88
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 5 Discrete and Continuous Probability Distributions

Business Statistics: A Decision-Making Approach · 2019. 8. 23. · Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-1 Business Statistics: A

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-1

    Business Statistics: A Decision-Making Approach

    6th Edition

    Chapter 5Discrete and Continuous Probability Distributions

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-2

    Chapter Goals

    After completing this chapter, you should be able to:

    Apply the binomial distribution to applied problems Compute probabilities for the Poisson and

    hypergeometric distributions Find probabilities using a normal distribution table

    and apply the normal distribution to business problems

    Recognize when to apply the uniform and exponential distributions

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-3

    Probability Distributions

    ContinuousProbability

    Distributions

    Binomial

    Hypergeometric

    Poisson

    Probability Distributions

    DiscreteProbability

    Distributions

    Normal

    Uniform

    Exponential

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-4

    A discrete random variable is a variable that can assume only a countable number of valuesMany possible outcomes: number of complaints per day number of TV’s in a household number of rings before the phone is answeredOnly two possible outcomes: gender: male or female defective: yes or no spreads peanut butter first vs. spreads jelly first

    Discrete Probability Distributions

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-5

    Continuous Probability Distributions

    A continuous random variable is a variable that can assume any value on a continuum (can assume an uncountable number of values) thickness of an item time required to complete a task temperature of a solution height, in inches

    These can potentially take on any value, depending only on the ability to measure accurately.

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-6

    The Binomial Distribution

    Binomial

    Hypergeometric

    Poisson

    Probability Distributions

    DiscreteProbability

    Distributions

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-7

    The Binomial Distribution

    Characteristics of the Binomial Distribution:

    A trial has only two possible outcomes – “success” or “failure”

    There is a fixed number, n, of identical trials The trials of the experiment are independent of each

    other The probability of a success, p, remains constant from

    trial to trial If p represents the probability of a success, then

    (1-p) = q is the probability of a failure

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-8

    Binomial Distribution Settings

    A manufacturing plant labels items as either defective or acceptable

    A firm bidding for a contract will either get the contract or not

    A marketing research firm receives survey responses of “yes I will buy” or “no I will not”

    New job applicants either accept the offer or reject it

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-9

    Counting Rule for Combinations

    A combination is an outcome of an experiment where x objects are selected from a group of n objects

    )!xn(!x!nCnx −

    =

    where:n! =n(n - 1)(n - 2) . . . (2)(1)x! = x(x - 1)(x - 2) . . . (2)(1)0! = 1 (by definition)

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-10

    P(x) = probability of x successes in n trials,with probability of success p on each trial

    x = number of ‘successes’ in sample, (x = 0, 1, 2, ..., n)

    p = probability of “success” per trialq = probability of “failure” = (1 – p)n = number of trials (sample size)

    P(x)n

    x ! n xp qx n x

    !( )!

    =−

    Example: Flip a coin four times, let x = # heads:

    n = 4

    p = 0.5

    q = (1 - .5) = .5

    x = 0, 1, 2, 3, 4

    Binomial Distribution Formula

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-11

    n = 5 p = 0.1

    n = 5 p = 0.5

    Mean

    0.2.4.6

    0 1 2 3 4 5X

    P(X)

    .2

    .4

    .6

    0 1 2 3 4 5X

    P(X)

    0

    Binomial Distribution The shape of the binomial distribution depends on the

    values of p and n

    Here, n = 5 and p = .1

    Here, n = 5 and p = .5

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-12

    Binomial Distribution Characteristics

    Mean

    Variance and Standard Deviation

    npE(x)μ ==

    npqσ2 =

    npqσ =Where n = sample size

    p = probability of successq = (1 – p) = probability of failure

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-13

    n = 5 p = 0.1

    n = 5 p = 0.5

    Mean

    0.2.4.6

    0 1 2 3 4 5X

    P(X)

    .2

    .4

    .6

    0 1 2 3 4 5X

    P(X)

