Chapter5 Calculus of Variations

Embed Size (px)

Citation preview

  • 8/11/2019 Chapter5 Calculus of Variations

    1/30

    Calculus of Variations

    Functional Eulers equation

    V-1 Maximum and Minimum of Functions

    V-2 Maximum and Minimum of Functionals

    V-3 The Variational Notaion

    V-4 Constraints and Lagrange Multiplier

    Eulers equation Functional

    V-5 Approximate method

    1. Method of Weighted Residuals

    Raleigh-Ritz Method

    2. Variational Method

    Kantorovich Method

    Galerkin method

  • 8/11/2019 Chapter5 Calculus of Variations

    2/30

    2

    V-1 Maximum and Minimum of Functions

    Max imum and Min imum of func t ions

    (a)If f(x) is twice continuously differentiable on [x0, x1] i.e.

    Nec. Condition for a max. (min.) of f(x) at is that

    Suff. Condition for a max (min.) of f(x) at are that

    also ( )

    (b)If f(x) over closed domain D. Then nec. and suff. Condition for a max. (min.)

    i = 1,2n and also

    that is a negative infinite .

    0 1[ , ]x x x 0F x

    0 1[ , ]x x x

    0F x 0F x

    0F x

    D D 0 0x xi

    fx

    of f(x) at x0 are that

    0

    2

    x x

    i j

    f

    x x

    Part A Functional Eulers equation

  • 8/11/2019 Chapter5 Calculus of Variations

    3/30

    3

    (c)If f(x) on closed domain DIf we want to extremize f(x) subject to the constraints

    i=1,2,k ( k < n )

    Ex :Find the extrema of f(x,y) subject to g(x,y) =0

    (i) 1st method : by direct diff. of g

    1( , , ) 0i ng x x

    0x ydg g dx g dy x

    y

    gdy dx

    g

    0x ydf f dx f dy ( ) 0xx y

    y

    gf f dx

    g

    To extremize f

  • 8/11/2019 Chapter5 Calculus of Variations

    4/30

    4

    We have

    and

    to find (x0,y0) which is to extremize f subject to g = 0

    0x y y x

    f g f g 0g

    (ii) 2nd method : (Lagrange Multiplier)

    extrema of v without any constraint

    extrema of f subject to g = 0

    To extremize v

    ( , , ) ( , ) ( , )v x y f x y g x y

    0x xv

    f gx

    0y yv

    f gy

    0x y y xf g f g

    0

    v

    g

    Let

    We obtain the same equations to extrimizing. Where is called

    The Lagrange Multiplier.

  • 8/11/2019 Chapter5 Calculus of Variations

    5/30

  • 8/11/2019 Chapter5 Calculus of Variations

    6/30

    6

    On integrating by parts of the 2nd term

    ------- (1)

    since and since is arbitrary.

    -------- (2) Eulers Equation

    Natural B.Cs

    or /and

    The above requirements are called national b.cs.

    0)],,(),,([]),,([ 10

    1

    0

    dxyyxFyyxF

    dx

    dyyxF

    x

    x yy

    x

    xy

    0 1( ) ( ) 0x x ( )x

    ( , , ) ( , , ) 0y yd

    F x y y F x y ydx

    0

    0

    x

    F

    y

    1

    0

    x x

    F

    y

  • 8/11/2019 Chapter5 Calculus of Variations

    7/30

    7

    Variat ions

    Imbed u(x) in a parameter family of function the

    variation of u(x) is defined as

    The corresponding variation of F , F to the order in is ,

    since

    and

    ( , ) ( ) ( )x u x x

    ( )u x

    1

    0( ) ( , , ) ( )

    x

    xI u F x u u dx G

    ( , ) ( , , )F F x y y F x y y

    F Fy y

    y y

    1

    0

    ( , , )x

    xI F x y y dx

    1

    0

    ( , , )x

    xF x y y dx

    Then

    1

    0

    x

    x

    F F

    y y dxy y

    V-3 The Variational Notation

  • 8/11/2019 Chapter5 Calculus of Variations

    8/30

    8

    Thus a stationary function for a functional is one for which the first variation = 0.

    For the more general cases

    ,

    1

    1

    0

    0

    xx

    xx

    F d F Fydx y

    y dx y y

    1

    0( , , z ; , z )

    x

    xI F x y y dx Ex :

    Ex : ( , , , , )x y

    RI F x y u u u dxdy

    Eulers Eq.

    Eulers Eq.

