadditionalinformationisattheendofthisguide)§ Onceitisdeterminedthattheprojectisfeasibleandtherearenomajorobstaclessuchas

zoningrestrictions,theprospectivestationownercanproceedtopermitting(seebelow)

StepC. Prepareandsubmitpermittingpackageto theCity;placeequipmentorder:Inadditiontoanyspecificlocalrequirements,thepackageshouldinclude:

§ SingleLineelectricaldiagram

§ CivilDrawingsandSpecificationsstamped byaRegisteredEngineer:§ Aplotplanshowingthe surroundingareaandstreetsaswellasthe placementofthestationon

theproperty§ FoundationsandStructures§ MechanicalDrawingsandSpecifications stampedbyaRegisteredEngineer:§ PipingandInstrumentationDiagram(P&ID)includingpiping,tubing,vesselsand mechanical

equipment§ ElectricalDrawingsandSpecifications§ Electricaldistributionsystem,panelschedules,groundingandloadcalculations§ Safetysignpackage§ GradingPlan§ Preliminaryschedule§ Submittalofthepermitpackagewillbefollowedbyaseriesofreviewsbyvariouscity

departments(Fire,Buildingand PlanningorCommunityDevelopment)withpossiblecommentsandcorrectionsateachstepuntilasetofplansisapprovedbythecity.

StepD.Construction,inspection,andCommissioning

§ ConductinteriminspectionsduringconstructionprocessinaccordancewithallrelevantCNGstandardsdocuments(Seebelowforlistofrelevantstandards)

§ Completefinalelectricalhookupsandutilitywork§ Installutilitymetering

StepE.Finalinspectionbylocaljurisdictionandsignoff

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-29

TypicalProjectSchedule:ThefollowingCNGstationprojectmanagementspreadsheetprovidesanoverviewofkeytasksanddevelopmenttimeframes.

Source:CNGInfrastructureGuide,America’sNaturalGasAllianceandtheAmericanGasAssociation.p.44NGVStationSiting,Zoning,andPermitting:LandisasignificantcostcomponentinbuildingaCNGstationina“greenfield”scenario.Requirementsforlandbeginatapproximately1⁄2acreofpropertyforalightdutystation,andincreasewithlargerapplications.Ifcivildesignworkisneededfornewconstruction,ageotechnicalsiteevaluationwilllikelyberequired.Thisevaluationwillprovidecriticalsoilcompositioninformationnecessaryforconcretefoundationsandelectricalgroundingsystems.Considerationsmustbegiventoroadaccess(publicorprivate)andutilityconnections.Easyaccesstomajortrunkhighwaysisdesirable.Wherelandcostsareprohibitiveforanewstand-alonestation,manydevelopersseekoutpartnershipswithaconveniencestore.ManyexistinggasstationswillnothavesufficientlandavailableforthenecessarystorageandequipmentassociatedwithaCNGstation.

Localbuildingcodesandregulationsarealsoofcriticalimportance.SinceCNGandLNGarerelativelynewfuels,theymaynotbespecificallycalledoutinzoningregulations.CNGandLNGstationsareusuallypermittedwherevergasolinefuelingstationsareallowed,typicallyinindustrialandcommercialzones.However,basedonNationalFireProtectionAssociationcodesandstandards(NFPA52),CNGstationshavespecificrequirementsduetothenatureofthefuel,including:

§

§ Setbackof15feetfromaresidentialpropertyline§ ClassIDivisionIratingforallcomponentswithina5footradiusofthecompressorordispenser§

Insomecases,residentialfuelingispermitted.TheCityofChinohaseventakenthestepofrequiringnewhomeconstructiontoincludeplumbingforapossiblehomenaturalgasfuelingappliance.Ifafuelingstationisnotapermitteduseatthedesiredlocation,thesiteownercanappealtothelocalPlanningCommissionforavariance.Ofcourse,thiswilladdtimeandcosttotheapprovalprocess.

Inadditiontozoningregulations,localgovernmentsmayhavetheirownmunicipalcodesthatimpactconstructionofaCNGstation,including:

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-30

§ CityFireCodes§ LocalBuildingOrdinances§ LocalNoise/Lighting/Trafficordinances§ Anylocalrequirementsthataremorerestrictivethanthenationalcodes§

Prospectivestationownersshouldfamiliarizethemselveswithlocaldesignandconstructionrequirementstoavoidcostlydelays.

UtilityService:AnadequatenaturalgassupplyaccessibletotheproposedCNGstationlocationiscritical.CNGstationdevelopersshouldcontactthelocalgasdistributioncompanyearlyinthesiteselectionprocess.Aninadequategassupplyandpressureorexcessivedistancetothegassupplycouldmakethestationinfeasible.Inaddition,highcapacityelectricalservicewillberequiredatmostCNGfuelinginstallationstoruntheequipmentnecessarytoprepare,store,anddispenseCNGtowaitingvehicles.Contactthelocalutilityprovidertoconfirmadequatepowerisavailableorcanbeprovided.StationDesignandCapacity:Thefollowingkeyparametersmustbeassessedbythestationdeveloperandkeyconsultantsandcontractorstospecifythestationequipmentandoperatingparameters:

§ Inletpressure:thepoundspersquareinch(psi)availableattheutilitymeter§ Flow:theamountofcompressednaturalgasthatcanbedispensedovertime(asmeasuredby

standardcubicfeetperminuteorscfm).Theflowcanalsobecommunicatedingasolinegallonequivalent(gge)unitsperminute.Approximately125scfmequalsonegasolinegallonequivalentand135scfmequalsonedieselgallonequivalent–withthenumbervaryingslightlydependingonthedefinitionofstandardconditions.Notethatgascompositionalsovariesslightlyfromlocationtolocation,thustheamountofenergy(BTU)ineachgasolinegallonequivalentofnaturalgaswillalsovary.UsingBTUsastheunitofmeasure(ratherthancubicfeet)eliminatesthisdiscrepancy.

§ Dutycycle:thespecificsoftheindividualapplicationwilldeterminewhatkindofCNGcompressorisneeded.Smallercompressorsproduceanywherefromafractionofaggeperhourtoabout2ggeperminute.Ontheotherendofthespectrum,highhorsepowercompressorscanproduceasmuchas12to15gasolinegallonsperminuteormore.

5.14.NGVFuelingStationSafetyandCodeGuidelines:Asnotedinthestep-by-stepguidanceabove,itisextremelyimportanttocontactthelocalFireMarshallandBuildingInspectortogaintheirguidancethroughthepermittingprocess–andtoensurethestationisdesignedandconstructedinaccordancewithallapplicablelocal,state,andfederallaws,rules,regulations,codesandstandards.

GiventheflammablenatureofCNGandLNG,safetyisofparamountconcern.Stationsneedtomeetallapplicablefederal,state,andlocalcodesandrequirements.However,allcodesaresubjecttointerpretationbylocalauthoritieshavingjurisdiction(AHJs)whomaketheultimatedecisiononcompliance.TheprimarycodegoverningcompressednaturalgasandliquefiednaturalgasstationsisissuedbytheNationalFireProtectionAssociation(designatedNFPA52),andisdescribedasfollows.

NFPA52provisionscoverthedesign,installation,operation,andmaintenanceofCNGandLNGfuelsystemsonallvehicletypes--plustheirrespectivecompression,storage,anddispensingsystems.Mostjurisdictionshaveadoptedthiscode,althoughsomemaybeusingolderversions.Additionalrelevantcodesareincludedinthechartbelow:

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-31

CodeOrganization KeyFunction

ANSIAmericanNationalStandardsInstitute

FacilitatesdevelopmentofcodesandstandardsthatgoverntheuseofCNGandmanufacturingofCNGfuelingcomponents,includingnozzles,receptacles,dispensers,hoses,breakawaydevices,valves,andrelatedcomponents

ASMEAmericanSocietyofMechanicalEngineers

BoilerandPressureVesselCodeSection8oftheANSI/ASMEB31.3ChemicalPlantandConventionalFuelRefiningPipingCoderegulateshigh-pressureCNGstoragevesselsandpiping.Section8isthemanufacturingstandardforpressurevesselsinCNGstation,whilesectionB31.3establishesspecificationsforpipingthroughoutthestation.Keycodeelementsinclude:§ Section523.DesignandConstructionofCNGTanks§ Section524DesignandConstructionofCompressedNaturalGasCylinders§ Section530ApprovalofDevices§ Section531LocationofStoragetanksandRegulatingEquipment§ Section532InstallationofAboveGroundStorageTanks§ Section536PipingStandards§ Section541SafetyReliefValves

ASNTAmericanSocietyforNondestructiveTesting

TestsCNGstationcomponentsforsafety.

NEMANationalElectricalManufacturers’Association

Establishesstandardsforelectricalcomponentmanufacturing.

NFPANationalFireProtectionAssociation

• NFPA52,NFPA70,andNFPA30Acodesandstandardsregulatetheuseofnaturalgasasavehiclefuel,includingstationsandvehicles;definestheboundariesofthehazardousareasinsidethefuelingstation;andgovernstheuseofmultiplefuelsinonelocation.

NFPA70/NEC DefinestheelectricalclassificationofthehazardousareaswithinaCNGstation

OSHAFederalandState

RegulatesoccupationalsafetyandhealthintheworkenvironmentCAL-OSHATitle8Article7UnfiredPressureVesselCodeforsafetyforpressureVessels(CNGstoragecontainers)

SAE-SocietyofAutomotiveEngineers

SAEJ1616establishesrecommendedpracticesforfuelqualityandwatercontent

UBCUniformBuildingCode(localjurisdiction)

RegulatesstructuresthatcontainCNGfuelingequipment.§ SeismicZone4—forfootings,foundingandsoilfordryer,compressorand

storagevessels§ UBCmustmeetwindrequirementsupto70milesperhourfordryer,

compressorandstoragevesselsUFC-UniformFireCode Somelocalitiesusethiscode;oftencontainsNFPA52withinit

UPC-UniformPlumbingCode GovernstheplumbingcomponentsofCNGstations

NISTNationalInstituteforStandards&Testing

EstablishestheunitofmeasurementforcustodytransferofCNGfromtheretailertothecustomer

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-32

ULUnderwritersLab

Testscomponentsandpublisheslistsregardingcompliance

Source:PermittingCNGandLNGStations:BestPracticesGuideforHostSitesandLocalPermittingAuthorities.PreparedbyCleanFuelConnection,Inc.

CNGStationCertificationbyaNationalRecognizedTestLaboratory:IntheprocessofpermittingandapprovingCNGstations,localbuildingofficialswillneedtoconsultaNationallyRecognizedTestLaboratory(NRTL).AlthoughthemostwidelyrecognizedNRTLisUnderwriters’Laboratory(UL),thereareatleastadozenNRTLsthatmaybeacceptedbylocaljurisdictions.CNGstationsarenotULlistedasacomprehensiveunit,rathertheindividualelectricalcomponentsareULlisted.ThisreflectstherealitythatCNGstationsareindividuallydesignedaccordingtospecificcustomerapplicationsandsiteconditions,suchthatnotwostationsareexactlyalike.ResponsibilityforCNGcomponenttestingandcertificationisdistributedperthetableabove,suchthatnooneagencyisequippedtocertifyallnaturalgasequipmentcomponents.Somelocaljurisdictionswillrequirefieldcertificationofinstalledsystems.Inthiscaseanapprovedtestlabwillvisitthesitetoconfirmthatallcomponentsandtheirassemblymeettheapplicantlistingstandards.Otheragenciesacceptwrittenreportsoftestingandlistingofcomponentsbyindependentlaboratories.

5.15.OverviewofNationwideNaturalGasFuelingInfrastructure:Thereareapproximately1,300publicandprivateCNGstationslocatedintheUnitedStates--vs.over120,000retailgasstations.AccordingtotheCaliforniaNaturalGasVehicleCoalition(whosedataiscitedbytheCaliforniaEnergyCommission),CalifornialeadstheUnitedStatesinthenumberofCNGandLNGfuelingstations,withmorethan500combined(publicorprivate)CNGstationsandroughly45LNGstations.12AccordingtotheU.S.DOE’sAlternativeFuelDataCenter,ofthistotal,thereareabout140publicCNGstationsand14publicLNGstationsinthestate.Consumersinmostareascanalsopurchaseaslow-fillsystemforat-home,overnightfueling,althoughnodataisreadilyavailableonslow-fillresidentialdeployment.Nationally,approximatelyhalfofallCNGstationsareforprivatefleetuse.Thus,theratioofCNGtogasolinestationsonanationalbasisisapproximately1CNGstationtoevery100retailgasolinestations--countingbothpublicandprivatestations,or1toevery200countingjustpublicstations.

Duringtheearly1990sthecountry’sCNGrefuelinginfrastructureexperiencedaperiodofgrowth,largelydrivenbythealternativefuelvehiclemandatesoftheEnergyPolicyAct,whichalsoboostedbiofuelproduction,asdiscussedinChapter4ofthisPlan.Followingapeakin1997,nationalCNGrefuelinginfrastructuredeclinedforapproximatelyadecade,whiletrendingupwardsagainsince2006.CNGstationsarealsointheearlystagesofdevelopmentinCanada,whichcurrentlyreports56stationswithpublicaccess.TofueltheprojectedmoderateNGVsalesgrowth,theenergyconsultingfirmNavigantexpectstherewillbeabout2,100to2,200NGVfuelingstationsopenintheU.S.andCanadacombinedin2024,upfromabout1,500today.Globally,salesofNGVsareprojectedtogrowfrom2.3millionunitsannuallyin2014to3.9millionunitsin2024,whichshouldbringadditionalmodelstoNorthAmerica.13

NationalNGVStrategy:Thefirstmajornationalstrategytoboostnaturalgasuseinthetransportationsectorwasdevelopedbyanindustry-ledeffortknownastheNGVCoalition--whichpublishedthefirst122015-16InvestmentPlanUpdatefortheAlternativeandRenewableFuelandVehicleTechnologyProgram,CaliforniaEnergyCommission,May2015,p.49.http://www.energy.ca.gov/2014publications/CEC-600-2014-009/CEC-600-2014-009-CMF.pdf13http://ngvtoday.org/2015/02/04/growth-in-north-american-ngv-sales-projected-for-coming-decade/

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-33

NaturalGasVehicle(NGV)IndustrialStrategyin1995.ThiscoalitionhelpedincreasethedemandfornaturalgasinthetransportationsectorbyfocusingonincreasingawarenessandadoptionofNGVsbytransitagencies,deliveryandrefuseservices,andothermedium-andheavy-dutytruckfleetswithhighfuelusage.Between1997and2009,annualdemandfornaturalgasfuelsgrewbythreefoldto3.2billioncubicfeet,or27.7milliongasolinegallonequivalent(GGE).TheNGVStrategydocumentestimatesthattheU.S.willrequirebetween12,000and24,000CNGstations--equivalentto10to20percentoftraditionalliquidfueloutlets--tomakeCNGcompetitiveintermsofpublicaccessforallvehiclesegments.

GrowthinNGVStations:RecentgrowthinCNGandLNGfuelingstationshasbeensomewhatuneven,withadipbetween1998and2008,butanoverallupwardtrendisongoingsince2009,illustratedinthechartbelow.

Source:USDepartmentofEnergy,AlternativeFuelsDataCenter(AFDC).http://analysis.fc-gi.com/natural-gas-vehicles/cng-vehicle-rise-spurs-filling-station-projects5.16.CaliforniaNaturalGasFuelingInfrastructure:AsinthecaseofotherAlternativeFuelVehicles(AFVs),theoverallNGVdeploymentoutlookiscloudedinpartbythe“chickenoregg”dilemmathatinadequatefuelinginfrastructureislimitingconsumerconfidenceinNGVs,whilethelimitedquantityofNGVsaleslimitstheeconomicinventiveforfuelsupplierstoprovidemoreretailfuelingoutlets.IntheCaliforniacontext,thechartbelowfromtheDOEAlternativeFuelDataCenterreportsthatthereare192CNGstationsand61LNGstationsintheplanningphaseinCalifornia.TheAFDCdatadoesnotbreakoutplannedstationsbywhethertheywillbepublicorprivateaccess.However,ifnationalaverageshold,approximately50%ofthesecouldbepubliclyaccessible.Plannedstationsarestationsthathavebeeneither:1)publiclyannounced;2)areinpermitting;or3)areunderconstruction.Thelistalsoincludesstationswhereinstallationoffuelinginfrastructurehasbeencompletedbutthestationshaveyettobegindispensingfuel.NotethatinthecaseofLNGstations,installationoffuelinginfrastructurehas

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-34

beencompletedatmanyoftheLNGstationsreportedasplannedintheAFDCdatabase,butthesestationshavenotyetbegundispensingLNGpendingsufficientdemandfromcustomerstojustifyopening.

Source:NGVToday,July2015.http://ngvtoday.org/2015/07/23/number-of-planned-cng-and-lng-stations-8/5.17.MontereyBayAreaandCentralCoastNaturalGasFuelingInfrastructure:CNGfuelinginfrastructureintheMontereyandCentralCoastregionsisrelativelymodestcomparedtoeithertheBayAreaandtheSouthCoast,wherethereisamuchlargerconcentrationofCNGfleetvehicles,particularlyinpublicagencies.MontereyCountyhastwoCNGstations,oneinSantaCruz,theotherinSalinas(perthemapbelow).TherearenoLiquefiedNaturalGasstationsineithercounty,andthereisoneLiquefiedPetroleumGas(Propane)stationintheRoyalOaksareaofSantaCruzCounty.

CNGStationsintheMontereyBayArea

Source:AlternativeFuelDataCenterFuelLocatorwebsite.http://www.afdc.energy.gov/locator/stations

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-35

CentralCoastCNGStations:TheCentralCoastcurrentlyhassixCNGStationsinoperationaccordingtotheDOEAFDCwebsite(seemapbelow),locatedinPasoRobles,SantaMaria,SanLuisObispo,SantaBarbara,Oxnard,andThousandOaks.

