31
Calculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap Govt. P. G. College Hardoi

Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

Calculus of Variations

Dr. Pragya Mishra

Assistant Professor , Mathematics

Maharana Pratap Govt. P. G. College

Hardoi

Page 2: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

Calculus of Variations

Functional Euler’s equation

V-1 Maximum and Minimum of Functions

V-2 Maximum and Minimum of Functionals

V-3 The Variational Notaion

V-4 Constraints and Lagrange Multiplier

Euler’s equation Functional

V-5 Approximate method

1. Method of Weighted Residuals

Raleigh-Ritz Method

2. Variational Method

Kantorovich Method

Galerkin method

Page 3: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

3

V-1 Maximum and Minimum of Functions

Maximum and Minimum of functions

(a) If f(x) is twice continuously differentiable on [x0 , x1] i.e.

Nec. Condition for a max. (min.) of f(x) at is that

Suff. Condition for a max (min.) of f(x) at are that

also ( )

(b) If f(x) over closed domain D. Then nec. and suff. Condition for a max. (min.)

i = 1,2…n and also

that is a negative infinite .

0 1[ , ]x x x 0F x

0 1[ , ]x x x

0F x

0F x

0F x

D D 0

0x x

i

f

x

of f(x) at x0 are that

0

2

x x

i j

f

x x

Part A Functional Euler’s equation

Page 4: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

4

(c) If f(x) on closed domain D

If we want to extremize f(x) subject to the constraints

i=1,2,…k ( k < n )

Ex :Find the extrema of f(x,y) subject to g(x,y) =0

(i) 1st method : by direct diff. of g

1( , , ) 0i ng x x

0x ydg g dx g dy

x

y

gdy dx

g

0x ydf f dx f dy

( ) 0xx y

y

gf f dx

g

To extremize f

Page 5: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

5

We have

and

to find (x0,y0) which is to extremize f subject to g = 0

0x y y xf g f g 0g

(ii) 2nd method : (Lagrange Multiplier)

extrema of v without any constraint

extrema of f subject to g = 0

To extremize v

( , , ) ( , ) ( , )v x y f x y g x y

0x x

vf g

x

0y y

vf g

y

0x y y xf g f g

0v

g

Let

We obtain the same equations to extrimizing. Where is called

The Lagrange Multiplier.

Page 6: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

6

V-2 Maximum and Minimum of Functionals

2.1 What are functionals.

Functional is function’s function.

2.2 The simplest problem in calculus of variations.

Determine such that the functional:

where over its entire domain , subject to y(x0) = y0 , y(x1) = y1at the end

points.

1

0

, ,x

xI y x F x y x y x dx

2

0 1( ) [ , ]y x c x x

2F c

as an extrema

1y 2y

( )y x

1x 2x( )x

( ) ( )y x x

x

y

Page 7: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

7

On integrating by parts of the 2nd term

------- (1)

since and since is arbitrary.

-------- (2) Euler’s Equation

Natural B.C’s

or /and

The above requirements are called national b.c’s.

0)],,(),,([]),,([1

0

1

0 dxyyxFyyxF

dx

dyyxF

x

xyy

x

xy

0 1( ) ( ) 0x x ( )x

( , , ) ( , , ) 0y y

dF x y y F x y y

dx

0

0x

F

y

1

0x x

F

y

Page 8: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

8

Variations

Imbed u(x) in a “parameter family” of function the

variation of u(x) is defined as

The corresponding variation of F , δF to the order in ε is ,

since

and

( , ) ( ) ( )x u x x

( )u x

1

0

( ) ( , , ) ( )x

xI u F x u u dx G

( , ) ( , , )F F x y y F x y y

F Fy y

y y

1

0

( , , )x

xI F x y y dx

1

0

( , , )x

xF x y y dx

Then

1

0

x

x

F Fy y dx

y y

V-3 The Variational Notation

Page 9: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

9

Thus a stationary function for a functional is one for which the first variation = 0.

For the more general cases

,

1

1

0

0

xx

xx

F d F Fydx y

y dx y y

1

0

( , , z ; , z )x

xI F x y y dx Ex :

Ex : ( , , , , )x yR

I F x y u u u dxdy

Euler’s Eq.

Euler’s Eq.

F

y

( ) 0F d F

y dx y

( ) 0

F d F

z dx z

(b) Several Independent variables.

(a) Several dependent variables.

( ) ( ) 0x y

F F F

u x u y u

Page 10: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

10

Variables Causing more equation.

Order Causing longer equation.

Ex :1

0

( , , , )x

xI F x y y y dx

Euler’s Eq.2

2( ) ( ) 0

F d F d F

y dx y dx y

(C) High Order.

Page 11: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

11

V-4 Constraints and Lagrange Multiplier

Lagrange multiplier can be used to find the extreme value of a multivariate

function f subjected to the constraints.

Ex :

(a) Find the extreme value of

------------(1)

From -----------(2)

1

0

( , , , , )x

x xx

I F x u v u v dx 1 1( )u x u

2 2( )u x u

1 1( )v x v 2 2( )v x v

where

and subject to the constraints

( , , ) 0G x u v

2

1

0x

xx x

F d F F d FI u v dx

v dx u v dx v

Lagrange multiplier

Page 12: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

12

Because of the constraints, we don’t get two Euler’s equations.