    0

    0.5(5)(.1)npμ ===

    0.6708.1)(5)(.1)(1npqσ

    =

    −==

    2.5(5)(.5)npμ ===

    1.118.5)(5)(.5)(1npqσ

    =

    −==

    Binomial CharacteristicsExamples

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-14

    Using Binomial Tablesn = 10

    x p=.15 p=.20 p=.25 p=.30 p=.35 p=.40 p=.45 p=.50

    0123456789

    10

    0.19690.34740.27590.12980.04010.00850.00120.00010.00000.00000.0000

    0.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.0000

    0.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.0000

    0.02820.12110.23350.26680.20010.10290.03680.00900.00140.00010.0000

    0.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.0000

    0.00600.04030.12090.21500.25080.20070.11150.04250.01060.00160.0001

    0.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.0003

    0.00100.00980.04390.11720.20510.24610.20510.11720.04390.00980.0010

    109876543210

    p=.85 p=.80 p=.75 p=.70 p=.65 p=.60 p=.55 p=.50 x

    Examples: n = 10, p = .35, x = 3: P(x = 3|n =10, p = .35) = .2522

    n = 10, p = .75, x = 2: P(x = 2|n =10, p = .75) = .0004

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-15

    The Poisson Distribution

    Binomial

    Hypergeometric

    Poisson

    Probability Distributions

    DiscreteProbability

    Distributions

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-16

    The Poisson Distribution

    Characteristics of the Poisson Distribution: The outcomes of interest are rare relative to the

    possible outcomes The average number of outcomes of interest per time

    or space interval is λ The number of outcomes of interest are random, and

    the occurrence of one outcome does not influence the chances of another outcome of interest

    The probability of that an outcome of interest occurs in a given segment is the same for all segments

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-17

    Poisson Distribution Formula

    where:t = size of the segment of interest x = number of successes in segment of interestλ = expected number of successes in a segment of unit sizee = base of the natural logarithm system (2.71828...)

    !xe)t()x(P

    tx λ−λ=

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-18

    Poisson Distribution Characteristics

    Mean

    Variance and Standard Deviation

    λtμ =

    λtσ2 =

    λtσ =where λ = number of successes in a segment of unit size

    t = the size of the segment of interest

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-19

    Using Poisson Tables

    X

    λt

    0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

    01234567

    0.90480.09050.00450.00020.00000.00000.00000.0000

    0.81870.16370.01640.00110.00010.00000.00000.0000

    0.74080.22220.03330.00330.00030.00000.00000.0000

    0.67030.26810.05360.00720.00070.00010.00000.0000

    0.60650.30330.07580.01260.00160.00020.00000.0000

    0.54880.32930.09880.01980.00300.00040.00000.0000

    0.49660.34760.12170.02840.00500.00070.00010.0000

    0.44930.35950.14380.03830.00770.00120.00020.0000

    0.40660.36590.16470.04940.01110.00200.00030.0000

    Example: Find P(x = 2) if λ = .05 and t = 100

    .07582!

    e(0.50)!xe)t()2x(P

    0.502tx

    ==λ

    ==−λ−

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-20

    Graph of Poisson Probabilities

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0 1 2 3 4 5 6 7

    x

    P(x)X

    λt =0.50

    01234567

    0.60650.30330.07580.01260.00160.00020.00000.0000

    P(x = 2) = .0758

    Graphically:λ = .05 and t = 100

    Chart2

    0

    1

    2

    3

    4

    5

    6

    7

    x

    P(x)

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    Histogram

    X

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Number of Successes

    P(X)

    Histogram

    0

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    0.0000000588

    0.0000000033

    0.0000000002

    0

    0

    0

    4.24643487230639E-16

    1.4154782907688E-17

    4.42336965865248E-19

    1.30099107607426E-20

    3.61386410020629E-22

    9.51016868475338E-24

    2.37754217118835E-25

    Poisson2

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.5

    Poisson Probabilities Table

    XP(X)P(=X)

    00.6065310.6065310.0000000.3934691.000000

    10.3032650.9097960.6065310.0902040.393469

    20.0758160.9856120.9097960.0143880.090204

    30.0126360.9982480.9856120.0017520.014388

    40.0015800.9998280.9982480.0001720.001752

    50.0001580.9999860.9998280.0000140.000172

    60.0000130.9999990.9999860.0000010.000014

    70.0000011.0000000.9999990.0000000.000001

    80.0000001.0000001.0000000.0000000.000000

    90.0000001.0000001.0000000.0000000.000000

    100.0000001.0000001.0000000.0000000.000000

    110.0000001.0000001.0000000.0000000.000000

    120.0000001.0000001.0000000.0000000.000000

    130.0000001.0000001.0000000.0000000.000000

    140.0000001.0000001.0000000.0000000.000000

    150.0000001.0000001.0000000.0000000.000000

    160.0000001.0000001.0000000.0000000.000000

    170.0000001.0000001.0000000.0000000.000000

    180.0000001.0000001.0000000.0000000.000000

    190.0000001.0000001.0000000.0000000.000000

    200.0000001.0000001.0000000.0000000.000000

    &A

    Page &P

    Poisson2

    x

    P(x)

    Poisson

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.1

    Poisson Probabilities Table

    XP(X)P(=X)