CNGStationsintheCentralCoast

Source:AlternativeFuelDataCenterFuelLocatorwebsite.http://www.afdc.energy.gov/locator/stationsThereareeightLiquefiedPetroleumGas(Propane)fuelinglocationsintheCentralCoast,withseveralforprivatefleetuseonly(includingtheU-HaulcentersinSantaBarbara,Ventura,andOxnard.)LPGlocationsareinPasoRobles,SanLuisObispo,SantaMaria(twolocations),SantaBarbara,Ventura,Oxnard,andSantaPaula.5.18.CaliforniaEnergyCommissionSupportforNGVFuelingInfrastructure:Asnotedabove,theCEChasprovidedsupportforbothnaturalgasvehiclepurchasesaswellasnaturalgasfuelinginfrastructure.However,the$5millioninsupportfornaturalgasfuelinginfrastructurein2015-16ismodestwhencomparedtovehicleincentivesandCECsupportforAFVfuelinginfrastructureforhydrogenandelectricvehicles,andbiofuels.ThechartbelowindicatesrelativeCECinvestmentsinAFVinfrastructure.

CECFY2015-2016FundingforAlternativeFuelInfrastructure

ElectricCharging $17Million Increasedfrom$15millioninFY2014-2015

HydrogenFueling $20Million § NofundingallocationchangerelativetoFY2014-2015

NaturalGasFueling $5Million § Increasedfrom$1.5millioninFY2014-2015totargetdisadvantagedcommunitiesandapplications(suchasschoolbusesandmunicipalfleets)whereZEVsarenotyetasavailableorpractical.

TOTAL § $42Million

Notably,theemphasisonvehiclesratherthanfuelinginfrastructurehasbeensupportedbymanynaturalgasstakeholderorganizations,whichbelievethatincreasedvehicledeploymentisthebetter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-36

strategytodriveoverallNGVecosystemgrowthvs.adominantemphasisonexpandedfueling.Withinrecentfuelinginfrastructuresolicitations,theCEChasprioritizedpublicagenciesandschooldistrictsinparticular.TheseagenciesarestrongcandidatesforNGVadoptionduetotheirfleetvehicledutycycles,buttheyoftendonothaveaccesstothecapitalforfuelinginfrastructureinvestment.

Inthemostrecentsolicitationforproposals,CECinfrastructurefundingapplicantswerepermittedtorequestupto$300,000forstationsdispensingCNGand$600,000forstationsdispensingLNG(duetothehighercostsofsuchstations).Asthesenumbersindicate,theCECiswillingtoprovidesubstantialportionofdevelopmentcostsdependingontheexistingstationinfrastructure,compressorsize,storagesize,anddispensingcapabilities.AccordingtoCECdata,totalcostsfortheseprojectsrangedfrom$500,000forsmallerCNG-onlystationstoseveralmilliondollarsforlargecombinedLNG-CNGfuelingstations.

SincethebeginningofAB118programfunding,theEnergyCommissionhasprovidedatotalof$17.5millionfor62naturalgasfuelingstations,manyofwhichhavebeenawardedtopublicentities.Inthemostrecentsolicitation(PON-12-605),ofthe18successfulapplicants,6wereschooldistricts,5weremunicipalities,and4weremunicipalsolidwasteentities.Thisemphasisonpublicentitieshasbeenre-affirmedforthe2015-16InvestmentPlan.

CECNaturalGasFuelingInfrastructureAwards(PON-12-605)

ApplicantTypeProjectsAwardedAmong

QualifyingProposals CECFunding(inmillions)

SchoolDistrict 6outof6 $1.8

Municipality 4outof4 $1.2

FuelVendor 2outof2 $0.4

MunicipalSolidWaste 5outof7 $2.0

Utility 1outof3 $0.3

Transit 0outof1 -

Towing 0outof1 -

AirDistrict/JointPowerAuthority 0outof2 -

TOTAL 18outof26 $5.7

Source:CaliforniaEnergyCommission,2015-16InvestmentPlan

TheEnergyCommissionhasalsosupportedprojectstoimprovethecost-effectivenessandefficiencyofCNGfuelingstations.In2014,theCommissionreleaseditsPublicInterestEnergyResearchNaturalGasprogramsolicitationPON-14-502,whichofferedawardsofupto$400,000forenhancingstationperformance.Moreinformationisavailableathttp://www.energy.ca.gov/contracts/PON-14-502/.

ArangeofadditionalstrategiesforenhancingbothvehicleandfuelingsystemperformanceandenvironmentalattributesaredescribedintheCommission’sNaturalGasVehicleResearchRoadmap–whichdescribesthestrategicresearch,development,demonstration,anddeploymentactionsneededtoenhancetheviabilityoftheNGVmarketinCalifornia.Inadditiontosupportingfuelinginfrastructuretechnology,theCECalsoseekstopromoteincreasedproductionofbiomethanetoachievealowercarbonintensityfornaturalgasfuels,andtopromoteotheradvancedvehicletechnologies(suchaslow-NOxenginesorhybrid-drivetechnology)tofurtherloweremissions.SupportforbiomethanedevelopmentisderivedfromadifferentprogrambudgetwithintheCECandwillbediscussedinmore

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-37

detailinthenaturalgasfuelproductionpathwayssectionofthisreport.

CECPrioritiesforFutureDevelopmentandDeploymentofEnhancedNaturalGasTechnology:KeyprioritiesidentifiedintheCEC’sNaturalGasVehicleResearchRoadmapincludethefollowing:

§ EnhancedR&Dforadvancednaturalgasenginesacrossabroaderrangeofenginesizes,suitableformoreapplications.Theresultsofresearchinvestmentstodatehaveyieldednaturalgasenginesonthemarketthatcompetewellwithdieselenginesintheheavy-dutysector.Additionalfundingisneededtobroadentheselectionofenginesizes.

§ Increasedsupportforfielddemonstrationwithfleetstoacceleratemarketpenetrationandtobetterunderstandfleetdecision-making.

§ Low-NOxEngines:Californiafaceschallengingrequirementsforreducingcriteriaairpollutantsby2023and2032.Furtherdevelopmentoflow-NOxengines,bothforNGVsandconventionalvehicles,isneededtoachievethesegoalswherezero-emissiontechnologiesarenotfeasible.

FuturesolicitationsarelikelytoprovideNGVstakeholderswithopportunitiestoaddresstheseprioritiesthroughcollaborativedevelopmentanddeploymentprojectsthatbringtogetherindustrypartners,publicagencies,fleets,andresearchinstitutions.

5.19.ThePolicyBasisforNaturalGasVehicleandFuelingInfrastructureDevelopmentinCalifornia:NaturalgasvehicleandfuelpromotioninCaliforniahasbeensupportedatthepolicylevelbyseveralkeyelementsofstatelegislationandexecutiveorders,someofwhichapplytootheralternativefuelsaswell.AssemblyBill(AB)1007(Pavley,Chapter371,Statutesof2005)directstheCaliforniaEnergyCommissionandtheCaliforniaAirResourcesBoardto“developandadoptastateplantoincreasetheuseofalternativetransportationfuels”--whicharedefinedtoincludenaturalgas.InparalleltoAB1007,theLow-CarbonFuelStandard(LCFS)--initiatedunderExecutiveOrderS-1-07--callsforareductionofatleast10%inthecarbonintensityofCalifornia’stransportationfuelsby2020.AB118(Núñez)establishedtheAlternativeandRenewableFuelandVehicleTechnologyProgramtoprovidethenecessaryresourcestoimplementtheStateAlternativeFuelsPlan.AB118specificallyrequiresthatalternativevehicleandfueltechnologydeploymentandcommercializationshouldemphasizesupportforfuelsthat“leadtosustainablefeedstocks.”ThepolicyanalysisanddebateaboutdefinitionsoffeedstocksustainabilityinrelationshiptoCNGanddiesel(andotherfuelpathways)areongoingandwillinfluencefundinggoingforward.

In2013,inresponsetothegrowingsupplyanddemandfornaturalgas,theCaliforniaLegislaturepassedAssemblyBill1257(Bocanegra,Statutesof2013,Chapter749),alsoreferredtoastheNaturalGasAct.ThislawtaskstheEnergyCommissionwithdevelopingareportto“identifystrategiestomaximizethebenefitsobtainedfromnaturalgas,includingbiomethane...helpingthestaterealizetheenvironmentalcostsandbenefitsaffordedbynaturalgas.”ThefirstofthesereportswasreleasedinOctober2015andwillbeupdatedeveryfouryearsthereafter.ThereportreaffirmscurrentstatepolicyonNaturalGasVehicles,citingopportunitiesforimprovedcriteriapollutantsbutlimitedopportunityforGHGbenefitswithfossilbasedNaturalGas.However,thereportdrawsattentiontoemergingopportunitiesforincreasingbiomethaneproduction,andcitestheneedforadditionalresearchto:

§ SupporttheARB’sLow-CarbonFuelStandardIntensityValue§ Expandnaturalgasandbiomethanefuelinginfrastructure§ Understandmethaneleakagefrominfrastructure§ DevelopanddemonstratefunctionalityoflargeNGengines

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-38

§ BetterquantifytheimpactsofNGV’sontheenvironment.

TheCEC2016-17InvestmentPlandescribesapotential“compliancescenario”forachievingthe2020goalofreducingGHGemissionsby10percent–whichwouldinvolveasubstantialincreaseintheproductionofbiomethane–aswellasasubstantialincreaseinthesaleofNGVs(orretrofittednaturalgasengines).Thecompliancescenariowouldrequireincreasingtheutilizationofnaturalgasintransportationto600million-1,200millionDieselGallonsEquivalent(DGE),with250million-500millionDGEofthiscomingfrombiomethane.Bycontrast,currentdemandfornaturalgasinthetransportationsectoriscloserto100millionDGEperyear.14However,thenaturalgasstrategyoftheCaliforniaAirResourceBoardandtheCECmaybemodifiedbasedonreviseddatadevelopedinthetransitionfromtheairemissionsanalysismodelknownasCA-GREET1.8b,toCA-GREET2.0–whichhasestablishednewcarbonintensityvaluesforbothnaturalgasandotherfueltypes.(CA-GREETistheacronymforCaliforniaGreenhouseGases,RegulatedEmissions,andEnergyUseinTransportation.ThismodelwasoriginallydevelopedbytheArgonneNationalLaboratories,andprovidesastandardreferenceforcarbonintensityacrossthefull“welltowheels”fuelcycle.)TheongoingshiftsinscientificunderstandingandregulatoryagencydeterminationsofNaturalGasenvironmentalimpactsarediscussedindepthinAppendix1.5.20.OverviewofNaturalGasEmissionsandGHGImpacts:Significantanalysisisongoingbygovernmentagenciesandotherscientificauthoritiesontheenvironmentalattributesofnaturalgasasatransportationfuel.Theseassessmentsaretypicallydevelopedaspartofbroaderanalysesoftheentirenaturalgasfuelsupplychain–andinacontextinwhichotherfuelpathwaysarelikewiseassessedonawell-to-wheelsbasis.ForCaliforniastakeholders,themostimportantmodelforunderstandingemissionsimpactsacrossallfueltypesisCA-GREETmodel,whichwasformallyadoptedinitsversion2formbyCARBinSeptember2015.KnownasCA-GREET2.0–thismodelprovidestheCarbonIntensity(CI)valuesusedtoestablishrequirementsandcreditvaluesundertheLowCarbonFuelStandard(LCFS),andguidesCaliforniapolicymakersinestablishingtransportation,energy,andclimateregulations,programs,andfunding.

ItshouldbeemphasizedthattheCA-GREETassessmentsofcarbonintensityarebynomeansstatic.Asillustratedinthetablebelow,significantvariationsinassessmentsoffuelimpactsareevidentbetweentheCA-GREET1.8bmodelandCA-GREET2.0.Thesechangesmaycontinueandevenaccelerateinfutureyearsbasedontheresultsofimportantresearchandpolicyactionsintwokeyareas:

§ ongoingassessmentofthemethaneleakagerateacrossthenaturalgasfuelsupplychain(andtheimpactofongoingeffortstoreduceleakagerates

§ thetimeframeusedforanalysisoftheGlobalWarmingPotentialofmethaneimpacts,whichvaryinintensityacrossthedecayperiodofmethaneintheatmosphere.

Thetimeframeusedforanalysisofglobalwarmingimpact–typicallyeither20yearsor100years–hasaverystrongimpactonassessmentsoffossil-basednaturalgas,andthuscanstronglyinfluencethepolicyactionsdeemedappropriaterelativetonaturalgasfuelandvehicledevelopment.AbriefoverviewofcurrentinformationonmethaneleakageratesandGlobalWarmingPotentialwillfollowtheGREETchartbelow.AdditionalinformationonthiskeyissueisprovidedinAppendix1toinformpolicymakersandthepubliconnewscientificfindingsandassessmenttrendsthatarelikelytoimpactfuturepolicychoicesrelativetonaturalgas.

142015-16InvestmentPlanUpdatefortheAlternativeandRenewableFuelandVehicleTechnologyProgram,CEC,May2015,p.57.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-39

Low-Carbon Fuel Standard Carbon Intensity Values per the CA-GREET Model15

Fuel Source CA-GREET 1.8b 96

(Grams CO2-equivalent per megajoule, adjusted to baseline-

fuel equivalent using EER)

CA-GREET 2.0 (Grams CO2-equivalent per

megajoule, adjusted to baseline- fuel equivalent using EER)

Ultra-Low-Sulfur Diesel 98 102

California Reformulated Gasoline 99 98

North American Natural Gas (CNG) 76 87

North American Natural Gas (LNG) 80 94

Landfill Gas (CNG) 13 20

WWTP Sludge (CNG) 15 9 or 34

Biomethane Derived From High- Solids Anaerobic Digestion of Food and Green Wastes (CNG)

-14 -25

Source: California ARB. Note that the units in the table are adjusted to megajoule (MJ) of baseline fuel, by dividing the alternative fuel CI by its Energy Economy Ratio (EER). The EER for diesel and gasoline is 1. The EER for CNG and LNG used in a spark ignition engine is 0.9. See the CA-GREET website of CARB at http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm SummaryoftheImpactofMethaneLeakageRatesonClimateImpactAssessmentofNaturalGas:Fossilfuelbasednaturalgasiscomprisedofapproximately87%methane,withsomevariationsdependingonthesource.Andmethaneisahighlypotentgreenhousegas.However,akeyfactorindeterminingtheoverallclimateimpactofmethane,intermsofitsratedCarbonIntensity(CI)value,isnotonlytomeasurenaturalgasuse,butalsotodeterminethemethaneleakageratesintheentirenaturalgasfuelsupplychainthatshouldproperlybeassignedtoNaturalGasfromanassessmentperspective.Thissupplychainincludespre-production,production,processing,anddelivery.Allstakeholdersagreethatsomemethaneleakageoccursthroughoutthesystem,andthatdatalimitationsonmethaneleakageisacauseforcautionregardingcurrentmodelsforassessingtheCarbonIntensity(CI)ofnaturalgas,andthusitsroleintheglobalwarmingcrisis.Accordingly,theEPA’sofficiallydefinedleakagerate(andthustheCarbonIntensityvalueofNaturalGas)isnowundergoingpotentiallysignificantrevisionbytheEPAandotherscientificresearchersandinstitutions.

ThecurrentlyutilizedmethaneemissionsvaluesusedintheGREETmodelareobtaineddirectlyfromtheUSEnvironmentalProtectionAgency’s(EPA)GreenhouseGasInventory(GHGI),whichprovideanationalaveragemethaneleakageacrossthefuelsupplychain.However,manyscientistsandresearchinstitutionshavestronglycritiquedtheEPAmethod.ThishasledtoanewinitiativewithinEPAtoreassesstheexistingmethodologybehindtheleakageratecalculation--andtorecommendnewpoliciestomitigatemethaneleakage.Inbrief,criticismsofthecurrentmethaneleakageassessmentmethodologyincludethesefactors:

§ DataonleakageratesisderivedentirelyfromvoluntaryparticipantsintheEPA’sGasStarcomplianceprogram.IndependentassessmentbytheEnvironmentalDefenseFundandothersdemonstratethatthesemarketactorshavebetterrecordsonmethaneleakagethanothers

15CARBnotesinits2015AB1251FinalReportthatthistableisintendedtoillustratetheexpectedordinalrankingofvariousfuelCIs.UndertheadoptedLCFSregulation(adoptedSeptember25,2015,andpendingapproval),alternativefuelproviderswillsubmitdataspecifictoeachoperationandsupplychaintodeterminetheiractualCI,whichmayvaryslightlydependingonthefuelpathway.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-40

excludedfromtheinventory.Onlysixfirms(outof30inthevoluntaryprogramandhundredsinthemarketplace)actuallyallowedEPAonsitetomakevalidatedmeasurements.

§ DataonmethaneleaksfromthreemillionabandonedoilandgaswellsisnotincludedintheEPAanalysis.

§ DatafromvehicleandrefuelingstationleakagearealsoabsentintheEPAinventory.§ Anauthoritativemeta-analysisof20yearsofstudiespublishedinScienceinFebruary2014

indicatesthattherealleakagerateiscloserto3%-nearlytripletheEPAestimate.Thissignificantlyshiftsmethanecalculationstobesubstantiallylessfavorabletosubstitutingnaturalgasforpetroleumdiesel.16

Giventhepossibilityofadoublingortriplingofthescientificallyvalidatedmethaneleakagerate,anditsimpactonnaturalgasutilization,policymakers,industrystakeholders,andcitizensshouldbeawareoftheunderlyingissuesdrivingthisre-assessment.Inadditiontothemethaneleakageratecontroversy,thereisanequallyimportantdebateabouttheappropriatetimeframethatshouldbeusedtoassesstheglobalwarmingpotential(GWP)ofmethane.