    F

    y

    ( ) 0F d F

    y dx y

    ( ) 0

    F d F

    z dx z

    (b) Several Independent variables.

    (a) Several dependent variables.

    ( ) ( ) 0x y

    F F F

    u x u y u

  • 8/11/2019 Chapter5 Calculus of Variations

    9/30

    9

    Variables Causing more equation.

    Order Causing longer equation.

    Ex :1

    0

    ( , , , )x

    xI F x y y y dx

    Eulers Eq.2

    2( ) ( ) 0

    F d F d F

    y dx y dx y

    (C) High Order.

  • 8/11/2019 Chapter5 Calculus of Variations

    10/30

    10

    V-4 Constraints and Lagrange Multiplier

    Lagrange multiplier can be used to find the extreme value of a multivariatefunction f subjected to the constraints.

    Ex :(a) Find the extreme value of

    ------------(1)

    From -----------(2)

    1

    0

    ( , , , , )x

    x xx

    I F x u v u v dx 1 1

    ( )u x u2 2( )u x u

    1 1( )v x v 2 2( )v x v

    where

    and subject to the constraints

    ( , , ) 0G x u v

    2

    1

    0x

    xx x

    F d F F d FI u v dx

    v dx u v dx v

    Lagrange mu lt ip l ier

  • 8/11/2019 Chapter5 Calculus of Variations

    11/30

    11

    Because of the constraints, we dont get two Eulers equations.

    From

    The above equations together with (1) are to be solved for u , v.

    0G G

    G u vu v

    vu

    Gv u

    G

    So (2)

    1

    0

    0x

    v

    xu x x

    G F d F F d F I vdx

    G u dx u v dx v

    0x xG F d F G F d F

    v u dx u u v dx v

  • 8/11/2019 Chapter5 Calculus of Variations

    12/30

    12

    (b) Simple Isoparametric Problem

    To extremize , subject to the constraint

    (1)

    (2) y (x1) = y1, y (x2) = y2

    Take the variation of two-parameter family

    (where and are some equations which satisfy

    )

    2

    1 , ,

    x

    xI F x y y dx

    2

    1

    , , .x

    xJ G x y y dx const

    1 1 2 2y y y x x 1 x 2 x 1 1 2 1 1 2 2 2 0x x x x

    Then ,

    To base on Lagrange Multiplier Method we can get :

    2

    11 2 1 1 2 2 1 1 2 2( , ) ( , , )

    x

    x

    I F x y y dx

    21

    1 2 1 1 2 2 1 1 2 2( , ) ( , , )x

    xJ G x y y dx

  • 8/11/2019 Chapter5 Calculus of Variations

    13/30

    13

    1 2 0

    1

    0I J

    1 2 02

    0I J

    2

    1

    0x

    ix

    F d F G d Gdx

    y dx y y dx y

    i = 1,2

    So the Euler equation is

    when , is arbitrary numbers.

    The constraint is trivial, we can ignore .

    0d

    F G F Gy dx y

    0

    G d G

    y dx y

  • 8/11/2019 Chapter5 Calculus of Variations

    14/30

    14

    ( , , ) ( , )sin( )f x y t P x y t

    ( , )sin( )u v x y t

    2 22 2

    2 2( ) 0

    v vc v p

    x y

    Eulers equation Functional

    Examples

    we may write the steady state disp u in the form

    if the forcing function f is of the form

    (1)

    2 2 22

    2 2 2( ) ( , , )

    u u uc f x y t

    t x y

    Ex : Force vibration of a membrane.

    -----(1)

    Helmholtz Equation

  • 8/11/2019 Chapter5 Calculus of Variations

    15/30

    15

    2 22 2

    2 2( ) 0

    R

    v vc v p vdxdy

    x y

    -----(2)

    2

    xxR

    c v vdxdy2 [( ) ]

    x x x xR

    c v v v v dxdy

    Consider

    2

    yyR

    c v vdxdy2

    y y y y[( ) ]

    Rc v v v v dxdy

    ( )x x xx x xv v v v v v ( )y y yy y yv v v v v v

    cos sinn i j

    x yV V i V j

    x xV v v

    y yV v v

    yx ( v)( v)

    =yx

    VVV

    x y x y

    Note that

  • 8/11/2019 Chapter5 Calculus of Variations

    16/30

    16

    2 2

    xx yyR R

    c v vdxdy c v vdxdy

    2 2 21sin ( )