    00.90480.9048370.0000000.0951631.000000

    10.09050.9953210.9048370.0046790.095163

    20.00450.9998450.9953210.0001550.004679

    30.00020.9999960.9998450.0000040.000155

    40.00001.0000000.9999960.0000000.000004

    50.00001.0000001.0000000.0000000.000000

    60.00001.0000001.0000000.0000000.000000

    70.00001.0000001.0000000.0000000.000000

    &A

    Page &P

    Sheet1

    Sheet2

    Sheet3

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-21

    Poisson Distribution Shape

    The shape of the Poisson Distribution depends on the parameters λ and t:

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    1 2 3 4 5 6 7 8 9 10 11 12

    x

    P(x)

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0 1 2 3 4 5 6 7

    x

    P(x)

    λt = 0.50 λt = 3.0

    Chart3

    0.0497870684

    0.1493612051

    0.2240418077

    0.2240418077

    0.1680313557

    0.1008188134

    0.0504094067

    0.0216040315

    0.0081015118

    0.0027005039

    0.0008101512

    0.0002209503

    x

    P(x)

    Histogram

    X

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Number of Successes

    P(X)

    Histogram

    0

    0.0497870684

    0.1493612051

    0.2240418077

    0.2240418077

    0.1680313557

    0.1008188134

    0.0504094067

    0.0216040315

    0.0081015118

    0.0027005039

    0.0008101512

    0.0002209503

    0.0000552376

    0.0000127471

    0.0000027315

    0.0000005463

    0.0000001024

    0.0000000181

    0.000000003

    0.0000000005

    0.0000000001

    Poisson2

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:3

    Poisson Probabilities Table

    XP(X)P(=X)

    00.0497870.0497870.0000000.9502131.000000

    10.1493610.1991480.0497870.8008520.950213

    20.2240420.4231900.1991480.5768100.800852

    30.2240420.6472320.4231900.3527680.576810

    40.1680310.8152630.6472320.1847370.352768

    50.1008190.9160820.8152630.0839180.184737

    60.0504090.9664910.9160820.0335090.083918

    70.0216040.9880950.9664910.0119050.033509

    80.0081020.9961970.9880950.0038030.011905

    90.0027010.9988980.9961970.0011020.003803

    100.0008100.9997080.9988980.0002920.001102

    110.0002210.9999290.9997080.0000710.000292

    120.0000550.9999840.9999290.0000160.000071

    130.0000130.9999970.9999840.0000030.000016

    140.0000030.9999990.9999970.0000010.000003

    150.0000011.0000000.9999990.0000000.000001

    160.0000001.0000001.0000000.0000000.000000

    170.0000001.0000001.0000000.0000000.000000

    180.0000001.0000001.0000000.0000000.000000

    190.0000001.0000001.0000000.0000000.000000

    200.0000001.0000001.0000000.0000000.000000

    &A

    Page &P

    Poisson2

    x

    P(x)

    Poisson

    x

    P(x)

    Sheet1

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.1

    Poisson Probabilities Table

    XP(X)P(=X)

    00.90480.9048370.0000000.0951631.000000

    10.09050.9953210.9048370.0046790.095163

    20.00450.9998450.9953210.0001550.004679

    30.00020.9999960.9998450.0000040.000155

    40.00001.0000000.9999960.0000000.000004

    50.00001.0000001.0000000.0000000.000000

    60.00001.0000001.0000000.0000000.000000

    70.00001.0000001.0000000.0000000.000000

    &A

    Page &P

    Sheet2

    Sheet3

    Chart2

    0

    1

    2

    3

    4

    5

    6

    7

    x

    P(x)

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    Histogram

    X

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Number of Successes

    P(X)

    Histogram

    0

    0.6065306597

    0.3032653299

    0.0758163325

    0.0126360554

    0.0015795069

    0.0001579507

    0.0000131626

    0.0000009402

    0.0000000588

    0.0000000033

    0.0000000002

    0

    0

    0

    4.24643487230639E-16

    1.4154782907688E-17

    4.42336965865248E-19

    1.30099107607426E-20

    3.61386410020629E-22

    9.51016868475338E-24

    2.37754217118835E-25

    Poisson2

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.5

    Poisson Probabilities Table

    XP(X)P(=X)