TheImportanceofAssessmentTimeframesforDeterminingMethane’sImpactonGlobalWarming:A100yearanalytictimeframehascustomarilybeenusedinmanyanalyticmodelstoassesstheGlobalWarmingPotential(GWP)ofmethaneandothergreenhousegases,andthis100yeartimeframeislikewiseusedfortheGREETanalysis.However,manyscientistsandpolicymakersmakeacompellingcasethatmethaneandotherGHGsshouldbeevaluatedfortheirimpactwithina20yeartimeframeratherthanthecurrentlyused100yeartimeframe.Thisisduetothecatalyticrolethatmethaneisexpectedtoplayintheimminenttriggeringofclimatic“tippingpoints”withinthetwentyyear2015-2035timeframe.Whilemethaneaccountsforonly14percentofemissionsworldwideasmeasuredbyvolume,methanetrapsfarmoreheatmoleculeformoleculethancarbondioxide.Specifically,thelatestGlobalWarmingPotentialdataacceptedbytheUNIntergovernmentalPanelonClimateChange(UNIPCC)indicatesthatanymethanemoleculereleasedtodayismorethan100timesmoreheat-trappingthanamoleculeofcarbondioxidewhenassessedonafiveyearbasis,approximately86timesmorepotentthancarbondioxidewhen“amortized”overa20yeartimeframe,and34timesmorepotentinthe100yeartimeframe.Tothisdate,EPAandCARBhaveusedthe100yearGlobalWarmingPotentialtimeframefortheiranalysisofnaturalgasimpacts,butthe20yeartimeframeformethaneyieldssignificantlydifferentvaluesfornaturalgasrelatedclimateimpactscomparedwithotherfuels.Therearecompellingreasonsforpayingmoreattentiontoclimateimpactsinthenear-term,accordingtomanyscientistsandresearchinstitutions(notablyincludingJamesHansen,theformerChiefNASAClimateScientist,whoiscreditedwithbringingglobalwarmingdangerstotheattentionofpolicy-makersinthe1980’s.)Thereasonistherapidlyaccumulatingevidence--presentedbytheUNIntergovernmentalPanelonClimateChangeandotherauthoritativeagencies--thattheearthisincriticaldangerofenteringtherunawaystageofclimatechangewithinthenexttwentyyears,leadingto5degreescentigradeormoreofwarmingthiscentury.Thislevelofwarmingwouldradicallydestabilizeanddegradethenaturalsystemsonwhichhumanlifedepends--leadingtosuchimpactsasgreaterthansixfeetofsealevelrisethis

16A.R.Brandt,et.al,METHANELEAKSFROMNORTHAMERICANNATURALGASSYSTEMS;Science14February2014:Vol.343no.6172pp.733-735http://www.sciencemag.org/content/343/6172/733.summary?sid=aa20376c-626b-42af-9f93-2475e7990ac4andMarkGolden,“America’sNaturalGasSystemisLeakyandinNeedofaFix,”inStanfordReport,Feb.2014,http://news.stanford.edu/news/2014/february/methane-leaky-gas-021314.html

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-41

century,acceleratedreleaseofsub-Arcticmethane,extremedroughtsandstorms,andfoodinsecurity.17Asaresultofthisemergingscienceregardingthenear-termdangersofexceedingclimatic“tippingpoints,”andthedisproportionateroleofmethaneinclimatedestabilization,thereisastrongrationaletoshiftfroma100yearto20yeartimeframesasthedominantunitofanalysisfortheGlobalWarmingPotentialofallGHGs,includingmethane.

Tofacilitateabroaderpolicyassessmentthatincludesboth20-yearand100-yearimpacts,Appendix1ofthisdocumentincludesadditionalinformationonGlobalWarmingPotentialtimeframesandmethaneleakagerates–andtheimpactofemergingdataonpolicychoicesfornaturalgasapplications.ThisappendixhasbeeninformedinpartbyanimportantnewreportfromtheUCDavisInstituteforTransportationStudies-SustainableTransportationEnergyPathwaysProgram(NextSTEPS).ThisUCDavisreportincludesfurthermeta-analysisofthemethaneissuethattriggeredtherecentEPAandCARBre-assessmentofGreenhouseGasInventoryfactorsandtheCA-GREETmodel,respectively.Entitled“TheCarbonIntensityofNGVC8Trucks,”thisreportwasreleasedinMarch2015byProfessorRosaDominguez-Faus,Ph.D.,whohasproducedotherauthoritativereportsonnaturalgasandalternativefuelchoicesforstateagencies.

InadditiontoprovidingmoredetailonGWPandmethane,theUCDavisReport(alongwithothermaterialsinAppendix1)discussesthedevelopmentofanappropriateriskmanagementapproachforevaluatingairemissionsandclimateimpactsconsistentwithotherriskmanagementnormsinthepublicsector,asusedininfrastructureplanning,forexample.PolicymakersandinterestedcitizensareencouragedtomakeuseoftheseresourcesintheAppendixtofullyunderstandnaturalgastransportationoptionsinthebroadercontextoftheclimatecrisisandrelatedriskmanagementimperatives. 5.21.OutlookforEnhancedEmissionsPerformanceofNGVsandNewCARBMitigationMeasures:EmergingdataandstatementsfromtheCalifornaiARBsuggestthatnaturalgasvehiclespoweredbyfossilfuels(asopposedtobiomethane)maynothaveaclearadvantagefromaclimateperspective.However,theycanreducecriteriapollutionemissionsrelativetoexistingdieselvehicles.Thatsaid,therelativevirtuesofnaturalgasanddieselarenotatallstatic,asbothNGVanddieseltechnology(aswellasrelevantlow-carbonbiofuelpathwaysforbothvehicletypes)areevolvingveryrapidly.StricterregulatorystandardsarealsopushingbothNGVsanddieselmanufacturerstowardsignificantreductionsinharmfulemissions.InDecember2013,forexample,theARBadoptedanoptionalreducedNOxemissionstandardforheavy-dutyvehiclesthatincentivizesenginemanufacturerstofurtherreduceemissions.SuchstandardsincludeNOxlevelsthatare50,75,and90percentlowerthanthecurrent0.20gramsperbrakehorsepower-houremissionstandard.Thisvoluntarystandardmayhelppositionnaturalgasenginesasaprimaryinitialtechnologyformeetingthemoreaggressive75percentand90percentNOxreductiontargetsexpectedtobedeployedinthefuture.

Dependingontheabilityofnaturalgasenginemanufacturerstodemonstratesuchreductions,andthecommercialavailabilityofproductsinrelevantapplications,theCECindicatesthatemergingNGVtechnologycouldsupportscaleddeploymentofnaturalgastrucksinthe2016-17timeframeandbeyond.Scaleddeploymentofverylow-carbonNGVtruckscouldinturnmitigatecriteriaair17Numerousstudiesaddressthepossibilitythatkeytippingpointsinclimatechangeareimminentoralreadyreached,withimportantpolicyconsequencesforassessingglobalwarmingpotentialtimeframes.ArepresentativeoverviewofthisliteratureistheSeptember2013reportbyDavidSprattentitled“IsClimateChangeAlreadyDangerous?”availableathttp://www.climatecodered.org/p/is-climate-change-already-dangerous.html

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-42

pollutantsinareasmostimpactedbycurrentdieseltechnologies.Whiletherearenotyetvehiclescurrentlyavailablecommerciallyatscalewiththeseemissionsattributes(asofearly2016),anannouncednear-zeroNOxnaturalgasengineproducedbyCumminsWestportfeaturessubstantiallyreducedmethaneemissions,aswellasreducedcriteriapollutants.Asprofiledbelow,thisenginecouldgreatlystrengthenthecasefornaturalgasasacompetitortodieselrelativetobotheconomicandenvironmentalcriteria.

EmergingNaturalGasEnginesWithNear-ZeroNOxandReducedMethane:InitsIntegratedEnergyPolicyReport,theCECindicatedthat“inSeptember2015,CumminsWestportInnovations[CWI]certifieditsfirstnear-zeroenginesforbuses,wastehaulers,andmedium-dutytrucks.Thisenginewillreduceoxidesofnitrogen(NOx)emissionsbymorethan90percentfromthecurrentstandardandwillplayanimportantroleinimprovingairqualityforCalifornians.”18

ThisunusuallyprominentannouncementbytheCEChighlightsthefactthatthisengineisthefirstmid-rangeengineinNorthAmericatoreceiveemissioncertificationsfromboththeEPAandCARBthatmeetthe0.02g/bhp-hr(gramsperbrake-horsepowerperhour)NearZeroNOxEmissionsstandardsformedium-dutytruck,urbanbus,schoolbus,andrefuseapplications.Theexhaustemissionsofthisengine,knownastheCumminsWestportISLGNZ,willbe90%lowerthanthecurrentEPANOxlimitof0.2g/bhp-hrandalsomeetthe2017EPAgreenhousegasemissionrequirements.TheISLGNZenginemeetstheARBcertificationwellinadvanceofthe2023CaliforniaNearZeroNOxschedule.ARBhasdefinedthecertifiedNearZeroemissionlevelasequivalenttoa100%batterytruckusingelectricityfromamoderncombinedcyclenaturalgaspowerplant(althoughabattery-electrictruckusingthegreenerpowerfromCalifornia’sgridmixwillinturnbesuperiortoeventhisrelativelycleanNGV.)

Inadditiontothe90%reductioninNOx,theISLGNZengineutilizesClosedCrankcaseVentilation(CCV)toreduceenginerelatedmethaneemissionsby70%.Further,thesenear-zerocarbonnaturalgasenginesdonotrequireactiveafter-treatmentsuchasaDieselParticulateFilter(DPF)orSelectiveCatalyticReduction(SCR).SupportforthedevelopmentoftheCumminsWestportenginewasprovidedjointlybytheSouthCoastAirQualityManagementDistrict(SCAQMD),SoCalGasandtheCEC.ProductionoftheISLGNZisexpectedtobegininApril2016.Theenginewillbemadeavailableasa“firstfit”enginewithtransitandrefuseOEMs,andasanenginereplacementforexistingISLGvehicles.PerformanceandefficiencywillmatchthecurrentISLG,withengineratingsfrom250-320horsepower,and660-1,000lb-fttorqueavailable.Maintenanceprocedures,serviceintervals,andwarrantytermsarethesameasthecurrentISLG.19Itishighlyrecommendedthatfleetmanagersbecomefurtheracquaintedwiththisenginetechnologytodetermineifitcanplayaroleinreducingemissionsandenhancingoperatingeconomiesinlocalfleets.

5.22.TheCARBSustainableFreightStrategy:TheCaliforniaAirResourcesBoardhasindicatedthatachievingthestate’s80%carbonreductiongoalswillrequireadramatictransformationacrossthetransportationsysteminCalifornia,andthatdevelopingbothzero-emissionandnear-zeroemissionvehiclesandcleanerfuelpathwaysinthemediumandheavy-dutyvehiclesegmentwillbeessential.TheARBhaslaidouttheirpreliminaryapproachinaplanningdocumentknownastheSustainableFreightStrategy--withagoalofdramaticallyreducingemissionsacrossthestate’sgoodsmovementsystem,includingtruck,rail,andmarinecomponents.Manyoftheelementsofthisstrategy,nowbeginningthe

18AB1251NaturalGasActReport:StrategiestoMaximizetheBenefitsObtainedfromNaturalGasasanEnergySource,CaliforniaEnergyCommission,p.4.19“ISLGNearZeroNaturalGasEngineCertifiedtoNearZero-FirstMidRangeengineinNorthAmericatoreduceNOxemissionsby90%fromEPA2010~”,CumminsWestportInc.PressRelease--October5,2015,http://www.cumminswestport.com/press-releases/2015/isl-g-near-zero-natural-gas-engine-certified-to-near-zero

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-43

earlydeploymentstageatCARB,targetincreasedutilizationofnaturalgasvehiclesandcleaner(biomethane)pathwaysaswellasnewemissionsreductionstrategiesfordieseltrucking.Therangeofmeasuresisdescribedbelow,withNGVrelevantstatepolicymeasureshighlightedinblue,andmeasureswithpotentialforregionalactionhighlightedingreen.

CARBSustainableFreightInitiatives–NGVrelevantactionshighlightedinblue

Actions PolicyDevelopment

PolicyImplementation

TrucksAction1:Developandproposestrategiestoensuredurabilityandin-useperformance.Suchstrategiesmayinclude:§ ReducedexhaustopacitylimitsforPMfilter-equippedtrucks.§ Newcertificationandwarrantyrequirementsforlowin-useemissions.§ Strengthenexistingemissionwarrantyinformationreportingandenablecorrectiveactionbasedonhighwarrantyrepairrates.

§ ClarificationontheState’sauthoritytoinspectheavy-dutywarrantyrepairfacilitiestoensureproperemissionwarrantyrepairsarebeingconducted.

2015-2017 2017+

TrucksAction2:Developandproposeincreasingflexibilityformanufacturerstocertifyadvancedinnovativetruckengineandvehiclesystemsinheavy-dutyapplications.Enablesacceleratedintroductionofnewtechnologiestomarket.

2015

2016

Trucks Action 3: Develop and propose new, stringent CaliforniaPhase 2 GHG requirements to reduce emissions from trucks andtrailers,andprovidefuelsavings.

2016-2017

2018+

TrucksAction4:PetitionU.S.EPAtodeveloplowerNOxstandardsfornewheavy-dutytruckenginesforrulemakingin2018.

2015 --

TrucksAction5:(ifU.S.EPAdoesnotcompleteTrucksAction4):Developand propose California specific standards for new heavy-duty truckenginestoprovidebenefitsabovenationalstandards.

2018

2023+

Allsectors/freighthubs:Collectdata(suchasfacilitylocation,equipment,activity,andproximitytosensitivereceptors)fromseaports,airports,railyards,warehouseanddistributioncenters,truckstops,etc.toidentifyandsupportproposaloffacility-basedapproachand/orsector-specificactionstoreduceemissionsandhealthrisk,aswellasefficiencyimprovements.

2015

2015-2016

DeliveryVans/SmallTrucks:Developproposaltoacceleratepenetrationofzeroemissiontrucksinlastmilefreightdeliveryapplications,withpotentialincentivesupport.

2017

2020

LargeSpark-IgnitionEquipment(forklifts,etc):Developproposaltoestablishpurchaserequirementstosupportbroadscaledeploymentofzeroemissionsequipment.

2016-2018

2020

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-44

TransitBuses:Developproposaltodeploycommerciallyavailablezeroemissionbusesintransit,andotherapplications,beginningwithincentivesforpilotprogramsandexpandingpurchaserequirements,asappropriate,tofurthersupportmarketdevelopmentofzeroemissiontechnologiesintheheavy-dutysectorwithpotentialincentivesupport.

2016

2018

AirportShuttles:Developproposaltodeployzeroemissionairportshuttlestofurthersupportmarketdevelopmentofzeroemissiontechnologiesintheheavy-dutysector,withpotentialincentivesupport.

2017-2018

2020

TransportRefrigerationUnits:Developandproposearegulatoryrequirementtoprohibittheuseoffossil-fueledtransportrefrigerationunitsforcoldstorageinphases,withincentivesupportforinfrastructure.

2016

2020+

Incentiveprograms:Developmodificationstoexistingincentiveprogramstoincreasetheemphasisonandsupportforzeroandnear-zeroequipmentusedinfreightoperations,includingintroductionoftruckenginescertifiedtooptionallow-NOxstandards.

2015-2016

2016-2020

5.23.OpportunitiesforCoordinatedRegionalActiononNGVandLow-CarbonGoodsMovement:MostoftheactionslistedintheCARBSustainableFreightStrategyrequirestatepolicyinterventionornewstateinvestments.However,theproposaltodevelop“facility-basedapproaches”tolow-emissionsandzero-emissionsfreightmovementsuggeststhepotentialforlocalcities,counties,airqualitydistricts,andfreightindustrystakeholderstotakeactionatthelocalandregionallevel.ThedevelopmentofanappropriatelyconstitutedregionalSustainableFreightWorkingGroupwillhelpprepareforandattractanticipatedstateinvestmentinplanningandimplementingtheCARBvisionforlow-carbongoodsmovement.

ThroughtheSustainableFreightWorkingGroup,localandregionalpublicagenciesandfreightstakeholderswouldcooperatefirsttoobtainessentialplanningfunds,andthentocollaborativelydevelopasystematicapproachtoimplementlow-emissionsgoodsmovementstrategies.Thesestrategieswouldlikelyinclude(butnotbelimitedto),developmentoffreighthandlingfacilitiesinsupportoflow-carboninter-regionaltravel,aswellas“greenlastmail”deliverystrategies.Together,theseandothercomplementaryinitiativescouldmaximizetheuseofnear-zerocarbonCNGorlower-carbonLNGClass8vehiclesforlong-distance,heavy-dutytrucking,aswellaszero-emissionsMedium-dutyBattery-ElectricTrucks(BETs)for“lastmile”deliveryroutes(typicallywithinthe100milerangeofcurrentMediumDutye-trucks).Thesestrategieswouldlikelyalsoengagestakeholdersin:

§ Greenfleetprocurementstrategies§ MappinganddeploymentofNGVandelectricfuelinginfrastructurefortrucks§ Innovativestrategiesforcentralizing“greenlastmile”deliverytoreducecongestion.

BoththeMontereyBayArea(viaAMBAG)andtheSouthCoastregion(viatheGatewayCitiesCOG,amongotherstakeholders)providedpreliminaryconceptproposalstoCARBinApril2015toinitiateplanningeffortstodeveloplow-emissionsfreightdepots.20TheproposalfromtheAssociationofMontereyBayAreaGovernments(AMBAG)focusedontheSalinasValleyIntermodalFreightImplementationPlanandtheFreightEnterpriseZoneGuidelinesProject.TheGatewayCitiesCOG/LosAngelesTransportationAuthority(Metro)proposalforaLosAngeles/GatewayFreightTechnology

20Seethe“SustainableFreightPilotProjectIdeas”websiteattheCaliforniaAirResourcesBoardathttp://www.arb.ca.gov/gmp/sfti/pilotprojectsub.htm.RelevantprojectsincludetheSalinasValley

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-45

ProgramhasmanyelementsthatarepotentiallyrelevanttoafuturefreightcorridorlinkingtheBayAreaandLosAngelesthroughMontereyandtheCentralCoast.Inaddition,therearemanyadditionalprojectsunderwaythatcouldprovideamodelforacceleratedcorridorplanningintheMontereytoLosAngelesarea.Forexample,atthethePortofLosAngeles,CalSTARTandotherstakeholdersarejointlyplanningtoloweremissionsontheI-710corridorbetweenthePortofLongBeachanddowntownLosAngeles.Ananalysisoftheseeffortsastheyrelatetolow-andzero-emissionstrucksisprovidedintheI-710ProjectZero-EmissionTruckCommercializationStudyFinalReport21--a2013CalSTARTreporttotheGatewayCitiesCOG.Thisdocumentalsoprovidesusefulbackgroundontheprojectedtimelinesfordeploymentandintegrationofemergingzero-emissionsfreightvehiclesandsystemsthatcouldalsobedeployedonthe101betweenSanFranciscoandLosAngeles.