From

The above equations together with (1) are to be solved for u , v.

0G G

G u vu v

v

u

Gv u

G

So (2)

1

0

0x

v

xu x x

G F d F F d FI vdx

G u dx u v dx v

0x x

G F d F G F d F

v u dx u u v dx v

Page 13: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

13

(b) Simple Isoparametric Problem

To extremize , subject to the constraint:

(1)

(2) y (x1) = y1 , y (x2) = y2

Take the variation of two-parameter family:(where and are some equations which satisfy

)

2

1

, ,x

xI F x y y dx

2

1

, , .x

xJ G x y y dx const

1 1 2 2y y y x x

1 x 2 x

1 1 2 1 1 2 2 2 0x x x x

Then ,

To base on Lagrange Multiplier Method we can get :

2

11 2 1 1 2 2 1 1 2 2( , ) ( , , )

x

xI F x y y dx

2

11 2 1 1 2 2 1 1 2 2( , ) ( , , )

x

xJ G x y y dx

Page 14: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

14

1 2 0

1

0I J

1 2 0

2

0I J

2

1

0x

ix

F d F G d Gdx

y dx y y dx y

i = 1,2

So the Euler equation is:

when , is arbitrary numbers.

The constraint is trivial, we can ignore .

0d

F G F Gy dx y

0G d G

y dx y

Page 15: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

15

( , , ) ( , )sin( )f x y t P x y t

( , )sin( )u v x y t

2 2

2 2

2 2( ) 0

v vc v p

x y

Euler’s equation Functional

Examples

we may write the steady state disp u in the form

if the forcing function f is of the form

(1)

2 2 22

2 2 2( ) ( , , )

u u uc f x y t

t x y

Ex : Force vibration of a membrane.

-----(1)

Helmholtz Equation

Page 16: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

16

2 22 2

2 2( ) 0

R

v vc v p vdxdy

x y

-----(2)

2

xxR

c v vdxdy2 [( ) ]x x x x

Rc v v v v dxdy

Consider

2

yyR

c v vdxdy2

y y y y[( ) ]R

c v v v v dxdy

( )x x xx x xv v v v v v ( )y y yy y yv v v v v v

cos sinn i j

x yV V i V j x xV v v

y yV v v

yx( v)( v)

=yx

VVV

x y x y

Note that

Page 17: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

17

2 2

xx yyR R

c v vdxdy c v vdxdy

2 2 21sin ( )

2y y

Rc v v ds c v dxdy

(2)

2 2 2 21( cos sin ) [( ) ( ) ]

2x y x y

Rc v v vds c v v dxdy

2

2

1( ) 0

2R Rv dxdy P vdxdy

2 2 2 2 21 1[ ( ) ] 02 2R

vc vds c v v Pv dxdy

n

( )V da V nds

( cos sin )dsx yv v v v

2 2 21cos ( )

2x x

Rc v v ds c v dxdy

Page 18: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

18

Hence :

(i) if is given on

i.e. on

then the variational problem

-----(3)

(ii) if is given on

the variation problem is same as (3)

(iii) if is given on

( , )v f x y

0v

2

2 2 21[ ( ) ] 0

2 2R

cv v pv dxdy

0v

n

( )v

sn

2 2 2 2 21 1

[ ( ) ] 02 2R

c v v pv dxdy c vdx

Page 19: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

19

Ex : Steady state Heat condition

in D( ) ( , )k T f x T

B.C’s :

on B1

on B2

on B3

multiply the equation by , and integrate over the domain D. After integrating

by parts, we find the variational problem as follow.

with T = T1 on B1

1T T

2kn T q

3( )kn T h T T

T

0

21[ ( ) ( , )

2

T

D Tk T f x T dT d

2 3

2

2 3

1( ) ] 0

2B Bq Td h T T d

Diffusion Equation

Page 20: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

20

2 2

0 on

in R

Ex : Torsion of a primatri Bar

where is the Prandtl stress function and

,

The variation problem becomes

with on

z Gy

zyx

2[( ) 4 ] 0R

D dxdy

0

Poison Equation

Page 21: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

21

V-5-1 Approximate Methods

(I) Method of Weighted Residuals (MWR)

in D+homo. b.c’s in B

Assume approx. solution

where each trial function satisfies the b.c’s

The residual

In this

method (MWR), Ci are chosen such that Rn is forced to be zero in an average

sense.

i.e. < wj, Rn > = 0, j = 1,2,…,n

where wj are the weighting functions..

[ ] 0L u

1

n

n i i

i

u u C

i

[ ]n nR L u

Page 22: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

22

(II) Galerkin Method

wj are chosen to be the trial functions hence the trial functions is chosen

as members of a complete set of functions.