    00.6065310.6065310.0000000.3934691.000000

    10.3032650.9097960.6065310.0902040.393469

    20.0758160.9856120.9097960.0143880.090204

    30.0126360.9982480.9856120.0017520.014388

    40.0015800.9998280.9982480.0001720.001752

    50.0001580.9999860.9998280.0000140.000172

    60.0000130.9999990.9999860.0000010.000014

    70.0000011.0000000.9999990.0000000.000001

    80.0000001.0000001.0000000.0000000.000000

    90.0000001.0000001.0000000.0000000.000000

    100.0000001.0000001.0000000.0000000.000000

    110.0000001.0000001.0000000.0000000.000000

    120.0000001.0000001.0000000.0000000.000000

    130.0000001.0000001.0000000.0000000.000000

    140.0000001.0000001.0000000.0000000.000000

    150.0000001.0000001.0000000.0000000.000000

    160.0000001.0000001.0000000.0000000.000000

    170.0000001.0000001.0000000.0000000.000000

    180.0000001.0000001.0000000.0000000.000000

    190.0000001.0000001.0000000.0000000.000000

    200.0000001.0000001.0000000.0000000.000000

    &A

    Page &P

    Poisson2

    x

    P(x)

    Poisson

    Poisson Probabilities for Customer Arrivals

    Data

    Average/Expected number of successes:0.1

    Poisson Probabilities Table

    XP(X)P(=X)

    00.90480.9048370.0000000.0951631.000000

    10.09050.9953210.9048370.0046790.095163

    20.00450.9998450.9953210.0001550.004679

    30.00020.9999960.9998450.0000040.000155

    40.00001.0000000.9999960.0000000.000004

    50.00001.0000001.0000000.0000000.000000

    60.00001.0000001.0000000.0000000.000000

    70.00001.0000001.0000000.0000000.000000

    &A

    Page &P

    Sheet1

    Sheet2

    Sheet3

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-22

    The Hypergeometric Distribution

    Binomial

    Poisson

    Probability Distributions

    DiscreteProbability

    Distributions

    Hypergeometric

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-23

    The Hypergeometric Distribution

    “n” trials in a sample taken from a finite population of size N

    Sample taken without replacement

    Trials are dependent

    Concerned with finding the probability of “x” successes in the sample where there are “X” successes in the population

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-24

    Hypergeometric Distribution Formula

    Nn

    Xx

    XNxn

    CCC)x(P

    −−=

    .

    WhereN = Population sizeX = number of successes in the populationn = sample sizex = number of successes in the sample

    n – x = number of failures in the sample

    (Two possible outcomes per trial)

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-25

    Hypergeometric Distribution Formula

    0.3120

    (6)(6)C

    CCC

    CC2)P(x 103

    42

    61

    Nn

    Xx

    XNxn =====−−

    ■ Example: 3 Light bulbs were selected from 10. Of the 10 there were 4 defective. What is the probability that 2 of the 3 selected are defective?

    N = 10 n = 3X = 4 x = 2

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-26

    The Normal Distribution

    ContinuousProbability

    Distributions

    Probability Distributions

    Normal

    Uniform

    Exponential

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-27

    The Normal Distribution

    ‘Bell Shaped’ Symmetrical Mean, Median and Mode

    are EqualLocation is determined by the mean, μSpread is determined by the standard deviation, σ

    The random variable has an infinite theoretical range: + ∞ to − ∞

    Mean = Median = Mode

    x

    f(x)