IntheMontereyandCentralCoastcontext,aseriesofintegratedtrucktransferorinter-modal(rail/truckorrail/truck/marine)facilitiescouldprovidenaturalgasandelectricrefuelinginfrastructureandtrans-shipmentfacilitiestoenablecargointheregiontobedeliveredvialower-emissionsCNGandelectrictrucks--andpotentiallyviaincreasedrailutilization.AninitialeffortofthiskindintheCentralCoastregioncouldcreateacontinuouslow-emissionssustainablefreightcorridorfromSanJosetothePortofLongBeachthroughcooperationwithAMBAGandtheSouthernCaliforniaAssociationofGovernments(SCAG),relevantAirDistrictsandregional/localtransportationauthorities,andindustryandnon-governmentalstakeholders.

ItisanticipatedthatCARBwillcreateacompetitiveRFPprocesstofundsustainablefreightplanningandimplementationproposalsin2016-17.Toprepareforsuchaprocess,oneoftheRecommendedActionsarisingfromthecurrentMontereyAFVReadinessplanningprocessistoinvitekeystakeholderstoconsiderdevelopmentoffundingforaMonterey(orcombinedCentralCoast/Monterey)sustainablegoodsmovementplan.AdditionaldiscussionofthepotentialforaregionalsustainablefreightinitiativeisfoundintheRecommendedActionssectionattheendofthisChapter.5.24.PotentialforBiomethaneDevelopmenttoReduceNGVEmissionsImpacts:AccordingtothemostrecentCARBscopingplanformeetingAB32goals,naturalgasfromtraditionalfossilfuelsourcescannotrepresentasignificantshareofenergyuseby2050ifthestateistomeetitslong-termGHGtargets(80%below1990levelsby2050.)By2050,traditionalusesofoilandnaturalgas,includingtransportationfuels,waterandspaceheating,andindustrialboilersandprocessheating,willneedtobemostly,ifnotfully,decarbonized.However,decarbonizedgaseousfuelscouldhavealonger-termfutureinCaliforniaifbiomethaneproductioncanbescaledup.

BiomethanepossessesthelowestcarbonintensityvaluesestablishedbytheLowCarbonFuelStandard(LCFS)ona“source-to-tank”basis(alsocalled“well-to-tank”.)Notethatthesource-to-tankmethodologydoesNOTincludecombustionimpactsfromfuelburninginthevehicle,typicallyknownas“well-to-wheels.”(Well-to-wheelsimpactscandifferbasedonvehicleandenginetype,whereassource-to-tankdataenablesvalidcomparisonsamongfuelpathwayspriortoutilizationinthevehicle.)Onasource-to-tankbasis,biomethanefromanaerobicdigestionoffoodandgreenwastecanachieveanegativeCO2erating,duetoavoidedmethaneemissionfromorganicmattercomparedtoemissionsimpactswhen

21I-710ProjectZero-EmissionTruckCommercializationStudyFinalReportfortheGatewayCitiesCouncilofGovernmentsandtheLosAngelesCountyMetropolitanTransportationAuthority,CalSTART,2013.http://www.calstart.org/Libraries/I-710_Project/I-710_Project_Zero-Emission_Truck_Commercialization_Study_Final_Report.sflb.ashx

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-46

disposedofinlandfills.Thefollowingtablefromthelatest“Tier2”CARBLowCarbonFuelStandardRegulatoryOrder,providescomparativedataonnaturalgasvs.otherfuelsources.22

Carbon Intensities of Natural Gas vs. Other Fuels on a “Source to Tank” Basis

Fuel Pathway Identifier

Pathway Description Carbon Intensity (gCO2 e/MJ)

Direct Emissions

Land Use or Indirect Effect

Total

CARBOB*

CBOB001

CARBOB - based on the average crude oil supplied to California refineries and average refinery efficiencies

99.78 0 99.78

Diesel* ULSD001 ULSD - based on the average crude oil supplied to California refineries and average California refinery efficiencies

102.01 0 102.01

Com-pressed Natural Gas

CNG005 Biomethane produced from the high-solids (greater than 15 percent total solids) anaerobic digestion of food & green wastes; compressed in CA

-22.93 0 -22.93

CNG020

Biomethane produced from the mesophillic anaerobic digestion of wastewater sludge at a California publicly owned treatment works; on- site, high speed vehicle fueling or injection of fuel into a pipeline for off-site fueling; export to the grid of surplus cogenerated electricity.

7.75 0 7.75

CNG021

Biomethane produced from the mesophillic anaerobic digestion of wastewater sludge at a California publicly owned treatment works; on- site, high speed vehicle fueling or injection of fuel into a pipeline for off-site fueling.

30.92 0 30.92

Electricity ELC002 California grid electricity 105.16 0 105.16

Hydrogen

HYGN001 Compressed H2 from central reforming of NG (includes liquefaction and re-gasification steps) 151.01 0 151.01

HYGN002 Liquid H2 from central reforming of NG 143.51 0 143.51

HYGN003 Compressed H2 from central reforming of NG (no liquefaction and re-gasification steps) 105.65 0 105.65

HYGN004 Compressed H2 from on-site reforming of NG 105.13 0 105.13

HYGN005 Compressed H2 from on-site reforming with renewable feedstocks 88.33 0 88.33

Source:CaliforniaAirResourcesBoard,Low-CarbonFuelStandardFinalRegulatoryOrder2015,Table6:Tier2LookupTableforGasolineandDieselandFuelsthatSubstituteforGasolineandDiesel,p.67,http://www.arb.ca.gov/regact/2015/lcfs2015/lcfsfinalregorder.pdf*CARBOBdesignatesthestandardunitofmeasureforCalifornia“standard”gasoline:theCaliforniaReformulatedGasolineBlendstocksforOxygenateBlending.ThenumbersaboveareadjustedbyEnergyEfficiencyRatio(EER)forgasoline(CARBOB)ordiesel(ULSD)substitute.

Statepolicymakersarenowassessingthelonger-termpotentialforutilizingbiomethaneasaprincipalformofdecarbonizedpipelinegas(alongwithbiogas,hydrogen,andrenewablesyntheticgas)--whichcouldinturnbedistributedthroughexistingpipelinenetworks.Astudyreleasedin2015bytheenvironmentalconsultingfirmEnergy+EnvironmentalEconomics(E3),DecarbonizingPipelineGasto

22Low-CarbonFuelStandardFinalRegulatoryOrder2015,Table6:Tier2LookupTableforGasolineandDieselandFuelsthatSubstituteforGasolineandDiesel,CaliforniaAirResourcesBoard,p.67.http://www.arb.ca.gov/regact/2015/lcfs2015/lcfsfinalregorder.pdf

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-47

HelpMeetCalifornia’s2050GreenhouseGasReductionGoal,examinesthepotentialforgrowthofdecarbonizedpipelinegasfuels.Theterm“decarbonizedgas”referstogaseousfuelswithanet-zero,orverylow,GHGimpact--includingbiogas,hydrogen,andrenewablesyntheticgasesproducedwithlowGHGemissions.“Pipelinegas”referstoanygaseousfueltransportedthroughnaturalgasdistributionpipelines.

TheE3studyassessestwoalternativetechnologyscenariosformeetingthestate’sgoalofreducingGHGto80percentbelow1990levelsby2050.Intheelectrificationscenario,allenergyenduses,totheextentfeasible,areelectrifiedandpoweredbyrenewableelectricity.Inthemixedscenario,bothelectricityanddecarbonizedgasplaykeyrolesby2050.BothscenariosmeetCalifornia’s2020and2050GHGgoals,accountingforconstraintsonenergyresources,conversionefficiency,deliverysystems,andend-usetechnologyadoption.Bycontrast,areferencescenarioreflectslimitedadoptionofalternativefuelsinbothtransportationandelectricitysupplybeyondthepresent(2015)basecase,andclearlydoesnotmeetthe2050GHGtarget.

Source:DecarbonizingPipelineGastoHelpMeetCalifornia’s2050GreenhouseGasReductionGoal,Energy+EnvironmentalEconomics(E3).https://ethree.com/documents/E3_Decarbonizing_Pipeline_01-27-2015.pdfThestudyconcludesthat:1)atechnologypathwayfordecarbonizedgascouldmeetthestate’sGHGreductiongoalsandmaybeeasiertoimplementinsomesectors(notablyheavy-dutytrucking)thanahighelectrificationstrategy;and2)thetotalcostsofthedecarbonizedgasandelectrificationpathwaysarecomparable.Thestudyalsoindicatesthatdecarbonizedgasescancomplementalow-carbonelectrificationstrategyby.

§ Addressingsectorsthataredifficulttoelectrify,suchasprocessheating,heavydutyvehicles,cooking,andexistingspaceandwaterheating.

§ Providinggasusingelectricitywhenrenewablesaregeneratingpower,andthenstoringthegasinthepipelinedistributionnetworkuntilitisneeded

§ Enablingcontinueduseofthestate’sexistinggaspipelinedistributionnetwork,eliminatingtheneedfornewenergydeliveryinfrastructuretomeet2050GHGtargets,suchasdedicatedhydrogenpipelinesoradditionalelectrictransmissionanddistributioncapacity.

Ofcourse,therearemajorhurdlestoovercometobringdecarbonizedgasintoproduction,distribution,anduseatlargecommercialscale.TheE3studymakesitclearthat,unliketheelectrificationpathway,wherekeytechnologiesarealreadyavailable,asignificantlevelofnewR&Deffortwouldbeneededtomakedecarbonizedgasarealityatcommercialscale.Forexample,thelow-carbongaspathway

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-48

presumesthatcarbonsequestrationinthecontextofnaturalgasproductioncanbemadeeconomicallyandtechnicallyviableatlargescale,butthishasnotyetbeendemonstrated.Biomethanepathways,whilepromising,willalsorequireamuchlargerinfrastructureforefficient(andlow-carbon)collectionoforganicwaste,andsoforth.Tofullydevelopthestate’scapacityforlow-carbonnaturalgasproduction,E3identifiesaneedforthefollowingkeyresearch,development,anddemonstration(RD&D)initiatives.

PriorityR&DNeedstoAccelerateLow-CarbonNaturalGasFuelPathwayDevelopment

Source:DecarbonizingPipelineGastoHelpMeetCalifornia’s2050GreenhouseGasReductionGoal,Energy+EnvironmentalEconomics(E3).https://ethree.com/documents/E3_Decarbonizing_Pipeline_01-27-2015.pdf

5.25.BiomethaneDevelopmentOpportunities

BackgroundonBiomethaneProduction:Biomethaneisaverylow-carbonoption(potentiallynegativecarbon)forfuelingnaturalgasvehiclesandforotherusessuchasheatingandpowergeneration.Chemically,biomethaneandfossilnaturalgasareveryclose.Biomethaneproducedfromlandfillgasinitiallyconsistsof55-65%methane,30-35%carbondioxide,andtheremainingbalancebeinghydrogen,nitrogen,andvariousimpurities.Itsheatingvalueisapproximately600BTUpercubicfoot.Bycontrast,naturalgascontainsabout87%methane,withaheatingvalueofapproximately1000BTUpercubicfoot.However,filteringbiomethane(knownas“scrubbing”)removesthecarbondioxideandotherimpurities,raisesBTU,andenablesbiomethanetobeusedinterchangeably(orasanadmixture)withfossilnaturalgas.Productionofbiomethanecanoccurthroughprocessingoforganicmatterinlandfillsorbiogasplants.Bothmethodsutilizeanaerobicdigestion,whichisperformedbytheanaerobicmicrobesthatthriveintheabsenceofoxygen.Thesemicrobesalsoproducecarbondioxidealongwithmethane,thusrequiringscrubbing.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-49

Althoughbiogasplantsproducecarbondioxideandothergreenhousegases,theyaregenerallyconsideredtobenearlycarbon-neutral(orbetter)becausetheycan--dependingoncollectionandprocessingmethods--reducetheamountofmethaneandothergreenhousegasesthatwouldhavebeenreleasedintotheatmosphereiftheorganicmatterwaslefttodecomposenaturally.Asthechartbelowindicates,landfillsaloneareresponsiblefor18%ofmethaneproductionintheU.S.,andarearelativelyeasytargetforreductions(comparedtobovineentericfermentation,forexample.)Thatsaid,somelocalitiesdonotviewbiomethane,heat,orelectricityproductionfromlandfillgasasthemostenvironmentallybeneficialapproachtogreenwaste.

TheCityofSanFranciscoDepartmentofEnvironment,forexample,hasdeterminedthatotherformsofgreenwastereusecanbemorebeneficial.Forexample,separatecollectionoffatsandoilscanbeusedinbiodieselproductionwhileothergreenwastecanbeusedindevelopingcompostforsoilamendments“tuned”formaximumcarbonsequestrationinagriculturalandrangelandapplicationsorurbanforestry.Suchstrategiescouldinprincipleprovideequalorsuperiorcarbonbenefit.However,biogasdevelopmentisgreatlysuperiortouncheckedlandfillemissions.Thebasicprocessofanaerobicdigestioniswell-understood(seethediagrambelow),andtheeconomicscanbeattractivewhereverlandfillcapacityisscarce.

Source:EPAWebsite:OverviewofGreehouseGases:MethaneEmissions,http://www3.epa.gov/climatechange/ghgemissions/gases/ch4.html

BiogasProductionThroughAnaerobicDigestion

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-50

Biogasproductionthroughanerobicdigestionworksbycombiningorganicwasteinafeedstockmixedwithwater,introducingbacteriatofuelthehydrolysisprocess,andthenremovingwater,carbondioxide,andimpurities.

Source:CaliforniaEnergyCommissionwebsite,PresentationbyThomasDamberger,GoldenStateEnergy.http://energy.gov/sites/prod/files/2014/03/f10/renewable_hydrogen_workshop_nov16_damberger.pdf

CountyofSantaBarbaraTajiguasResourceRecoveryProject:TheSantaBarbaraCountyDepartmentofPublicWorks,incollaborationwiththecitiesofSantaBarbara,Goleta,SolvangandBuellton,hasbeenleadinganearlydecade-longefforttodevelopaResourceRecoveryProjectthatwillprocessmunicipalsolidwastecurrentlydisposedattheCountyownedandoperatedTajiguasLandfill.Thisprojectincludesfacilitiesthatwillextractrecyclablesmistakenlysenttothelandfillandanaerobicallydigestorganicmaterialcurrentlyburiedatthelandfill.Theprojectisplannedtoconvertbiogasdirectlytoheatforhomesintheareaandforelectricitysalesbacktothegrid--ratherthantousethebiomethanetopowervehicles.However,theprojectisnoteworthyforitscarbonbenefit,itsindirectlinktotransportation(giventhatthelocalgridpowerselectriccars),andasareplicableprojectthatcouldinthefutureprovideamodelforbiomethaneproductiontofuellow-carbonNGVs.Theprojectisalsopurposedtoincreaserecyclingratesabove80%andprovidearangeofotherbenefitsdescribedbelow.23

TheTajiguasResourceRecoveryProjectisacollaborationoftheSantaBarbaraCountyDepartmentofPublicWorks,andthecitiesofSantaBarbara,Goleta,SolvangandBuellton.

23CountyofSantaBarbaraTajiguasResourceRecoveryProjectwebsite,http://resourcerecoveryproject.com

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-51

ThelengthyTajiguasprojectdevelopmentperiod,whichbeganin2007,hasincludedtwofeasibilitystudies,arequestforproposals,aproposalreviewprocess,andacomprehensivepublicoutreacheffortinvolvingover80presentationstostakeholdersoverthepastfiveyears.ThewinneroftheRFPprocess,whichattractedfourbidders,isateamofentrepreneursknownasMustangRenewablePowerVentures,basedinSanLuisObispoCounty.ThefinalprojectdesignconsistsofanAnaerobicDigestionFacility(ADF)thatwillconvertallorganicsrecoveredfromthewastestreamintodigestateandbiogas.Thedigestatewillbeaerobicallycuredintoacompostproducttobemarketedasasoilamendmentorusedforreclamationprojects,whilethebiogaswillbeconvertedatapowerplantintoelectricityusedtoruntheplantandsellbacktothegrid.AccordingtoEPAformulacalculationstheprojectwillreducethelocalGHGimpactby133,382MTCO2E(MetricTonsCarbonDioxideEquivalent)ayear,equaltoremoving26,153averagepassengervehiclesontheroadannuallyandgenerates1megawatt(net)ofrenewableenergy/year.Thisisaformidableprojectthatatteststothepotentialofbiomethaneproductionpathways.5.26.NGVDeploymentintheMontereyRegion[NGVFleetSurveyDatatobeEnteredHerefromEcologyActionsurveys]

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-52

CumulativeregistrationsofNGVvehiclesintheMontereyregioncanbecomparedagainstcumulativestateregistrationsofNGVsasof2013throughthefollowingchart.

NGVRegistrationsinCalifornia(2013data)

Source:EnergyCommissionstaffanalysisof2013DepartmentofMotorVehiclesvehicleregistrationdatabase,citedinStrategiestoMaximizetheBenefitsObtainedFromNaturalGasasanEnergySource.CaliforniaEnergyCommission.pp.41-42.