    2y y

    Rc v v ds c v dxdy

    (2)

    2 2 2 21

    ( cos sin ) [( ) ( ) ]2

    x y x yR

    c v v vds c v v dxdy

    2

    2

    1( ) 0

    2R Rv dxdy P vdxdy

    2 2 2 2 21 1[ ( ) ] 02 2R

    vc vds c v v Pv dxdy

    n

    ( )V da V nds ( cos sin )ds

    x y

    v v v v

    2 2 21

    cos ( )2x xRc v v ds c v dxdy

  • 8/11/2019 Chapter5 Calculus of Variations

    17/30

    17

    Hence :

    (i) if is given on

    i.e. on

    then the variational problem

    -----(3)

    (ii) if is given onthe variation problem is same as (3)

    (iii) if is given on

    ( , )v f x y

    0v

    2

    2 2 21[ ( ) ] 0

    2 2R

    cv v pv dxdy

    0

    v

    n

    ( )v

    sn

    2 2 2 2 21 1

    [ ( ) ] 02 2R c v v pv dxdy c vdx

  • 8/11/2019 Chapter5 Calculus of Variations

    18/30

    18

    Ex : Steady state Heat condition

    in D( ) ( , )k T f x T

    B.Cs :

    on B1

    on B2on B3

    multiply the equation by , and integrate over the domain D. After integrating

    by parts, we find the variational problem as follow.

    with T = T1 on B1

    1T T

    2kn T q

    3( )kn T h T T T

    0

    21[ ( ) ( , )

    2

    T

    D T

    k T f x T dT d

    2 3

    2

    2 3

    1( ) ] 0

    2B Bq Td h T T d

    Diffus ion Equation

  • 8/11/2019 Chapter5 Calculus of Variations

    19/30

    19

    2 2 0 on

    in R

    Ex : Torsion of a primatri Bar

    where is the Prandtl stress function and

    ,

    The variation problem becomes

    with on

    z G

    y

    zy x

    2[( ) 4 ] 0R

    D dxdy 0

    Poison Equat ion

  • 8/11/2019 Chapter5 Calculus of Variations

    20/30

    20

    V-5-1 Approximate Methods

    (I) Method o f Weigh ted Residu als (MWR)

    in D+homo. b.cs in B

    Assume approx. solution

    where each trial function satisfies the b.cs

    The residual

    In thismethod (MWR), Ciare chosen such that Rn is forced to be zero in an average

    sense.

    i.e. < wj, Rn > = 0, j = 1,2,,n

    where wj are the weighting functions..

    [ ] 0L u

    1

    n

    n i ii

    u u C i

    [ ]n n

    R L u

  • 8/11/2019 Chapter5 Calculus of Variations

    21/30

    21

    (II) Galerk in Method

    wjare chosen to be the trial functions hence the trial functions is chosen

    as members of a complete set of functions.

    Galerkin method force the residual to be zero w.r.t. an orthogonal complete set.

    j

    Ex: Torsion of a square shaft

    22

    0 ,on x a y a

    (i) oneterm approximation

    2 2 2 2

    1 1( )( )c x a y a 2 2 2

    1 12 2 [( ) ( ) ] 2iR c x a y a 2 2 2 2

    1 ( )( )x a y a

  • 8/11/2019 Chapter5 Calculus of Variations

    22/30

    22

    From 1 1 0a a

    a aR dxdy

    1 25 18c atherefore

    2 2 2 2

    1 2

    5( )( )

    8x a y a

    a

    the torsional rigidity

    4

    1 2 0.1388 (2 )R

    D G dxdy G a the exact value of D is

    40.1406 (2 )

    aD G a

    the error is only -1.2%

  • 8/11/2019 Chapter5 Calculus of Variations

    23/30

    23

    2 2 2 2 2 2

    2 1 2( )( )[ ( )]x a y a c c x y

    By symmetry even functions

    2 2 2R 2 2 2 2

    1 ( )( )x a y a

    2 2 2 2 2 2

    2 ( )( )( )x a y a x y

    From 2 1 0R

    R dxdy

    and 2 2 0R

    R dxdy we obtain

    1 22 2

    1295 1 525 1,

    2216 4432c c

    a a

    therefore

    4

    2 22 0.1404 (2 )RD G dxdy G a the error is only -0.14%

    (ii) twoterm approximation

  • 8/11/2019 Chapter5 Calculus of Variations

    24/30

    24

    (I) Kanto rovich Method

    1

    ( )n

    i n i

    i

    u C x U

    Assuming the approximate solution as :

    where Uiis a known function decided by b.c. condition.