    μ

    σ

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-28

    By varying the parameters μ and σ, we obtain different normal distributions

    Many Normal Distributions

    Chart3

    00

    0.00221592422.95798147900153E-220.0000014867

    0.002571320500.000002439

    0.00297626620.00000000010.0000039613

    0.00343638330.00000000010.0000063698

    0.00395772580.00000000040.0000101409

    0.00454678130.00000000090.0000159837

    0.00521046740.00000000220.0000249425

    0.00595612180.00000000530.0000385352

    0.00679148460.00000001230.0000589431

    0.00772467360.00000002820.0000892617

    0.00876415020.00000006350.0001338302

    0.00991867720.00000013990.0001986555

    0.01119726510.00000030210.0002919469

    0.012609110.00000063960.0004247803

    0.01416351890.00000132730.0006119019

    0.01586982590.00000269960.0008726827

    0.01773729640.00000538230.0012322192

    0.01977502080.00001051830.0017225689

    0.0219917980.00002014830.0023840882

    0.02439600930.00003783070.0032668191

    0.02699548330.00006962490.0044318484

    0.0297973530.00012560260.0059525324

    0.03280790740.0002220990.0079154516

    0.03603243720.00038495410.0104209348

    0.03947507920.00065401160.0135829692

    0.04313865940.00108912050.0175283005

    0.04702453870.00177779050.0223945303

    0.05113246230.00284445680.0283270377

    0.05546041730.00446099980.0354745928

    0.06000450030.00685771090.043983596

    0.06475879780.01033332890.0539909665

    0.06971528320.01526214050.0656158148

    0.07486373280.02209554660.0789501583

    0.08019166370.03135509790.0940490774

    0.0856842960.04361397650.1109208347

    0.09132454270.05946443790.1295175957

    0.09709302750.07946997240.1497274656

    0.10296813440.10410292120.171368592

    0.10892608850.13367090270.194186055

    0.11494107030.16823833270.217852177

    0.12098536230.20755210430.2419707245

    0.12702952820.25098249750.2660852499

    0.13304262490.29749100760.2896915528

    0.13899244310.34563551340.3122539334

    0.14484577640.39361984480.3332246029

    0.15056871610.43938954890.3520653268

    0.15612696670.48076912580.3682701403

    0.16148617980.51562922930.3813878155

    0.16661230140.54206653460.391042694

    0.17147192750.55857536080.3969525475

    0.17603266340.56418958350.3989422804

    0.18026348120.55857624590.3969525475

    0.18413507020.54206825250.391042694

    0.18762017350.51563168030.3813878155

    0.19069390770.4807721730.3682701403

    0.19333405840.439393030.3520653268

    0.1955213470.3936235870.3332246029

    0.19723966550.3456393470.3122539334

    0.19847627370.29749477870.2896915528

    0.1992219570.25098607670.2660852499

    0.19947114020.20755539310.2419707245

    0.1992219570.16824126510.217852177

    0.19847627370.13367344430.194186055

    0.19723966550.10410506560.171368592

    0.1955213470.07947173530.1497274656

    0.19333405840.05946585130.1295175957

    0.19069390770.04361508220.1109208347

    0.18762017350.03135594260.0940490774

    0.18413507020.02209617680.0789501583

    0.18026348120.01526260.0656158148

    0.17603266340.01033365640.0539909665

    0.17147192750.00685793910.043983596

    0.16661230140.00446115530.0354745928

    0.16148617980.00284456050.0283270377

    0.15612696670.00177785810.0223945303

    0.15056871610.00108916370.0175283005

    0.14484577640.00065403850.0135829692

    0.13899244310.00038497060.0104209348

    0.13304262490.00022210890.0079154516

    0.12702952820.00012560830.0059525324

    0.12098536230.00006962820.0044318484

    0.11494107030.00003783260.0032668191

    0.10892608850.00002014930.0023840882

    0.10296813440.00001051890.0017225689

    0.09709302750.00000538260.0012322192

    0.09132454270.00000269980.0008726827

    0.0856842960.00000132730.0006119019

    0.08019166370.00000063970.0004247803

    0.07486373280.00000030220.0002919469

    0.06971528320.00000013990.0001986555

    0.06475879780.00000006350.0001338302

    0.06000450030.00000002820.0000892617

    0.05546041730.00000001230.0000589431

    0.05113246230.00000000530.0000385352

    0.04702453870.00000000220.0000249425

    0.04313865940.00000000090.0000159837

    0.03947507920.00000000040.0000101409

    0.03603243720.00000000010.0000063698

    0.03280790740.00000000010.0000039613

    0.02979735300.000002439

    0.026995483300.0000014867

    0.024396009300.0000008972

    Sheet1

    xpopulationsampling populationsigman

    -50.00221592422.95798147900153E-220.0000014867281

    -4.90.002571320500.0000024390.70710678121

    -4.80.00297626620.00000000010.000003961312

    -4.70.00343638330.00000000010.0000063698

    -4.60.00395772580.00000000040.0000101409

    -4.50.00454678130.00000000090.0000159837

    -4.40.00521046740.00000000220.0000249425

    -4.30.00595612180.00000000530.0000385352

    -4.20.00679148460.00000001230.0000589431