5.27.MontereyCNGFleetAdoption:CNGfleetadoptionintheMontereyBayareahasbeenconcentratedinbusfleetsandrefusehaulersandrecyclingproviders.Inparticular,refusehaulersareworkingoninnovativeprojectstouserenewablenaturalgasfromlandfills.Avarietyofmini-casestudiesareprovidedbelowtosuggesttherangeofCNGinitiativesundertakeninrecentyearsandtoencourageadditionalassessmentofNGVandaltfuelvehiclepotentialbyotherfleets.

WasteManagement:WasteManagement'sCarmel-Marinafleetusesnaturalgastopower25ofitsgarbagetrucks,withplanstopowerall45truckswithnaturalgasinthenext10years.WasteManagementrunsthelargestheavydutyfleetinAmerica,andnowhas4,100vehiclesrunningonnaturalgas,andoperates73naturalgasfuelingstationsacrossNorthAmerica.Thecompanyhascommittedtohavingover90%ofnewtruckpurchasesbeingnaturalgasvehicles.24TheCarmel-MarinafleetisfilledfromtanksinCastrovillewithnaturalgasrecoveredatWasteManagement'sAltamontLandfillinLivermore,CA.SinceNovember2009,thelandfillhasbeengeneratingasmuchas13,000gallonsofbiofueladay,powering300WasteManagementvehiclesinCalifornia.Thegasiscryogenicallyreducedtoliquidatextremelycoldtemperatures,thenbroughttoCastrovilleandtransferredtothestoragetank.OncepumpedintotheCastrovillestoragetank,theliquidnaturalgasispassedthroughevaporatorstoconvertitintocompressednaturalgas,andstoredin5-inch-thicksteelsphericaltanks.TwodispensersattheWasteManagementyardcanfillatruckinsixminutes,comparedwithabout10minutestofuelasimilar-sizedieseltruck.AccordingtoCarmel-

24WasteManagement’swebsite,http://investors.wm.com/phoenix.zhtml?c=119743&p=irol-recentnewsArticle&ID=2062708

8,000

6,000

4,000

2,000

Car Van MHDV

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-53

MarinadistrictmanagerFelipeMelchor,the25trucksinoperationbyCarmel-MarinaCorp.reducegreenhousegasemissionsintheCarmel-MarinaCorp.serviceareabyatleast2,100metrictonseachyear.25

Therenewablenaturalgaswillsoonbeevenmorelocal.MontereyRegionalWasteManagementDistrictisworkingwithTrilliumCNGtobuildanewcompressednaturalgasstationtofuelthedistrict’sCNGrefusetrucksattheMontereyRegionalEnvironmentalParkinMarina,Calif.Bymid-2016,theDistrictwillextrudethemethanegasproducedattheMontereyPeninsulaLandfill,anearbysanitaryfacility,andconverttherecoverednaturalgasintoCNGtopowertheirfleet.Truckswillbeginandendthedayatthesite,accordingtoTimFlanagan,thedistrict’sassistantgeneralmanager.26

AWasteManagementCNGtrashhaulerbeingfilledataCNGstationSource:http://www.sustainablebrands.com/news_and_views/clean_tech/jennifer-elks/new-waste-management-facility-turning-even-more-landfill-gasSantaCruzMetro:SantaCruzMetroisthelargestpublictransportationproviderinSantaCruzCounty,providingfixed-routebusandparatransitservicesthroughoutthecounty.Thefleetof90busesiscurrently75%CNG,andSantaCruzMetroplanstoincreasethisnumbertoa100%CNGfleetastheysoonwillretiretheremaining1998dieselbuses.27Ridershipin2015wasapproximately5.5millionandcovers35routes,includingcommuterbuslinkstoSiliconValley.Metrohasbeenapproachedtoconsiderbiofuelsandotheralternatives,butiscommittedtomaintainingaCNGstrategy,havingexperiencedpositiveresultsonbotheconomicandoperationalmetrics.Bycontrast,MontereySalinasTransithasoperated17CNGbusesbutareintheprocessofreplacingthembecauseofhighermaintenancecosts.28

25TheMontereyHerald,July14,2011,http://www.montereyherald.com/20110714/castroville-natural-gas-holding-tank-inaugurated26TrilliumCNG’swebsite,http://blog.trilliumcng.com/2015/02/16/trillium-cng-inks-deal-monterey-regional-waste-management-district-calif/27AmericanPublicTransportationWebsite,http://www.apta.com/mediacenter/pressreleases/2015/Pages/150416_Earth-Day.aspx28http://www.mrwmd.org/archives/2008%20Board%20Meeting/July/MRWMDJul08_13_Ltr_Regarding_Alternative_Fuels.pdf

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-54

SantaCruzMetroCleanAirBusSource:http://images.metro-magazine.com/post/M-SantaCruz.jpgSanBenitoHighSchoolDistrict:SanBenitoHighSchoolDistrictoperatesfourCNGschoolbusesandaCNGfastfillfuelingstation.Thisstationisopentootherlocalfleets,suchastheAromas-SanJuanUnifiedSchoolDistrictandtheLocalTransportationAuthority,whichbothrunsmallCNGfleets.SanBenitoHighSchool’sCNGschoolbusesandfuelingstationwerepartiallysubsidizedthroughagrantfromtheMontereyBayUnitedAirPollutionControlDistrict.SBHShasfourCNGbusespaidforbygrantsfromtheAirDistrict.Thebusescostapproximately$130,000each–$30,000morethandieselbuses,accordingtoDavidFairchild,airqualityplannerwiththeAPCD.UniversityofCalifornia,SantaCruz:UCSChasaCNGfillingstationwhichisutilizedby8CNGvehiclesoncampus.UCSChasmadethechoicetofocusonCNGforheavy-dutyvehiclereplacements.TwoCNGrefusetrucksusethemajorityoftheCNGoncampus,andthusCNGconsumptionhasdoubledinrecentyears.FutureheavydutyvehiclereplacementswillbeCNGaswell.

UCSC’sCNGfillingstationserves8CNGvehicles,includingtwoheavydutywastehaulersSource:http://fleets.ucsc.edu/services/fuel-site.html

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-55

5.28.NGVSafetyandTrainingforTechniciansandFirstResponders:Naturalgashassignificantlydifferentpropertiesandcharacteristicsthangasolineordieselfuels,andnaturalgasfuel-specifictrainingisessentialforbothtechniciansandsafetypersonnel.OnCNGvehicles,portionsofthefuelsystemoperateatextremelyhighpressures(3,600psi),whileLNGvehiclesusecryogenic(-260degreesFahrenheit)fuelsystems.Bothtypesoffuelsystemsareverysafewhenhandledappropriately,yettheyrequireuniquecomponentsandspecialsafetyproceduresforalllevelsofmaintenance,diagnostics,repair,andemergencyresponse.ThissectionofthePlanwillreviewrecommendedtrainingresources.

SeveraltrainingoptionsforfirstrespondersandtechnicansexistthroughtheNationalAlternativeFuelsTrainingConsortium(NAFTC),andtrainingfortechniciansisavailableboththroughNAFTC,andtheNaturalGasVehicleInstitute(NGVi),aswellasthroughmanyCaliforniaCommunityCollegesandCleanCitiesCoalitions.Mostcoursesareavailableinbothin-personandonlineformats.Shorterformatcoursesaretypicallyfourhours,whiletwo-dayin-depthtrainingsandtrain-the-trainercurriculaarealsoavailable.

TheNAFTCoffersmultiplecoursestailoredtoeachfueltype,withseparateofferingsfortechnicians,firefighters,emergencymedicalservices,andlawenforcement.ThefoundationalcourseforanytypeofFirstResponderisentitled:FirstResponderSafetyTraining:GaseousFuelsandGaseousFuelVehicles,andisavailableonlineathttp://naftc.wvu.edu/course_workshop_information/first_responders/first-responder-safety-training-cclp#gas.Inthiscourse,FirstResponders(orothersafety-relatedstaff)aretrainedonproceduresforsafelyaddressingincidentsinvolvingCNG,LNG,propane,andhydrogenvehicles.Anyonecanattendtheseclassesasaparticipant,howeveronlyafirstresponderwithatrainingbackgroundcanparticipateintrain-the-trainerlevelcourses.Thefoundationalcourseenablesparticipantsto:

§ Listthekeyproperties,characteristics,andfunctionsofgaseousfuels§ Explaintheoperationofgaseousfuelvehicles§ Recognizegaseousfuelvehiclecomponents§ Identifytherisksandhazardscommontogaseousfuelstorage§ Explainthemajorcomponentsofgaseousfuelvehiclefuelingsystems§ Describegaseousfuelvehiclefuelingstationsafetysystems§ Identifytherisksinvolvewiththetransportandhandlingofgaseousfuels§ Listpersonalprotectiveequipmentnecessaryforfirstresponderswhenrespondingtoagaseous

fuelvehicleincident§ Listthestepsrequiredtosecureagaseousfuelvehicle§ Listthestepsforrescuingoccupantsfromadamagedgaseousfuelvehicle§ Demonstrateproperfireresponsetogaseousfuelfire§ Demonstrateproperresponsetoagaseousfuelleak

SeparatecoursesarealsoavailablethatcoversimilarmaterialwithgreaterspecificityfromtheperspectiveofindividualFirstResponderjobtypes.Thesecoursesinclude:

§ FirefighterAlternativeFuelVehicleSafetyTraining§ EmergencyMedicalServicesAlternativeFuelVehicleSafetyTraining§ LawEnforcementAlternativeFuelVehicleSafetyTraining§ FirstResponderSafetyTraining:GaseousFuelsandGaseousFuelVehicles§

TechniciantrainingisalsoavailablefromNATCinmultipleAFVcategoriesincluding:§ IntroductiontoNaturalGasVehicles

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-56

§ IntroductiontoPropaneVehicles§ LiquefiedNaturalGasVehicles§ PropaneAutogasVehicleTechnicianTraining§ Light-DutyNaturalGasVehicles§ Heavy-DutyGaseousFuelApplications§ CompressedNaturalGasVehicleFuelSystemInspector§ CompressedNaturalGasVehicleConversion

CaliforniaCommunityCollegeNAFTCContacts:OfficialNATCregionaltrainingcentersclosesttoMontereyareatElCaminoCollegeandFresnoCityCollege.AtElCamino,thecontactisEldonDavidson–[email protected],thecontactisMartinKamimoto–martin.kamimoto@fresnocitycollege.edu.IntegratedNGVTechnicalandSafetyTraining:InadditiontoNATC,theNaturalGasVehicleInstituteoffersasevenmoduletechnicaltrainingcoursethatintegratestechnicalwithsafetytraining.Thecoursemodulesaddress:ThePropertiesandCharacteristicsofNaturalGas;FunctionofCNGFuelSystemComponentsandSafetyProcedures;CNGFuelingStationEquipmentandOperation;CNGDepressurizingandDefueling;LNGFuelandVehicles;andLNGFuelingandDefueling.Themodulescanbetakenseparately.Thiscourseisviewedasappropriatefor:

§ Technicianswhowillperformbasicpreventativemaintenanceonnaturalgasvehicles(oilchanges,tirerotations,etc.)

§ TechnicianswhowillperformmandatedCNGfuelsysteminspections§ TechnicianswhowillperformNGVdiagnosticsandrepairprocedures§ AllemployeesinvolvedinNGVfleetoperations§ Fleetordealerservicemanagersandsupervisors§ Corporate/agencysafetymanagers§ Riskmanagementstaff

Courseobjectivesareto:§ Describethepropertiesandcharacteristicsofnaturalgas.§ Identifythedifferencesbetweennaturalgasandotherliquidfuels.§ Identifyallmajorlow-andhigh-pressureCNGfuelsystemcomponents;describetheiroperation

andsafetyprecautions.§ Describethedifferencesbetweendedicated,bi-fuelandduel-fuelNGVs.§ Identifyandemploysafetypracticeswhenworkingwithnaturalgaspoweredvehicles.§ BefamiliarwithCNGfuelingstationequipment,safetydevices,operationandfueling

procedures§ IdentifyCNGandLNGdepressurizinganddefuelingmethodsandtherelatedsafetyprecautions

Availableininstructorledore-learningformats,theNaturalGasVehicleInstitute’sLevel1courseisdesignedfortechniciansandsupportteamsperformingroutinemaintenance,inspection,diagnosticsandrepairofnaturalgasvehicles.ItisalsoaprerequisitefortechnicianswhowilltakeNGVi’sCNGFuelSystemInspectorTrainingorNGVHeavy-DutyMaintenanceandDiagnosticsTraining.MoreinformationontheNaturalGasVehicleInstituteisavailableat:http://www.ngvi.com/index.html

5.29.SummaryofKeyStrategiesandToolsforAssessingFleetAdoptionofNGVs:ThisChapteroftheAFVPlanhasprovidedalargebodyofmaterialrelevanttoFleetManagerstohelpassesstheeconomics

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-57

andenvironmentalattributesofNGVs,aswellastheiroperationalcharacteristics.Atthisjuncture,itmaybeusefulto“boildown”thisinformationintoafewkeyquestionstoguidetheprocessofassessingthepossibleroleofNGVsinlocalfleetapplications.

§ TypesofVehicles–NeworRetrofit,Bi-FuelorNGV:AkeyinitialquestioniswhethertopurchasenewOEM-producedCNGvehicles,purchasenewgasolineordieselvehiclesandhavethemconvertedtoCNGbyathird-partyupfitter,orretrofitexistingvehiclescurrentlyoperatinginthefleet.Thenumberandvarietyoffactory-andconversion-readyCNGvehiclesavailablefromOEMsisincreasing.SomeoftheNGVsbuiltbytheOEMsincludepopularmodelssuchastheChevroletSilveradoHD,GMCSierraHD,Ram2500,andtheChevroletImpala.FleetcustomerscanalsoordermanyFordvehicles,includingtheF-150,withanoptionalgaseousenginepreppackage(withhardenedenginecomponents),makingitreadyforconversiontoCNGbyaFordQualifiedVehicleModifier(QVM).Manyvehiclesarealsoavailableinbi-fuelorNGVonlyconfigurations.AgoodresourceforassessingthemeritsofeachcanbefoundinGreenFleetMagazineat:http://www.greenfleetmagazine.com/channel/natural-gas/article/story/2014/12/deciding-whether-bi-fuel-or-ngv-is-the-best-for-your-fleet.aspx

§ FuelingSystemOptionsandConfigurationsontheVehicle:Beyondfindingtherightvehiclemodelforafleet’sspecificneeds,therearekeyoperationalcriteriatobeconsideredwhendecidingtoshifttoNGVs,potentiallyimpactingbothrangeandspaceutilization.Forexample,theChevroletExpressCNGcargovanofferscustomersthechoiceofathree-orfour-tankconfiguration.Thethree-tankversionoffersafuelingcapacityof15.8GGE,whilethefourhas23.1GGE.Thatmeansanextra100milesofrangewiththefour-tankoption;however,becauseoftheweightoftheextratank,300poundsofpayloadaretradedoff.IntheChevroletExpressdedicatedCNGvan,thetanksarefittedaroundtheframeunderthevehiclebody.Anoptionalfourthtankisplacedinthecargoarea.Fleetmanagersmayfaceasimilartrade-offifconsideringCNGpick-uptrucks.Ram,Chevrolet,andGMCplacetheCNGtankinthetruckbed.InthecaseoftheRam2500CrewCab,thisutilizes3feetofthe8-footbed.Forsomefleets,thatspaceispreciousandthelossofitcanbeanon-starter.Automakersandupfittersareworkingtoreducethesekindsoftrade-offs.WhilemanyNGVsusesteelCNGtanks(knownasTypeI),growingnumbersareusing(equallysafe)tanksmadeoflightermaterialssuchasfiberglass-wrappedaluminum(TypeIIandTypeIII)orcarbonfiberandothercomposites(TypeIV).ThesetypesoftankscostmorethanTypeItanks,buttheyalsoreducethepayloadvs.fuelingrangetrade-offduetotheirlighterweight.

§ MatchingDutyCyclestoFuelInfrastructure:Tofurtherdrilldownonthequestionofvehicle

type,afleetmanagerconsideringCNGlight,mediumorheavydutyvehiclesshouldaskthefollowingquestionstodeterminewhattypeofinfrastructureisneededandavailable.

§ Whatarethedailydistancestravelled?§ Whatisthetypicaldutycycle—onewayorroundtrip?§ Arethereexistingpublicaccessfuelingstationssuitableforthedutycycle?§ Canthevehiclesbefilledovernightordotheyneedtobefast-filled?§ Publicvs.privateaccesstoafleetfueldepot—willtherebepublicaccesstothestation?§ Whataretheeconomicsofbuildingastationvs.usingpublicinfrastructure?§ ArethereupcominggrantopportunitiesforsupportingNGVprocurementorfueling

infrastructure?(LocalCleanCitiesCoalitionsandAirPollutionControlDistrictsmaybe

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-58

abletohelpidentifyemergingopportunities)§ Canyourorganizationpartnerwithanotherpublicagency,fleetoperator,orservice

providertosharethecostsofnewfuelinginfrastructure?

§ FuelCostCalculationsandPaybackPeriods:Allfleetoperatorsmustmeetbottomlinefinancialperformanceexpectations.Whileitischallengingtopredictfuturefuelprices,someassumptionsmustbemadetodriveanROIcalculation.Toassistwiththisprocess,theDOE’sAlternativeFuelDataCenterhascostcalculatorsthatcangeneratesimpleback-of-the-envelopeestimatesofhowmuchafleetcansave.Seewww.afdc.energy.gov/vehicles/natural_gas.htmlformoreinformation.Additionaltoolsarelistedbelow.Also,fleetmanagementcompaniescanhelpcalculateacompany’sspecificcostsofownershipmorepreciselywithmodelsincorporatingmanymoreoperationalvariables.Searchesonfleetmanagementcompanieswillprovidenumerousoptions.