Galerkin method force the residual to be zero w.r.t. an orthogonal complete set.

j

Ex: Torsion of a square shaft

2 2

0 ,on x a y a

(i) one – term approximation

2 2 2 2

1 1( )( )c x a y a

2 2 2

1 12 2 [( ) ( ) ] 2iR c x a y a

2 2 2 2

1 ( )( )x a y a

Page 23: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

23

From 1 1 0a a

a aR dxdy

1 2

5 1

8c

a

therefore

2 2 2 2

1 2

5( )( )

8x a y a

a

the torsional rigidity

4

1 2 0.1388 (2 )R

D G dxdy G a the exact value of D is

40.1406 (2 )aD G a

the error is only -1.2%

Page 24: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

24

2 2 2 2 2 2

2 1 2( )( )[ ( )]x a y a c c x y

By symmetry → even functions

2 2 2R

2 2 2 2

1 ( )( )x a y a

2 2 2 2 2 2

2 ( )( )( )x a y a x y

From 2 1 0RR dxdy

and 2 2 0RR dxdy

we obtain

1 22 2

1295 1 525 1,

2216 4432c c

a a

therefore

4

2 22 0.1404 (2 )R

D G dxdy G a the error is only -0.14%

(ii) two – term approximation

Page 25: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

25

(I) Kantorovich Method

1

( )n

i n i

i

u C x U

Assuming the approximate solution as :

where Ui is a known function decided by b.c. condition.

Ex : The torsional problem with a functional “I”.

2 2( ) [( ) ( ) 4 ]a b

a b

u uI u u dxdy

x y

V-5-2 Variational Methods

Ci is a unknown function decided by minimal “I”. Euler Equation of Ci

Page 26: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

26

Assuming the one-term approximate solution as :

2 2( , ) ( ) ( )u x y b y C x Then,

2 2 2 2 2 2 2 2(C) {( ) [C ( )] 4 C ( ) 4( )C( )}a b

a bI b y x y x b y x dxdy

Integrate by y

5 2 3 2 316 8 16(C) [ C C C]

15 3 3

a

aI b b b dx

Euler’s equation is

2 2

5 5C ( ) C( )

2 2x x

b b where b.c. condition is C( ) 0a

General solution is

1 2

5 5C( ) A cosh( ) A sinh( ) 1

2 2

x xx

b b

Page 27: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

27

1 2

1A , A 0

5cosh( )

2

a

b

where

and

5cosh( )

2C( ) 15

cosh( )2

x

bxa

b

So, the one-term approximate solution is

2 2

5cosh( )

2u 1 ( )5

cosh( )2

x

b b ya

b

Page 28: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

28

(II) Raleigh-Ritz Method

This is used when the exact solution is impossible or difficult to obtain.

First, we assume the approximate solution as :

Where, Ui are some approximate function which satisfy the b.c’s.

Then, we can calculate extreme I .

choose c1 ~ cn i.e.

1

n

i i

i

u CU

1( , , )nI I c c1

0n

I I

c c

y xy x (0) (1) 0y y

1

00y xy x ydx

1 2 2

0

1 1

2 2I y xy xy dx

Ex: ,

Sol :

From

Page 29: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

29

Assuming that

(1)One-term approx

(2)Two-term approx

2

1 2 31y x x c c x c x

2

1 11y c x x c x x 1 1 2y c x

1

2 2 2 2 3 4 2

1 1 1 10

11 4 4 2

2 2

xI c c x x c x x x c x x x dx

2 2

1 11

4 1 2 1 1 11 2

2 3 2 4 5 6 3 4

c cc

2 11

19

120 12

cc

1

0I

c

1

19 10

60 12c

1 2(1 )( )y x x c c x 2 2 3

1 2( ) ( )c x x c x x

(1) 0.263 (1 )y x x 1 0.263c

Then,

Page 30: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

30

Then 2

1 2(1 2 ) (2 3 )y c x c x x

1

2 2 2 3

1 2 1 1 20

1( , ) [ 1 4 4 2 2 7 6

2I c c c x x c c x x x

2 2 3 4 2 3 4 5 4 5 6

3 1 1 2

1(4 12 9 ) 2 2 2

2c x x x c x x x c c x x x

2 5 6 7 2 3 3 4

2 1 2( 2 ) ]c x x x c x x c x x dx

2

11 2

4 1 2 1 7 3 1 1 11 2 1

2 3 4 5 6 3 2 5 3 7

cc c

2

1 1 24 9 1 2 93

2 3 5 6 7 8 12 20

c c c

2 2 1 21 1 2 2

19 11 107

120 70 1680 12 20

c cc c c c

Page 31: Calculus of Variations - P.G. Collegempgpgcollegehardoi.in/Calculus-of-Variations PPT2.pdfCalculus of Variations Dr. Pragya Mishra Assistant Professor , Mathematics Maharana Pratap

31

0.317 c1 + 0.127 c2 = 0.05 c1 = 0.177 , c2 = 0.173

1

0I

c

1 2

19 11 1

60 70 12c c

2(2) (0.177 0.173 )(1 )y x x x

( It is noted that the deviation between the successive approxs. y(1) and y(2) is

found to be smaller in magnitude than 0.009 over (0,1) )

2

0I

c

1 2

11 109 1

70 840 20c c