    -4.10.00772467360.00000002820.0000892617

    -40.00876415020.00000006350.0001338302

    -3.90.00991867720.00000013990.0001986555

    -3.80.01119726510.00000030210.0002919469

    -3.70.012609110.00000063960.0004247803

    -3.60.01416351890.00000132730.0006119019

    -3.50.01586982590.00000269960.0008726827

    -3.40.01773729640.00000538230.0012322192

    -3.30.01977502080.00001051830.0017225689

    -3.20.0219917980.00002014830.0023840882

    -3.10.02439600930.00003783070.0032668191

    -30.02699548330.00006962490.0044318484

    -2.90.0297973530.00012560260.0059525324

    -2.80.03280790740.0002220990.0079154516

    -2.70.03603243720.00038495410.0104209348

    -2.60.03947507920.00065401160.0135829692

    -2.50.04313865940.00108912050.0175283005

    -2.40.04702453870.00177779050.0223945303

    -2.30.05113246230.00284445680.0283270377

    -2.20.05546041730.00446099980.0354745928

    -2.10.06000450030.00685771090.043983596

    -20.06475879780.01033332890.0539909665

    -1.90.06971528320.01526214050.0656158148

    -1.80.07486373280.02209554660.0789501583

    -1.70.08019166370.03135509790.0940490774

    -1.60.0856842960.04361397650.1109208347

    -1.50.09132454270.05946443790.1295175957

    -1.40.09709302750.07946997240.1497274656

    -1.30.10296813440.10410292120.171368592

    -1.20.10892608850.13367090270.194186055

    -1.10.11494107030.16823833270.217852177

    -10.12098536230.20755210430.2419707245

    -0.90.12702952820.25098249750.2660852499

    -0.80.13304262490.29749100760.2896915528

    -0.70.13899244310.34563551340.3122539334

    -0.60.14484577640.39361984480.3332246029

    -0.50.15056871610.43938954890.3520653268

    -0.40.15612696670.48076912580.3682701403

    -0.30.16148617980.51562922930.3813878155

    -0.20.16661230140.54206653460.391042694

    -0.10.17147192750.55857536080.3969525475

    00.17603266340.56418958350.3989422804

    0.10.18026348120.55857624590.3969525475

    0.20.18413507020.54206825250.391042694

    0.30.18762017350.51563168030.3813878155

    0.40.19069390770.4807721730.3682701403

    0.50.19333405840.439393030.3520653268

    0.60.1955213470.3936235870.3332246029

    0.70.19723966550.3456393470.3122539334

    0.80.19847627370.29749477870.2896915528

    0.90.1992219570.25098607670.2660852499

    10.19947114020.20755539310.2419707245

    1.10.1992219570.16824126510.217852177

    1.20.19847627370.13367344430.194186055

    1.30.19723966550.10410506560.171368592

    1.40.1955213470.07947173530.1497274656

    1.50.19333405840.05946585130.1295175957

    1.60.19069390770.04361508220.1109208347

    1.70.18762017350.03135594260.0940490774

    1.80.18413507020.02209617680.0789501583

    1.90.18026348120.01526260.0656158148

    20.17603266340.01033365640.0539909665

    2.10.17147192750.00685793910.043983596

    2.20.16661230140.00446115530.0354745928

    2.30.16148617980.00284456050.0283270377

    2.40.15612696670.00177785810.0223945303

    2.50.15056871610.00108916370.0175283005

    2.60.14484577640.00065403850.0135829692

    2.70.13899244310.00038497060.0104209348

    2.80.13304262490.00022210890.0079154516

    2.90.12702952820.00012560830.0059525324

    30.12098536230.00006962820.0044318484

    3.10.11494107030.00003783260.0032668191

    3.20.10892608850.00002014930.0023840882

    3.30.10296813440.00001051890.0017225689

    3.40.09709302750.00000538260.0012322192

    3.50.09132454270.00000269980.0008726827

    3.60.0856842960.00000132730.0006119019

    3.70.08019166370.00000063970.0004247803

    3.80.07486373280.00000030220.0002919469

    3.90.06971528320.00000013990.0001986555

    40.06475879780.00000006350.0001338302

    4.10.06000450030.00000002820.0000892617

    4.20.05546041730.00000001230.0000589431

    4.30.05113246230.00000000530.0000385352

    4.40.04702453870.00000000220.0000249425

    4.50.04313865940.00000000090.0000159837

    4.60.03947507920.00000000040.0000101409

    4.70.03603243720.00000000010.0000063698

    4.80.03280790740.00000000010.0000039613

    4.90.02979735300.000002439

    50.026995483300.0000014867

    5.10.024396009300.0000008972

    &A

    Page &P

    Sheet1

    &A

    Page &P

    Sheet2

    &A

    Page &P

    Sheet3

    &A

    Page &P

    Sheet4

    &A

    Page &P

    Sheet5

    &A

    Page &P

    Sheet6

    &A

    Page &P

    Sheet7

    &A

    Page &P

    Sheet8

    &A

    Page &P

    Sheet9

    &A

    Page &P

    Sheet10

    &A

    Page &P

    Sheet11

    &A

    Page &P

    Sheet12

    &A

    Page &P

    Sheet13

    &A

    Page &P

    Sheet14

    &A

    Page &P

    Sheet15

    &A

    Page &P

    Sheet16

    &A

    Page &P

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-29

    The Normal Distribution Shape

    x

    f(x)

    μ

    σ

    Changing μ shifts the distribution left or right.

    Changing σ increases or decreases the spread.