§ KickingtheTiresatLeadingConferences:Thereisnosubstitutefordirectinteractionwithvehicles,thecompaniesthatstandbehindthem,andone’speersintheindustry.LeadingconferencesincludetheAlternativeCleanTransportation-ACTEXPO(inLongBeach),NAFA(theNationalAssociationofFleetAdministrators),theFleetTechnologyExpo,theGreenTruckSummit,theWorkTruckShow,theGovernmentFleetExpo&Conference,ALTCARExpo&Conference,theNorthAmericanNGVAssociation,andothers.

§ UseTheseEssentialToolsforEconomicandEnvironmentalCost/BenefitAnalysis:The

followingtoolsareinvaluableformakingadetailedandcustomizedassessmentofbotheconomicandenvironmentalcostsandbenefitsofincorporatingNGVs(andotherAFVs)intothefleet,onafulllife-cyclebasis.Thesetoolsareconsideredindustry-standard,andassessmentsgeneratedwiththemwillbehelpfulinseekinggrantfundingforalternativefuelvehiclesandinfrastructure.

§ VICE2.0:VehicleandInfrastructureCash-FlowEvaluationModel

TheVICEmodelversion2.0isthesecondgenerationofthefinancialmodeldevelopedbytheNationalRenewableEnergyLaboratoryforfleetmanagerstoassessthefinancialsoundnessofconvertingtheirfleetstorunoncompressednaturalgas(CNG).

§ DNGIFuelSavingsCalculatorTheNaturalGasFuelSavingsCalculator,producedbyTheDriveNaturalGasInitiative,acollaborationbetweennaturalgasutilitiesandproducers,helpswiththepreliminaryanalysisofthetotalcostsassociatedwithconvertingafleet.

§ ArgonneAFLEETTool,AFLEETToolInstructionsforenvironmental/economiccost-benefitanalysisTheDepartmentofEnergy’sCleanCitiesProgramhasenlistedtheexpertiseofArgonnedevelopatooltoexamineboththeenvironmentalandeconomiccostsandbenefitsofalternativefuelandadvancedvehicles.ArgonnehasdevelopedtheAlternativeFuelLife-CycleEnvironmentalandEconomicTransportation(AFLEET)ToolforCleanCitiesstakeholderstoestimatepetroleumuse,greenhousegasemissions,airpollutantemissions,andcostofownershipoflightdutyandheavydutyvehiclesusingsimplespreadsheetinputs.Formoreinformation,visittheArgonneAFLEETToolwebsitehere.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-59

5.30.RecommendedActionstoSupportNGVAssessmentandReadiness:Thefollowingrecommendationsdefinehigh-levelactionsthatfleetmanagers,AFVstakeholders,andpolicy-makerscantaketoassessthepotentialroleofnaturalgasvehiclesandlow-carbonnaturalgasfuelpathwaysinadvancingeconomicandenvironmentalgoals.(NotethattherecommendationnumberingcorrespondstotheoverallAFVPlanrecommendationsfirstappearingintheintroductiontothisPlan.)

ACTIONS LEADERSHIP

2.4.1.AssesspotentialofCNGvehiclestomeetfleetenvironmentalandeconomicgoals–takingintoaccountthemostrecentandauthoritativeresearchonGHGandairqualityimpacts.(SeeRecommendation#2.1.1.Developgoalsforpublicfleetspoweredbysustainablealternativefuels)

FleetManagers

2.4.2.DetermineneedforadditionallocalCNGfuelinginfrastructure(ifany)tomeetplannedCNGfleetneeds.

FleetManagers

2.4.2.1.IfadditionalCNGfuelinginfrastructureisneeded,convenekeystakeholdersandtheMontereyBayAFVCounciltocoordinatefundingforplanninganddevelopmentofCNGfuelingsites.

FleetManagersAFVCoordinatingCouncil

2.4.3.Convenestakeholderstoassessinterestindevelopmentanddistributionofbiomethaneand(ifappropriate)todevelopplanningfunds.TheAFVCouncilcanconveneinterestedpartiestodetermineifsufficientinterestexiststoseekplanningfundsforbiomethanefuelpathwaydevelopment.

AFVCoordinatingCouncilandNGVstakeholders

2.4.4Convenestakeholderstoassessinterestindevelopinglow-carbonfreightdeliverysystemsintheCentralCoastandMontereyBayAreaand(ifappropriate)todevelopplanningfunds.Ifinterestexists,planningfundscouldbesoughttoassessdiversestrategies,includinginter-modalfreightconsolidationfacilities,expandeduseofLNG-fueledClass8heavy-dutytrucks,“greenlastmile”deliverysystems(e.g.,allelectrictrucks),andotherstrategies.

AFVCoordinatingCouncilsofboththeCentralCoastandMontereyBayAssociationofMontereyBayAreaGovernmentsMontereyUnifiedAPCDandCentralCoastAPCDs

2.4.5.ConveneUCSantaCruzandalliedstakeholderstoassessinterestindevelopingCECfundsforintegratingalternativefuelvehicleandZeroNetEnergystrategies,potentiallyincludingCNGandotheraltfuelpathways.Ifinterestexists,theAFVCouncil,UCSCleaders,andotherkeystakeholderscouldcoordinatedevelopmentofplanningandimplementationfunds.

AFVCoordinatingCouncilUCSCSustainabilityandAltFuelLeaders

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-60

5.31.SummaryDiscussionofStrategiesforCleanVehicleandFleetDecision-Making:TheenvironmentalperformanceofNGVsrelativetoothervehicles–especiallydieseltrucks–iscomplexandhighlydynamic.ThedynamicelementsincluderapidlyevolvingNGVenginetechnologyandnewbiomethanefuelpathwayswithdramaticallyimprovedenvironmentalattributes.Moreover,NGVsarenotcompetingagainstothervehiclesandfuelsthatareinastaticposition.Dieselandgasolinepoweredvehiclesarepoisedtomakesignificantstridesinairemissionswithbothnewenginetechnologiescomingon-lineandexpandeduseofpromisingbiofuels.Electricvehiclerangeandperformanceislikewiseimprovingwithpromiseforfuturemedium-andheavy-dutyapplications.Inthisrapidlychangingenvironment,itisrecommendedthatfleetmanagersandotherleadersincorporatethefollowinganalyticstrategiesintotheirvehicleassessmentanddecision-makingapproach.

1. Utilizethebestavailabledataonfuelandvehiclecombinationstomatchaspecificoperatingneedwiththecleanestavailabletechnology.§ Everyvehicleexistswithinanecosystemthatincludesoursharednaturalenvironment,the

fuelpathwayecosystem(includingfeedstocks,production,andfueldeliverysystems),andtheoperatingenvironment(includinguniquedutycyclesandeconomicimperatives.)Insomecases,thecleanestvehicleavailablewillnotbepracticalbecauseofinsurmountablechallengesinthefuelecosystemortheoperatingenvironmentatanygivenpointintime.Ratherthanrestwithhigher-levelgeneralizationsaboutfuelandvehicleperformance,delveintothedetailofyourownspecificusecasesandseekoutthebestavailableinformationtomatchaspecificoperatingneedwiththecleanestavailabletechnology.

§ Virtuallyallvehicletypes–includingNGVs–canoperateonalowcarbonbasisgiventherightcombinationofhigh-efficiencyengine,lightweightandaerodynamicvehicledesign,bestoperatingpractices(e.g.idlereduction),andlow-carbonfuel.Byapproachingfleetmanagementandtransportationpolicyfromawhole-systemsperspective,transportationdecision-makerscanoptimizethevehicleandfuelpathwaychoicetodramaticallyreduceenvironmentalharmandadvancehigh-performanceorganizationalgoals.

2. Regularlyre-assessthestateoftechnologydevelopmentandtheeconomicandenvironmentalperformanceattributesofallmajorAlternativeFuelVehicletypes.§ Transportationtechnology,policy,andpracticeisevolvingatthefastestpaceinhistory,

withbreakthroughsoccurringeveryyearinvehicledesign,fuelpathways,andoperatingstrategies.Newapproachestoconnectivityandtelematics,vehiclesharing,andautonomousdrivingwillfurtherrevolutionizethefleetmanagementandtransportationlandscapeinthecomingdecade.Toensurethatdecision-makingreflectscurrentinformationinallkeydomains,engagecolleaguestoparticipateinleadingconferences,subscribetoauthoritativeinformationresources,andconsultwithleadingexpertsinrelevantprofessionalassociations.

3. Developaclearunderstandingoftheglobalwarmingcrisisandthelinkbetweenairemissionsandhealth–andmakedecisionsaccordingly.§ Virtuallyallqualifiedscientificexpertsandleadingresearchinstitutionsagreethatdecisions

madeinthenext5-10yearsonclimate-relatedpoliciesandgreenhousegasemissionswilldeterminewhetherglobalwarmingentersthe“runaway”stage–withlikelycatastrophicconsequencesforalllifeonearth.Becauseofthesystemicnatureofthechallenge,alldecision-makingontransportation,energy,andemissionsissuesisbothlocalandglobalin

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-61

impact,andeverydecisionhasimportanceinshiftingcurrenttrendlinestowarddramaticallyreducedemissionsor“businessasusual.”

§ ThestateofCaliforniamadeascience-baseddecisionthateconomy-wideemissionscanandmustbecutbyatleast80%below1990levelsby2050atthelatest.ThemostrecentsciencebeingpresentedtotheUNIntergovernmentalPanelonClimateChangeandinauthoritativejournalsindicatesthatthelevelofemissionsreductionsneededandthetimetableforachievingthemislikelymuchtighterthanevenCalifornia’sAB32targetssuggest.Moreover,inordertoachievethestate’s2050targets,CARBScopingPlanindicatesthatnearly100%ofvehiclesdeployedby2030mustbezeroornear-zeroemissionsifwearetomeetthe2050goals.Giventhe12+yeartimelaginfleetturnover,thereisnotimetowastetoachievethisbenchmark.

§ Finally,researchbytheAmericanLungAssociationandothersdemonstratesthatmorethan7,000Californiansaredyingprematurelyeachyearfromairpollution,while5millionaresufferingfromrespiratorydisease(including1millionchildren.)29Ifwewishtoimprovethehealthofourchildrenandcommunities--andsustainalivableclimateforthegenerationstocome--itwillbeessentialtodeploythecleanest-availabletechnologies,whichreducethegreatestamountoftoxicairemissions,atthemostrapidpossiblepace,andinthemostcost-efficientmanner.

29“BreathingEasierinCalifornia,”FactSheetdevelopedbytheCaliforniaLungAssociation,2015,accessedathttp://www.lung.org/local-content/california/documents/california-delivers-public.pdf

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-62

5.32.InformationResourcesonNGVs,FuelingStations,Funding,andLocalReadinessVehicleInformationAFDCVehicleBuyer’sGuideforConsumersFeaturesinformationaboutnaturalgasvehiclesandconnectsuserstoadatabaseofcurrentmodelyearcarsandtrucksavailabletoleaseorpurchase.GSAFleetAuctionSiteGSAFleetoperatesover23,000AFVs.EachyearGSAFleetsells2,000to4,000usedAFVsastheyarereplacedbynewvehicles.AlltheinformationyouneedtopurchaseAFVvehiclesatapublicauctionisavailableonthissite.YoucanlearnaboutAFVs,viewvehiclesexpectedtobeavailablein2012,lookforspecificvehiclesforsalenow,andsearchforauctionlocationsinyourarea.NGVFuelingStationLocatorsFuelStationLocator(CNG),FuelStationLocator(LNG)TheAlternativeFuelsDataCentercontainsrefuelingstationsforvariousalternativefuels,includingCNGandLNG,throughoutthecountry.FleetCalculatorsVICE2.0:VehicleandInfrastructureCash-FlowEvaluationModelTheVICEmodelversion2.0isthesecondgenerationofthefinancialmodeldevelopedbytheNationalRenewableEnergyLaboratoryforfleetmanagerstoassessthefinancialsoundnessofconvertingtheirfleetstorunoncompressednaturalgas(CNG).DNGIFuelSavingsCalculatorTheNaturalGasFuelSavingsCalculator,producedbyTheDriveNaturalGasInitiative,acollaborationbetweennaturalgasutilitiesandproducers,helpswiththepreliminaryanalysisofthetotalcostsassociatedwithconvertingafleet.ArgonneAFLEETTool,AFLEETToolInstructionsTheDepartmentofEnergy’sCleanCitiesProgramhasenlistedtheexpertiseofArgonnedevelopatooltoexamineboththeenvironmentalandeconomiccostsandbenefitsofalternativefuelandadvancedvehicles.ArgonnehasdevelopedtheAlternativeFuelLife-CycleEnvironmentalandEconomicTransportation(AFLEET)ToolforCleanCitiesstakeholderstoestimatepetroleumuse,greenhousegasemissions,airpollutantemissions,andcostofownershipoflightdutyandheavydutyvehiclesusingsimplespreadsheetinputs.Formoreinformation,visittheArgonneAFLEETToolwebsitehere.CylinderInspectionCNGCylinderInspectorsThisregistrydatabasewillprovidethename,listingofcurrentcertifications,andcontactinformationforindividualswhohavepassedanexamfortheCSAStandardsPersonnelCertificationprograms.CNGCylinderInspectorTrainingCleanVehicleEducationFoundationlistsorganizationsthatofferCNGcylinderinspectiontrainingfortheCSAcertificationtest.FederalGovernmentInformationNationalRenewableEnergyLaboratoryTransportationResearchBoardDepartmentofEnergy’sOfficeofAlternativeFuelsDepartmentofEnergy’sAlternativeFuelsDataCenter

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-63

DepartmentofEnergy’sFuelEconomyInformationOtherAlternativeFuelSitesCleanCitiesCleanVehicleEducationFoundationNationalAlternativeFuelsTrainingProgramConsortiumPublicationsandNewsServicesCleanCityNewsTheofficialquarterlypublicationoftheCleanCitiesProgramandtheAlternativeFuelsDataCenter,providinginformationaboutCleanCities’sprojects,designations,andconferencesaswellasup-to-dateinformationaboutdevelopmentsinthealternativefuelsindustry.TheFuelsFixThequarterlyezinefromtheCleanCitiesCoordinatorsintheSoutheast.Fleets&Fuels AbiweeklynewsletterhighlightingAFVnewsandinfo.TheNGVForumNGVAmerica’snationalnewsanddialogueserviceforthenaturalgasvehicleindustry.NGTNewsNext-GenTransportationisanalternativefuelsnewssite.NGVGlobalInternationalnewsserviceofNGVGlobal,theInternationalAssociationforNaturalGasVehicles.ResearchandDevelopmentGasTechnologyInstituteNavigantResearch,AlternativeFuelVehiclesU.S.LNGFuelProductionPlantsThisregularlyupdatedinformationserviceofNGVAmericaandZeusIntelligenceprovidesinformationonU.S.LNGfacilitieswiththecapabilitytooffloadLNGintotrailersfortruckdelivery.CaliforniaNGV-RelatedInformationCaliforniaAirResourcesBoard(CARB)CaliforniaEnergyCommission’sAFVSiteCaliforniaNaturalGasVehicleCoalition CaliforniaNGVPartnershipInternationalNGVAssociationsNGVGlobal,InternationalAssociationforNaturalGasVehiclesEnvironmentalWebSitesAddressingNGVIssuesEnergyVisionEnvironmentalDefenseNaturalResourcesDefenseCouncilUnionofConcernedScientistsTheWorldBankGroup

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-64

Appendix1–NaturalGasVehicleEmissionsandClimateImpactAnalysisA-1.EstablishingaRiskManagementAssessmentFrameworkRelativetotheGlobalWarmingPotential(GWP)ofMethaneandCarbonDioxide:TheconceptofGlobalWarmingPotential(GWPhasbeendevelopedtoenablecomparisonoftheabilityofeachgreenhousegastotrapheatintheatmosphererelativetotheperformanceofthelargestanthropogenicgreenhousegas,whichiscarbondioxide(CO2)overaspecifiedtimehorizon.Toenablethiscomparison,greenhouseemissionsaretypicallycalculatedintermsofhowmuchCO2equivalent(orCO2e)wouldberequiredtoproduceasimilarwarmingeffectoventhechosentimehorizon.Thus,GWPsarebasedontheheat-absorbingabilityofeachgasrelativetothatofcarbondioxide(CO2),aswellasthedecayrateofeachgas(theamountremovedfromtheatmosphereoveragivennumberofyears).Thus,GWPsareusedtodefinetheimpactgreenhousegaseswillhaveonglobalwarmingoverdifferenttimehorizons.Toenablestandardizedinternationalreportingregimes,thesetimehorizonsaregenerallyreportedas20years,100years,and500years.Formostgreenhousegases,theGWPdeclinesasthetimehorizonincreases.Thisisbecausethegreenhousegasisgraduallyremovedfromtheatmospherethroughnaturalmechanisms,anditsinfluenceonthegreenhouseeffectdeclines.30AssigningaGWPvalueenablespolicymakerstocomparetheimpactsofemissionsandreductionsofdifferentgasesusingacommonanalyticframework.TheCO2equivalentvalueusedforcomparisonsamongGHGsisdevelopedbymultiplyingtheamountofgasbyitsassociatedglobalwarmingpotential(GWP).ThedeterminationofaglobalstandardforGlobalWarmingPotentialisdevelopedprimarilythroughthemechanismsoftheUNIntergovernmentalPanelonClimateChange(IPCC)viaitsperiodicAssessmentReports,whichdelineatetherequiredinventoryreportingframeworkundertheUnitedNationsFrameworkConventiononClimateChange(UNFCCC).ThemostrecentupdatesontheGlobalWarmingPotentialofvariousgreenhousegaseswasprovidedin2013-14viatheFifthAssessmentReport(AR5).EachoftheseAssessmentReportsarepainstakinglypreparedoverafiveyearperiodbythousandsofscientistsworkinginthecollaborativeinternationalUNFCCCframework.Theseglobalwarmingpotential(GWPs)arethengraduallyadoptedbynationalregulators(suchastheU.S.EPA)andbyorganizationsthatfacilitatevoluntaryindustryreportingefforts.Methaneisasignificantcontributortothegreenhouseeffectandhasbeennewlydetermined(viatheUN’sFifthAssessmentReport)tohaveaGWPof86overtwentyyears,whencountingtheinfluenceofcarboncyclefeedbacks--oraGWPof84withoutaddressingcarboncyclefeedbacks.31Overa100yeartimeframe,theGlobalWarmingPotentialofmethaneis34whenincludingcarboncyclefeedbacks,and28whenexcludingthefeedbacks.(ItisanticipatedthatmostreportingregimesWILLincorporatethemoreconservativeapproachthatincludesthecarboncyclefeedbacks,whichwerenewlyintroducedintoUNFCCCprotocolsviatheFifthAssessmentReport.)Asnotedabove,thisGWPfactormeansmethaneisapproximately86timesmoreheat-absorptivethancarbondioxideperunitofweightwhenconsideredinatwentyyeartimeframe,and34timesmoreheat-trappingina100yeartimeframe.Forthe20yeartimeframe,theGWPfactorhasbeenrevisedupwardfromapreviouslyassignedGWPfactorof25,representinga40%+increaseinthepotencyassignedtomethane.Thisreflectsnewscientificresearchthatmoreaccuratelycapturestheactualchemicalbehaviorofmethaneintheatmosphere.Whilethisnumbermayberevisedinthefuturebasedon

30SomeGHGs–suchasthechlorofluorocarbons(CFCs)however,havelongatmosphericlifetimes,andtheir100-yearGWPmaybegreaterthantheir20yearGWP.TheseGHGsarebeyondthescopeofthisPlan.31

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-65

ongoingresearch,itisunlikelytobesosubstantiallyreassessedagainsoon.WhilemethaneisthusamuchmorepotentgreenhousegasthanCO2perunitofmass,whenassessedonastaticbasis,thereisover200timesmoreCO2intheatmospherebyvolumetricdensity.Currently,globalCO2levelsareover380ppm(partspermillion)whilemethanelevelsare1.75ppm.Hence,onasnapshotbasis,theaggregateamountofwarmingcontributedbymethane(shownbyitschemicaldesignationCH4inthechartbelow)iscalculatedatjust28%ofthewarmingCO2contributes.(Thischartprovidesaquicksnapshotofalltheinfluencesonglobalwarmingasexpressedviathe“radiativeforcing”orheat-trappingimpactofeachgreenhousegas,withtemperatureimpactsincentigradeshownontheverticalaxis.)