    Ex : The torsional problem with a functional I.

    2 2

    ( ) [( ) ( ) 4 ]

    a b

    a b

    u uI u u dxdyx y

    V-5-2 Variational Methods

    Ciis a unknown function decided by minimal I. Euler Equation of Ci

  • 8/11/2019 Chapter5 Calculus of Variations

    25/30

    25

    Assuming the one-term approximate solution as :

    2 2( , ) ( ) ( )u x y b y C x

    Then,2 2 2 2 2 2 2 2

    (C) {( ) [C ( )] 4 C ( ) 4( )C( )}a b

    a bI b y x y x b y x dxdy

    Integrate by y

    5 2 3 2 316 8 16(C) [ C C C]15 3 3

    a

    aI b b b dx

    Eulers equation is

    2 2

    5 5

    C ( ) C( )2 2x xb b where b.c. condition is C( ) 0a

    General solution is

    1 2

    5 5C( ) A cosh( ) A sinh( ) 1

    2 2

    x xx

    b b

  • 8/11/2019 Chapter5 Calculus of Variations

    26/30

    26

    1 2

    1A , A 0

    5cosh( )

    2

    a

    b

    where

    and

    5cosh( )

    2C( ) 1

    5cosh( )2

    x

    bx

    a

    b

    So, the one-term approximate solution is

    2 2

    5

    cosh( )2u 1 ( )

    5cosh( )

    2

    x

    bb y

    a

    b

  • 8/11/2019 Chapter5 Calculus of Variations

    27/30

    27

    (II) Raleigh -Ritz Method

    This is used when the exact solution is impossible or difficult to obtain.

    First, we assume the approximate solution as :

    Where, Uiare some approximate function which satisfy the b.cs.

    Then, we can calculate extreme I .

    choose c1~ cn i.e.

    1

    n

    i i

    i

    u C U

    1( , , )nI I c c1

    0n

    I I

    c c

    y xy x (0) (1) 0y y

    1

    00y xy x ydx

    1 2 2

    0

    1 1

    2 2I y xy xy dx

    Ex: ,

    Sol :From

  • 8/11/2019 Chapter5 Calculus of Variations

    28/30

    28

    Assuming that

    (1)One-term approx

    (2)Two-term approx

    21 2 31y x x c c x c x

    21 11y c x x c x x 1 1 2y c x

    1

    2 2 2 2 3 4 2

    1 1 1 10

    11 4 4 2

    2 2

    xI c c x x c x x x c x x x dx

    2 2

    1 11

    4 1 2 1 1 11 2

    2 3 2 4 5 6 3 4

    c cc

    2 11

    19

    120 12

    cc

    1

    0I

    c

    119 1

    0

    60 12

    c

    1 2(1 )( )y x x c c x 2 2 3

    1 2( ) ( )c x x c x x

    (1) 0.263 (1 )y x x 1 0.263c

    Then,

  • 8/11/2019 Chapter5 Calculus of Variations

    29/30

    29

    Then2

    1 2(1 2 ) (2 3 )y c x c x x

    1

    2 2 2 3

    1 2 1 1 20

    1( , ) [ 1 4 4 2 2 7 62I c c c x x c c x x x

    2 2 3 4 2 3 4 5 4 5 63 1 1 21

    (4 12 9 ) 2 2 22

    c x x x c x x x c c x x x

    2 5 6 7 2 3 3 42 1 2( 2 ) ]c x x x c x x c x x dx 2

    11 2

    4 1 2 1 7 3 1 1 11 2 1

    2 3 4 5 6 3 2 5 3 7

    cc c

    2

    1 1 24 9 1 2 93

    2 3 5 6 7 8 12 20

    c c c

    2 2 1 21 1 2 2

    19 11 107

    120 70 1680 12 20

    c cc c c c

  • 8/11/2019 Chapter5 Calculus of Variations

    30/30

    30

    0.317 c1+ 0.127 c2= 0.05 c1= 0.177 , c2= 0.173

    1

    0I

    c

    1 219 11 1

    60 70 12c c

    2

    (2) (0.177 0.173 )(1 )y x x x ( It is noted that the deviation between the successive approxs. y(1) and y(2) is

    found to be smaller in magnitude than 0.009 over (0,1) )

    2

    0I

    c

    1 211 109 170 840 20

    c c