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-30

    Finding Normal Probabilities

    Probability is the area under thecurve!

    a b x

    f(x) P a x b( )≤ ≤

    Probability is measured by the area under the curve

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-31

    f(x)

    Probability as Area Under the Curve

    0.50.5

    The total area under the curve is 1.0, and the curve is symmetric, so half is above the mean, half is below

    1.0)xP( =∞

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-32

    Empirical Rules

    μ ± 1σ encloses about 68% of x’s

    f(x)

    xμ μ+1σμ−1σ

    What can we say about the distribution of values around the mean? There are some general rules:

    σσ

    68.26%

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-33

    The Empirical Rule

    μ ± 2σ covers about 95% of x’s

    μ ± 3σ covers about 99.7% of x’s

    xμ2σ 2σ

    xμ3σ 3σ

    95.44% 99.72%

    (continued)

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-34

    Importance of the Rule

    If a value is about 2 or more standarddeviations away from the mean in a normaldistribution, then it is far from the mean

    The chance that a value that far or farther away from the mean is highly unlikely, giventhat particular mean and standard deviation

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-35

    The Standard Normal Distribution Also known as the “z” distribution Mean is defined to be 0 Standard Deviation is 1

    z

    f(z)

    0

    1

    Values above the mean have positive z-values, values below the mean have negative z-values

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-36

    The Standard Normal

    Any normal distribution (with any mean and standard deviation combination) can be transformed into the standard normaldistribution (z)

    Need to transform x units into z units

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-37

    Translation to the Standard Normal Distribution

    Translate from x to the standard normal (the “z” distribution) by subtracting the mean of x and dividing by its standard deviation:

    σμxz −=

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-38

    Example

    If x is distributed normally with mean of 100and standard deviation of 50, the z value for x = 250 is

    This says that x = 250 is three standard deviations (3 increments of 50 units) above the mean of 100.

    3.050

    100250σ

    μxz =−=−=

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-39

    Comparing x and z units

    z100

    3.00250 x

    Note that the distribution is the same, only the scale has changed. We can express the problem in original units (x) or in standardized units (z)

    μ = 100

    σ = 50

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-40

    The Standard Normal Table

    The Standard Normal table in the textbook (Appendix D)

    gives the probability from the mean (zero)up to a desired value for z

    z0 2.00

    .4772Example:P(0 < z < 2.00) = .4772

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-41

    The Standard Normal Table

    The value within the table gives the probability from z = 0up to the desired z value

    z 0.00 0.01 0.02 …

    0.1

    0.2

    .4772

    2.0P(0 < z < 2.00) = .4772

    The row shows the value of z to the first decimal point

    The column gives the value of z to the second decimal point

    2.0

    ...

    (continued)

    z

    0.00

    0.01

    0.02

    0.1

    0.2

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-42

    General Procedure for Finding Probabilities

    Draw the normal curve for the problem interms of x

    Translate x-values to z-values

    Use the Standard Normal Table

    To find P(a < x < b) when x is distributed normally:

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-43

    Z Table example Suppose x is normal with mean 8.0 and

    standard deviation 5.0. Find P(8 < x < 8.6)

    P(8 < x < 8.6)

    = P(0 < z < 0.12)

    Z0.120x8.68

    05

    88σ

    μxz =−=−=

    0.125

    88.6σ

    μxz =−=−=

    Calculate z-values:

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-44

    Z Table example Suppose x is normal with mean 8.0 and

    standard deviation 5.0. Find P(8 < x < 8.6)

    P(0 < z < 0.12)

    z0.120x8.68

    P(8 < x < 8.6)

    µ = 8σ = 5

    µ = 0σ = 1

    (continued)

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-45

    Z

    0.12

    z .00 .01

    0.0 .0000 .0040 .0080

    .0398 .0438

    0.2 .0793 .0832 .0871

    0.3 .1179 .1217 .1255

    Solution: Finding P(0 < z < 0.12)

    .0478.02

    0.1 .0478

    Standard Normal Probability Table (Portion)

    0.00

    = P(0 < z < 0.12)P(8 < x < 8.6)

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-46

    Finding Normal Probabilities

    Suppose x is normal with mean 8.0 and standard deviation 5.0.

    Now Find P(x < 8.6)

    Z

    8.68.0

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-47

    Finding Normal Probabilities

    Suppose x is normal with mean 8.0 and standard deviation 5.0.

    Now Find P(x < 8.6)

    (continued)

    Z

    0.12

    .0478

    0.00

    .5000P(x < 8.6)

    = P(z < 0.12)

    = P(z < 0) + P(0 < z < 0.12)

    = .5 + .0478 = .5478

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-48

    Upper Tail Probabilities

    Suppose x is normal with mean 8.0 and standard deviation 5.0.