SOURCE:https://www.skepticalscience.com/methane-and-global-warming.htm

Astrongcaseforutilizingthe20-yearvs.the100yearGlobalWarmingPotentialtimeframetoevaluateclimateimpactshasbeenmadebymanyscientistsandpolicyanalystswhonotethat,perthewarningsoftheUNIPCCandotherscientificbodies,wemaybeonlyafewyearsawayfromcrossing“pointsofnoreturn”forkeyclimateimpacts.TheseimpactsincludetheirreversiblelossofenoughiceonGreenlandandAntarcticatoraisesealevels40feetormore,ofwhichsixtotenfeetormoreisconsideredpossibleduringthiscenturybasedona“businessasusual”emissionsscenarioandahighlevelofclimatesensitivity,accordingtorecentresearchandtestimonybyJamesHansen,formerNASAChiefClimateScientist.Anevenmoreserioustippingpointontheimmediatehorizonislarge-scalereleaseoffrozenmethanetrappedinbubblesunderneaththeArcticoceanandinterrestrialpermafrost.Asuddenlarge-scaleincreaseinnaturalmethaneemissionscouldresultinadramatic“temperaturepulse”thatwouldsendglobalwarmingimpactsintoazoneofseriousandimmediatedangerforhumansustainability.32Recentstudiesestimatethatnotlessthan1,400gigatonsofcarbonispresentlylockedupasmethaneandmethanehydratesundertheArcticoceanandtundra(whichrepresentsapproximatelydoublethe

32“ArcticMethaneRelease”inWikipedia,https://en.wikipedia.org/wiki/Arctic_methane_release

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-66

700gigatonsofCO2ecurrenthuman-causedoranthropogenicatmosphericaccumulations.Bywayofcomparison,humansarecurrentlyemittingabout36gigatonsofCO2eperyearasof2013-14,withincreasesof3%+/yearcompoundedoverrecentyears).Moreover,5-10%ofthisareaissubjecttopuncturingbyunfrozenlayersofgroundorwaterwithinthepermafrostthatareknownastaliks.Theyconcludethat"releaseofupto50gigatonsofpredictedamountofhydratestorage[is]highlypossibleforabruptreleaseatanytime".33Asuddenreleaseofmethaneatthisscalewouldincreasethemethanecontentoftheplanet'satmospherebyafactoroftwelve.34Recallthatagigatonofmethanewouldbe84timesmorepotentinitsglobalwarmingpotentialovertwentyyearsthantheequivalentinCO2e,and100timesmorepotentinthefiveyeartimeframe.In2008,theUnitedStatesDepartmentofEnergyNationalLaboratorysystemidentifiedpotentialmethaneclathratedestabilizationintheArcticasoneofthemostseriousscenariosforabruptclimatechange,asnotedinaU.S.ClimateChangeScienceProgramreportinlateDecember2008.35ScientificconsortiasuchastheArcticMethaneEmergencyGrouppresentanupdated(andevenmorealarming)viewofthedataonsuddenmethanereleasesthantheconservativeprojectionscharacteristicoftheIPCC.ThesewarranttheattentionofpolicymakersandthegeneralpublicinlightofconsistentunderestimatesofwarmingtrajectoriesinpastIPCCreports.36Ofparticularnoteistheworkoftheadvisorygroup,ClimateCodeRed,whichpublishedin2015anewsummaryofglobal“climatemath”thattakesintoaccountabroaderrangeofnaturalclimatefeedbackloopsandmorerecentdatathatwerenotincludedinthe2013-14AssessmentReport5(AR5)oftheUN’sInternationalPanelonClimateChange(IPCC).37

WhenassessingmethaneorotherGHGimpacts,thechoiceoftimehorizonshouldbeinformedbyclimatesensitivitythresholds.AttheCopenhagenandParismeetingsoftheUNFCCC,theimportanceofthethresholdof1.5degrees–2degreescentigradeofpotentially“allowable”globalwarmingwasformallyacknowledgedbytheworldcommunityasthepointbeyondwhichrunawayclimatechangewillposeunacceptableriskstothehumanfuture.Theaggregateadditionalcarbon“budget”formaintainingtheclimatesystembelowthe1.5degreeto2degreeC.thresholdhasbeenvariouslyestimatedatzerogigatons(formaintainingtheearth’saveragetemperatureincreasebelow1.5degreesC.)to565gigatons(formaintainingthetwodegreesC.threshold).AtpresentratesofCO2eemissions(~36gigatonsannually)eventhemoregenerous565gigatonlimitwillbereachedby2028.38Afterthat,theearthwillneedtobenetcarbonneutral(ornegative)intermsofhuman-causedemissionstomaintainalivableclimateforfuturegenerations.Whetherinternationalpolicymakersadoptthe1.5degreescentrigradetargetorthe2degreescentrigradetargetisyettobedetermined.Thusfar,withjustover400ppmofCO2eintheatmosphere,theaveragetemperatureoftheplanethasbeenraisedapproximately0.8degreesCelsius,whichhascausedsubstantiallymoredamagethanmostscientistsexpectedjustafewyearsago.Onethirdof

33“ArcticMethaneRelease”inWikipedia,https://en.wikipedia.org/wiki/Arctic_methane_release34N.Shakhova,I.Semiletov,A.Salyuk,D.Kosmach(2008),AnomaliesofmethaneintheatmosphereovertheEastSiberianshelf:Isthereanysignofmethaneleakagefromshallowshelfhydrates?,EGUGeneralAssembly2008,GeophysicalResearchAbstracts,10,EGU2008-A-0152635CCSP,2008:AbruptClimateChange.AreportbytheU.S.ClimateChangeScienceProgramandtheSubcommitteeonGlobalChangeResearch(Clark,P.U.,A.J.Weaver(coordinatingleadauthors),E.Brook,E.R.Cook,T.L.Delworth,andK.Steffen(chapterleadauthors)).U.S.GeologicalSurvey,Reston,VA.SeealsoSusanQ.Stranahan(30Oct2008)."MeltingArcticOceanRaisesThreatof'MethaneTimeBomb'".YaleEnvironment360.YaleSchoolofForestryandEnvironmentalStudies.May2009.36SeereportsoftheArcticMethaneEmergencyGroupathttp://ameg.me37SeeDavidSpratt,“Recount:It’stimeto‘DotheMath’Again,”Breakthrough,http://www.climatecodered.org/2015/04/its-time-to-do-math-again.html38BillMcKibben,“GlobalWarming’sTerrifyingNewMath,”RollingStone,July2012,http://www.rollingstone.com/politics/news/global-warmings-terrifying-new-math-20120719

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-67

summerseaiceintheArctichasdisappeared,theoceansare30percentmoreacidic,andtheatmosphereovertheoceansisfivepercentwetter,whichisproducingdevastatingfloodsinsomepartsoftheworld.ChangesinthejetstreamduetowarmerairandwaterovertheArctichascreatedblockingpatternsthatarebelievedresponsibleformuchofthepersistentdroughtinthewesternU.S.andmanyotherareasoftheglobe–threateningglobalfoodsecurity.Giventheseimpacts,manyleadingscientistsbelievetwodegreesistoolenientatarget,andthatanysubstantialriskofexceeding1.5degreesoftotalwarmingmustbeavoided.Thatsaid,achievinglessthana10%riskofexceedingeventhehigher2degreetarget,forexample,willrequirenearzeronewnetemissionsforindustrialeconomies,beginningalmostimmediatelyand“lockingdown”by2028.Achievingzeronetnewemissionswouldalsorequireimmediatecarbonsequestrationefforts(e.g.,viaincreaseduseofbiocharandrevisedagriculturalpractice,carbonabsorbingalgae,andnewstrategiessuchasgeoengineering–iffeasible--toreflectmoreofthelightandheatenteringtheatmosphere.)ThiswouldalsorequiredramaticretoolingofenergysystemsandradicalenergyefficienciesontheorderoftheeconomicmobilizationinWorldWarII.DeterminingaRiskManagementApproachtoGHGImpacts:Inthefaceofstarkevidenceofthedireimpactsofarunawayclimate,combinedwiththeuncertaintiesthatexistaround“upperlimits”--policymakingintheclimatedomainhasbeenincreasinglyframedinriskmanagementterms.Carbonbudgetsareparticularlyamenabletoriskmanagementanalysis.Simplyput,themorefossilfuelemissionsareallowedinthecarbonbudget,thehighertheriskofexceeding1.5.-2°Cofwarming,andenduringtheattendantclimatedestabilization.Thesmallerthebudget,thelowertheriskoffailure.Assomeanalystshavepointedout,carbonbudgetmathcanalsobeanalogizedtohumanbloodalcoholimpacts:themorealcoholinthesystem,themorelikelyacrash.IntheIPCC’smostrecentassessment,thecarbonbudgetfor2°Cisconsideredtobe1420gigatonsofCO2fora66%riskofexceedingthetarget,but1000gigatonsofCO2fora33%riskofexceedingthetarget.In2009,theclimateactivistorganization350.orgbeganutilizingthenumberof565gigatonsbasedonanalysisofthe40climatemodelsusedintheIPCCmodelingtoarriveatanumberwithan80%likelihoodofsuccess.(Ofcourse,asBillMcKibbennoted,thatisequivalenttotheoddsoflosingatRussianroulettewithasix-shooter–notaveryrobustriskmanagementapproach,butfarbetterthana66%changeoffailure!)Moreover,variousauthoritativereports–notablythe2012ReportfortheWorldBankbythePotsdamInstituteforClimateImpactResearchandClimateAnalytics--predictsthatcurrentemissionstrendline(absentdramaticnewmeasures)putusontrackforatemperatureincreasebetween4˙and6˙Cby2100.39Whataretherisksofthecurrentemissionspathway?Themostwidelycitedandauthoritativereportonthissubjectisgenerallyregardedasthe2007SternReviewontheEconomicsofClimateChange--a700-pagereportreleasedfortheBritishgovernmentbyeconomistSirNicholasSternandateamofscientistsconvenedbytheTreasuryMinistryoftheUnitedKingdom.SternischairoftheGranthamResearchInstituteonClimateChangeandtheEnvironmentattheLondonSchoolofEconomicsandalsochairoftheCentreforClimateChangeEconomicsandPolicy(CCCEP).Inthisreport,Sternwarnedthat:"Theannualflowofemissionsisaccelerating,asfast-growingeconomiesinvestinhighcarboninfrastructureandasdemandforenergyandtransportincreasesaroundtheworld.Thelevelof550ppmCO2ecouldbereachedasearlyas2035.Atthislevelthereisatleasta77%chance-andperhapsuptoa99%chance,dependingontheclimatemodelused-ofaglobalaveragetemperatureriseexceeding2˙Cbytheendofthecentury,givingatleasta50%riskofexceeding5˙Cglobalaveragetemperaturechange

39WorldBankGroup.2014.“TurnDowntheHeat:ConfrontingtheNewClimateNormal.”Washington,DC:WorldBank.https://openknowledge.worldbank.org/handle/10986/20595

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-68

duringthefollowingdecades.Thiswouldtakehumansintounknownterritory.”40AccordingtotheSternreportandotherscientificresearch,the“unknownterritory”includes:

§ persistentdrought§ globalfoodinsecurity§ multi-metersealevelriserequiringevacuationorrebuildingofcoastalcities§ asubstantialincreaseinwildfires§ extremeweatherphenomenaincludingfloodsandhurricanes.§ theSternReviewindicatesthatthislevelofemissionswouldcost20%ormoreofglobalGDP

Bycontrast,itisestimatedthattheall-outeffortneededtopreventrunawayclimatechangewouldrequireaninvestmentof2%ofannualglobalGDP,effectiveimmediately.TheImportanceofMethaneMitigation:Tofurtherunderstandtheimportanceofmethane,itisnecessarytobreakdowntheIPCCs“representativeconcentrationpathways”(RCPs)forcarbondioxidevs.methanebytimeperiod.NASA’sformerChiefClimateScientist,JamesHansennotedina2007paper.(Notethat“non-C02forcings”referencedbelowincludemethaneemissionsandblackcarbonasthemostimportant.)Non-CO2climateforcingsareimportant,despitethefactthatCO2isthelargesthuman-madeclimateforcing.Indeed,expecteddifficultiesinslowingthegrowthrateofCO2andeventuallystabilizingatmosphericCO2amountmakethenon-CO2forcingsallthemoreimportant.Itnowappearsthatonlyifreductionofthenon-CO2forcingsisachieved,andCO2growthisslowed,willitbepossibletokeepglobaltemperaturewithinorneartherangeofthewarmestinterglacialperiods.Themostimportant‘non-CO2forcings’forshorttermclimateinfluencearemethaneandblackcarbon(fineparticulatecarbon).Despitethefacttheyaren’tnearlyasimportantascarbondioxideinthelongruntheirmitigationholdssignificantshorttermpotentialaswellaspromiseofhealthandagriculturalbenefits.41Ina2012studyonmitigationpathwaysentitledSimultaneouslyMitigatingNear-TermClimateChangeandImprovingHumanHealthandFoodSecuritymitigationstrategiesaddressingcarbonandmethanecouldpotentiallyslowwarmingoverthecomingdecades,whencombinedwithCO2mitigationapproachesasnotedinthegraphbelow,whichcorrelatesemissionswiththeirglobalwarmingpotentialoverrelevantnear-termtimescales.

40BillMcKibben,“GlobalWarming’sTerrifyingNewMath,”RollingStone,July2012,http://www.rollingstone.com/politics/news/global-warmings-terrifying-new-math-20120719

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-69

Becausemethanehasalargereductionpotentialandcost-effectivemitigationtechnologiesareavailablenow,manyclimatepolicystrategistsarebeginningtofocusonmethane,blackcarbon,andotherhighest-globalwarmingpotentialGHGstoproducethegreatestCO2equivalentreductionspossibleinthenear-term(thenext20years)Thisstrategyrequiresreducingrelianceonnaturalgasasaprimaryenergyandtransportationfeedstockwherevercleaneralternativesareavailable(includingrenewablebiofuelsaswellasrenewableelectricity);andutilizingallavailabletechnologiestominimizeexistingmethaneleakagefromthefuelsupplychain,andfromagricultural,livestock,andlandfillsources.42Insummary,giventheimminentcrossingofkeyclimatictippingpoints,andthepotentialofmethane-relatedpoliciestosubstantiallyexacerbateormitigateglobalwarming,itisrecommendedthatpolicymakersandotherstakeholdersutilizethe20-yearGlobalWarmingPotentialtimeframeforassessingthepotentialshifttonaturalgasfromotherfuelsources.A-2.Using“BreakevenLeakageRate”toGuideNaturalGasvs.DieselFuelPathwayChoices:Giventheimportanceofmethaneleakageinestablishinganaccurateglobalwarmingimpactassessmentofnaturalgas,intheUCDavisreportandotheranalyses,scientistsareusingaframeworkcalledthebreakevenleakagerate(BLR)toguidefuelpathwaydevelopmentpolicies.Thisisdefinedas“themaximumacceptableupstreammethaneleakagerateatwhichthecombinedwarmingeffectsofCH4(methane)andCO2fromnaturalgasbalanceoutthecombinedeffectsofCO2andCH4ofthefuelsitsubstitutes.”43Toprovidepolicy-makerswithamorenuancedunderstandingoftheissue,theUCDavisreportprovidesaccesstothefullmodelanditssensitivitiesanduncertainties,ratherthan

42“MethaneEmissionsinContext,”fromShrinkThatFootprint,accessedJuly2015,http://shrinkthatfootprint.com/methane-emissions-in-context.43RosaDominguez-Faus,Ph.D.,“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.6.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-70

establishingasingledeterminantoftheappropriateleakagerate.EstablishingasinglenumberwillbetheresponsibilityofEPAandCARB,basedonanalysisthatisstillongoingasofearly2016andwillremainthesubjectofcontinuousrefinementforsometimetocome.However,byreferencingtheauthoritativemeta-analysisofleakageratesperformedtodate,theUCDavisreporthelpsframeaconservativeapproachforpolicy-makerstoguidenear-termplanning,andinformstakeholderinputtothepolicyprocess.Asnotedabove,theUCDavisanalysisutilizesthe2014versionofArgonne’sGREET1modeltocalculatethewarmingimpactofnaturalgasinvarioustransportationapplications.Thekeyunitintheanalysisisthecarbonintensity(CI)ofnaturalgasdefinedasgramsofCO2equivalentemittedpermiledriven(gCO2e/mi).TheGREET1modelusesthelatestIPCCfiguresforthe20-yearGlobalWarmingPotentialofmethane(86–meaningthatmethaneis86timesmorepotentpergramthanCO2overa20yeartimeframe),whileitusesthe100yearGWPfigureof30.(Notethatifexpectedcarboncyclefeedbacksareincludedinthiscalculation,the100yearGWPincreasesto34).ToreviewtheGWP“math”--inthetwentyyeartimeframe,onegramofmethaneemittedtodaywouldhavecreatedtheequivalentwarmingof86gramsofCO2emittedtoday--butin100yearsitwillhavetheeffectofonly30gramsofCO2emittedtoday.TheUCDavisresearchersnotethattheircalculationsusingthenationalGREET-1standarddifferveryslightlyfromtheCA-GREETstandardusedtoassessfuelcarbonintensity--duetothechoiceofthefunctionalunitusedfortheanalysis.TheCARBanalysisusingCA-GREETtoassessfuelsfortheLCFSistargetedtofuelproducers–andthustheLCFSlookuptablesshowthecarbonintensitiesoffuelsexpressedasgramsofcarbondioxideequivalentperMegaJoule(gCO2e/MJ)ofenergy.IntheUCDavisstudyandintheGREET-1model,thecarbonintensityofNGVsisexpressedasgramsofcarbondioxideequivalentspermiledriven(gCO2e/mile)--thusincorporatingrelativevehicleefficienciesinthemetric.AccordingtothestudyauthorswhentheLCFSvaluesaretranslatedtogCO2e/mile,theCA-GREETvaluesareclosetothevaluespresentedintheUCDavisstudy.44WewillreturntothisA-3.TheRoleofMethaneLeakageintheDeterminationofNaturalGasClimateImpacts:Newresearchintomethaneleakageratesistakingplaceatmultiplelevelsofgovernment,researchuniversities,andintheprivateandNGOsector.However,thisresearchwillnotlikelyresultinafixedmethaneleakageratethatwillpersistforyearsatthesamelevel–astherearealsoongoingeffortstomitigatefugitivemethaneemissionsandthusreducethemethaneleakagerateovertime.SomeoftheseeffortsarecoordinatedbytheEnvironmentalDefenseFund,whichhaslinkeduniversities,naturalgasproducers,andutilitiestocollaborativelyassesstheextentofmethaneleakagesthroughoutthenaturalgassupplychain.45StudiesonthenewbaselineleakageratearebeginningtobereleasedandwillinformongoingrevisionsofCARBcarbonintensityvaluesidentifiedfortheLCFS.Inaddition,newinitiativestomitigatetheleakagerate–includingtheEPA’svoluntaryNaturalGasStarProducerprogram--arebeingupgradedasnew(mandatory)regulationsareinthedevelopmentphasebytheEPA.Giventhatitmaybeaconsiderableperiodoftimebeforemethodologicalissuesaboutmethaneleakageratesarefullyresolved,localpolicymakersneedtobegenerallyawareofmethaneassessmentissues,asnewdatacouldinvalidatepreviouslyheldassumptionsabouttherelativeimpactsofnaturalgasanddieselfuels. AccordingtotheEPA’s2014GreenhouseGasInventory,thenaturalgassystemleakedabout1.12%44RosaDominguez-Faus,Ph.D.,“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.20.45EnvironmentalDefenseFund,“WhatWillItTaketoGetSustainedBenefitsFromNaturalGas?”http://www.edf.org/methaneleakage.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-71

system-wideasanationalaverage--fromwhich0.2%resultsfrompre-production(i.e.,drillingandfracking),0.4%resultfromproduction,0.2%fromprocessingofgas,and0.7%fromtransmissionanddistribution.46Bycontrast(asnotedinChapter5oftheAFVReadinessPlan)anauthoritativemeta-analysisof20yearsofscientificliterature,publishedin2014inthepeer-reviewedjournalSciencebyBrandtetal.,concludestheactualleakagerateismostlikelybetween1.85-2.95%.47Reasonsforthesubstantialdiscrepancybetweenthe2014EPAinventoryandothernon-EPAinventoriesincludethefollowing:

§ EPAhasexcludedleaksfromthethreemillionabandonedoilandgaswellsintheUnitedStates.Further,theinventoryofabandonedwellsisgrowingrapidlyduetothefrackingboom,inwhichfrackingoperatorsaredrillingincreasingnumbersofwellsperunitofgasextractedduetothefactthatthemostproductivelocationsaretypicallydrilledfirst.48

§ EPAincludesinitsdatasetonlycompaniesparticipatinginthevoluntaryGasSTARbestpracticeproductionprogram.AnanalysisbyEnvironmentalDefenseFunddemonstratedthatthisexclusionisskewingdatabecauseasmallnumberof“badoperators”whodonotparticipateinthisprogramareresponsibleforalargeshareofmethaneleaks.49

§ BoththeEPAandthemeta-analysisinScienceexcludeleaksfromrefuelingstationsorvehicles,whicharecertaintobenon-zero.

Inlightofthefactorsidentifiedabove,policy-makersfavoringaprecautionaryapproachwouldlikelychoosethehighervalueof~3%asanappropriate“breakevenleakagerate”atwhichnaturalgaspoweredvehiclesareenvironmentallypreferabletodiesel.Ofcourse,anysuchwell-to-wheelscalculationperformedatafleetlevel(wherespecificvehicleandfueltypesareknown)alsoneedstotakeintoaccountthedifferentialemissionsratesofdifferentdieselenginesaswellasanyknownvariationinthefuelsupplychange,suchaspotentialutilizationofbiogas.A-4.TheEmissionsProfileofEmergingNaturalGasEngineTechnologies:Asisthecasewithallvehicletechnologies,naturalgasenginedevelopmentisinahighlydynamicstate.Tosummarize,therearethreeimportanttechnologiestoconsiderwhenassessingcleanerdieseltechnologies:compressionignition(Ci)engines,sparkignition(Si)engines,andHigh-PerformanceDieselIgnition(HPDI)engines.Asthenamesindicate,spark-ignitionenginesareinternalcombustionenginesinwhichthecombustionprocessoftheair-fuelmixtureisignitedbyasparkfromasparkplug.Incompression-ignitionengines,theheatgeneratedfromcompressiontogetherwiththeinjectionoffuelissufficienttoinitiatethecombustionprocess,withoutneedinganyexternalspark.TheHighPerformanceDieselIgnitiontechnologycombinesadieselignitionstagewithanaturalgasengine,utilizingthesamedieselthermodynamiccycleusedbydieselfuel.Sparkignitionenginesarecurrentlystandardintheindustry.However,bothCompressionIgnitionandHighPerformanceDieselIgnitionenginesareinadvanceddevelopmentandareexpectedtodeliversignificantefficiencyimprovements.AccordingtotheUCDavisstudyonNGVtruckemissions,thesetechnologiesproducethefollowing46RosaDominguez-Faus,Ph.D.,“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.9.47BrandtARetal.(2014)“MethaneLeaksfromNorthAmericanNaturalGasSystems.”Science343.48Mostimportantly,anaccurateassessmentoftheimpactofabandonedwellswillencourageappropriateregulationtoreducetheiremissionsandpreservetheintegrityofnaturalgasasa“cleanerfuel”thancoal,forexample,asitpertainstoelectricgenerationorotherapplications.ArecentanalysisbytheWorldResourcesInstitutesuggeststhat40-60%ofleakscanbepreventableprofitablywithcurrenttechnology,whichcouldhelpbringtheleakageratebackdowntothelevelcurrentlyreportedbyEPA.However,arelativelyelaborateregulatoryandinspectionregimewouldbeneededtoachievethisresult,withuniformdeploymentacrossstatesthatnowregulatenaturalgasinaveryunevenpattern.Formorediscussionofthisissue,seetheICFreport,“EconomicAnalysisofMethaneEmissionReductionOpportunitiesintheU.S.OnshoreOilandNaturalGasIndustries.”March2014.http://www.edf.org/sites/default/files/methane_cost_curve_report.pdf49EnvironmentalDefenseFund,HarnessingthePotentialofNaturalGas:AddressingMethaneEmissions,http://csis.org/multimedia/video-harnessing-potential-natural-gas-addressing-methane-emissions

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-72

efficienciesandemissions.

§ Sparkignition(Si)enginescanrunonLNGorCNG.Basedonthe100yearglobalwarmingtimeframe(whichunderstatesnear-termimpacts),andascenarioof3%methaneleakage,anSienginewouldproduce13%morecarbonemissionsthandieselwhenrunningonLNG,and23%morewhenrunningonCNG.

§ Compressionignition(Ci)enginesareabout10-15%moreefficientthanSparkignition(Si)engines.However,theCimodelsatthistimearemoreexpensive--andproductionbyajointventurebetweenCumminsandWestportiscurrentlysuspendedduetolackofcustomerinterestandthehighcosttoofficiallycertifyenvironmentalcompliance.Itisanticipatedthatcompressionignitionengineproductionwillrestartincomingyears,particularlyifthepricedifferentialbetweennaturalgasanddieselfuelincreases.

§ HighefficiencyHPDIorHighPerformanceDieselIgnition:ThistechnologyiscurrentlybeingdevelopedbyWestportincollaborationwithCumminsandtheChineseenginesupplierWeichai.ThetechnologyisbeingdevelopedprimarilyfordeploymentinClass8(C8)naturalgastrucksandcanrunonCNGorLNG,althoughfueleconomyandemissionperformancewillbesuperioronLNG.Withthe100yeartimeframeand3%leakagescenario,anHPDInaturalgasenginewouldproduce2%morecarbonemissionsthanadieseltruck.However,HPDIenvironmentalperformanceonkeycriteriapollutants,includingParticulateMatter(PM),isalsosuperiortobothsparkignitionandcompressionignitiontechnologies.

AccordingtoWestport,theHPDIDieselcycleisinherentlymoreefficientthantheso-calledOttothermodynamiccycleusedbysparkignited(SI)gasolineandnaturalgasengines.inSIgasolineandnaturalgasengines,airandfuelarepre-mixedbeforeenteringthecombustionchamber,whichcancauseengineknocktooccurunlessalowercompressionratioisused,resultinginlowerenergyefficiencyandhigheremissions.Toenhanceefficiencyandemissionsperformance,theWestportHPDIusesnaturalgasastheprimaryfuelalongwithasmallamountofdieselasanignitionsource.Thetwofuelsarenotpre-mixedwiththeintakeairbeforetheyenterthecombustionchamber--sothereisnoriskofengineknockandthereforenoneedtolowerthecompressionratioandpeaktorqueoutput.Comparedtodieselfuel,thisdirectlyinjectednaturalgasburnswithaloweradiabaticflametemperatureandhasalowpropensitytotheformationofcarbonparticlesandthereforeoffersinherentnitrousoxide(NOx)andparticulatematter(PM)emissionsbenefits.50

A-5.SummaryofDieselvs.NaturalGasCarbonEmissionsUsingthe100YearGlobalWarmingTimeframeandthe3%LeakageRate:TheUCDavisreportprovidespolicymakerswitharangeofanalysesofdieselvs.naturalgasengines,usingboththe100yearand20yearglobalwarmingtimeframe.However,theUCDavisanalysis(withoutexplanation)excludesthecombinationofa3%leakagerateanda20yearGWPtimeframe.Thisisunfortunate,giventhatthisisareasonable“precautionary”analyticframeworkandconsistentwithevolvingsciencenowbeingintegratedintoboththeIPCCclimateforecastsandEPAnaturalgasregulation.However,itisnoteworthythatwhenapplyingeitherthelessconservative100yeartimeframeincombinationwiththemoreconservative3%leakagerateorthemore20yearGWPtimeframeandtheEPA’scurrent1.12%leakagerate,naturalgastrucks–evenwiththebest-performingHPDIengines--becomeclearlydisadvantageous

50Formoreinformation,seetheWestportwebsiteathttp://www.westport.com/is/core-technologies/hpdi-2

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-73

withrespecttodieseltrucksrelativetocarbonemissionsalone(seepanel5below).Ofcourse,naturalgasvehiclesdohaveimportantlocalemissionsbenefitsrelativetocriteriapollutants,notablytheParticulateMatterthatisespeciallysignificantintermsofpublichealthimpactsforchildren,theelderly,andthosewithrespiratorychallenges.Further,theHPDI–equippedNGVtruckisnearlytheequalofdieselfromaCO2eperspective(butonlyonthe100yeartimeframe),whilebeingclearlysuperiorincriterialemissionsperformance.Thevariouscolumnsbelowshowtheimpactofleakageratesvaryingfrom0%to10%usingthe100yearGWPframework,andshowtheresultsina20yearGWPanalysisusingjustthe1.12%leakageratefactor.

Source:“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.14.Acronyms:Si=Sparkignition;Ci=CompressionIgnition.Intheirsummary,UCDavisresearchersconcludethatnaturalgascanachievelowercarbonintensitythandieselundercurrentleakageassumptionsof1.12%onlyifa100yearGlobalWarmingPotentialtimeframeisassumed–andonlythroughtheuseofthehighefficiencyenginessuchastheHPDI(whichisexpectedtobeavailablelaterin2016)butnotwithlessefficientSiengines.However,applyingtheleakagerateof3%orhigher(assuggestedbytherecentmeta-analysispublishedinScience)wouldmakealltypesofnaturalgasenginesundesirablefromaclimatestabilityperspective,evenwiththe100yearGWP.Usingthe20yearGWP,naturalgasisevenmoreproblematic.Intheeventthata0%leakagerateisachievedacrosstheentirenaturalgasfuelsupplychain,thentrucksutilizingLNGfuelandcompressionignitiontechnologywouldyielda4%advantageoverthedieselbaselineunderthe100yearassessment.However,itisnotlikelytobetechnicallyoreconomicallyfeasibletoachievea0%leakagerategiventhechallengesoflocating,sealing,andmaintainingthemorethanthreemillionabandonedoilandgaswellsintheU.S.alone.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-74

Establishingthe“BreakevenPoint”forNaturalGasVehicleEmissionsUnderVaryingMethaneLeakageRatesandDynamicallyChangingEngineTechnologies:Itshouldbeemphasizedthatnothinginthenaturalgasvehicleecosystemisstatic–methaneleakageratesatvariouspointsontheproductionandsupplychainwillalmostcertainlychange,vehicleengineefficiencieswillchange,andtheemissionsprofileofdieselandotheralternativefuelswillchange.Toservetheanalyticprocessunderthesedynamicconditions,UCDavisresearchersprovideachartshowingtheeffectofgreaterorlessermethaneleakageacrossthefuelsupplychain.Thisanalysispinpointsthe“maximumacceptable”upstreammethaneleakagerateatwhichthecombinedwarmingeffectsofmethaneandCO2fromnaturalgasasatransportfuelareequaltothecombinedeffectsofCO2andmethaneofthefuelsitsubstitutes,inthiscase,diesel.Inthe100yeartimeframeconsideredhere,leakageratebelow2.8%justifyaswitchtonaturalgaspoweredheavy-dutytrucksonlyiftheyuseHPDItechnologyandLNGstorage.ThefeedstockpathwayofLNGproducesloweremissionsandlowersensitivitytoleakageasitbypassesthelocalnaturalgaspipelinedistributionsystem.

Source:“TheCarbonIntensityofNGVC8Trucks,”UCInstituteforTransportationStudies,March2015,p.16.

DRAFTMontereyBayAlternativeFuelsReadinessPlan|Chapter5–NaturalGasVehiclesandInfrastructurev1|page5-75

A-6.ProspectsforFutureMethaneLeakageReductiontoImprovetheEmissionsProfileofNaturalGas:AccordingtotheUCDavisanalysis,naturalgascanachievelowercarbonintensitythandieselundercurrentleakageassumptionsof1.12%witha100yearGWPthroughtheuseofthehighefficiencyenginessuchastheHPDIbutnotwithlessefficientSiengines.WhenusingHPDIengines,naturalgaswillbebeneficialaslongasleakagerateremainsunder3%(thoughnotwiththe20yearGWPtimeframe.)UntilHPDItechnologycanbewidelyadopted,naturalgasproductionanddistributionmethaneleakagemustbecompletelyeliminatedfromthefuelsupplychain(orbiomethanesourcesmustbeused)fortoday’sfleetofSiNGVtruckstohavelowercarbonintensitythanstandarddieseltrucks.Avarietyoftechnologieswithshortpaybackperiodscouldachievesignificantfugitivemethanereductionsatdifferentstagesofthenaturalgassupplychain,asdemonstratedundertheEPANaturalGasSTARprogram.However,untilalloperatorsarerequiredtoimplementbestavailabletechnologytoreducemethaneleakage,thetheoreticalopportunityforimprovementsarenotlikelytoberealized.Further,theleakageassociatedwithabandonedwellsmayrequireakindofSuperfundprogramformethane,whichhasyettobedeveloped.Inlightoftheabovefactors,localpolicymakersareadvisedtomaintainaclosewatchondevelopmentsinthemethaneleakageissue,andtoseekoutauthoritative,peer-reviewed,andindependentanalysestosupplementstateandfederaldatasourceswhenassessingtheenvironmentalbenefitofshiftingfromdieseltonaturalgasfuelsandvehicles.