    Now Find P(x > 8.6)

    Z

    8.68.0

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-49

    Now Find P(x > 8.6)…(continued)

    Z

    0.120

    Z

    0.12

    .0478

    0

    .5000 .50 - .0478 = .4522

    P(x > 8.6) = P(z > 0.12) = P(z > 0) - P(0 < z < 0.12)

    = .5 - .0478 = .4522

    Upper Tail Probabilities

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-50

    Lower Tail Probabilities

    Suppose x is normal with mean 8.0 and standard deviation 5.0.

    Now Find P(7.4 < x < 8)

    Z

    7.48.0

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-51

    Lower Tail Probabilities

    Now Find P(7.4 < x < 8)…

    Z

    7.48.0

    The Normal distribution is symmetric, so we use the same table even if z-values are negative:

    P(7.4 < x < 8)

    = P(-0.12 < z < 0)

    = .0478

    (continued)

    .0478

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-52

    Normal Probabilities in PHStat

    We can use Excel and PHStat to quicklygenerate probabilities for any normaldistribution

    We will find P(8 < x < 8.6) when x isnormally distributed with mean 8 andstandard deviation 5

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-53

    The Uniform Distribution

    ContinuousProbability

    Distributions

    Probability Distributions

    Normal

    Uniform

    Exponential

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-54

    The Uniform Distribution

    The uniform distribution is a probability distribution that has equal probabilities for all possible outcomes of the random variable

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-55

    The Continuous Uniform Distribution:

    otherwise 0

    bxaifab

    1≤≤

    wheref(x) = value of the density function at any x valuea = lower limit of the intervalb = upper limit of the interval

    The Uniform Distribution(continued)

    f(x) =

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-56

    Uniform Distribution

    Example: Uniform Probability DistributionOver the range 2 ≤ x ≤ 6:

    2 6

    .25

    f(x) = = .25 for 2 ≤ x ≤ 66 - 21

    x

    f(x)

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-57

    The Exponential Distribution

    ContinuousProbability

    Distributions

    Probability Distributions

    Normal

    Uniform

    Exponential

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-58

    The Exponential Distribution

    Used to measure the time that elapses between two occurrences of an event (the time between arrivals)

    Examples: Time between trucks arriving at an unloading

    dock Time between transactions at an ATM Machine Time between phone calls to the main operator

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-59

    The Exponential Distribution

    aλe1a)xP(0 −−=≤≤

    The probability that an arrival time is equal to or less than some specified time a is

    where 1/λ is the mean time between events

    Note that if the number of occurrences per time period is Poisson with mean λ, then the time between occurrences is exponential with mean time 1/ λ

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-60

    Exponential Distribution

    Shape of the exponential distribution(continued)

    f(x)

    x

    λ = 1.0(mean = 1.0)

    λ= 0.5 (mean = 2.0)

    λ = 3.0(mean = .333)

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-61

    Example

    Example: Customers arrive at the claims counter at the rate of 15 per hour (Poisson distributed). What is the probability that the arrival time between consecutive customers is less than five minutes?

    Time between arrivals is exponentially distributed with mean time between arrivals of 4 minutes (15 per 60 minutes, on average)

    1/λ = 4.0, so λ = .25

    P(x < 5) = 1 - e-λa = 1 – e-(.25)(5) = .7135

  • Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-62

    Chapter Summary

    Reviewed key discrete distributions binomial, poisson, hypergeometric

    Reviewed key continuous distributions normal, uniform, exponential

    Found probabilities using formulas and tables

    Recognized when to apply different distributions

    Applied distributions to decision problems

  • Comparing Binomial, Negative Binomial and Geometric

    Distributions

    63

    Binomial Distribution

  • 64

    The Binomial Model:

    Let X be the number of “successes” in n trials.

    If1. The trials are identical and independent

    2. Each trial results in one of two possible outcomes success or failure

    3. The probability of success on a single trial is p,and is constant from trial to trial,

    X ~ B (n,p)

  • 65

    The Binomial Model:

    then X has the Binomial Distribution with Probability Mass Function given by:

    where

    ( )!xn!x!n

    xn

    −=

    n0,1,..., xq ),;()( x-n =

    == xp

    xn

    pnxbxb

    pq −=1and

  • 66

    Binomial Distribution

    Rule:

    for x = 0, …, n - 1

    Rule:

    )p,n;x(bqp

    1xxn )p,n;1x(b

    +−

    =+

    ( ) ∑=

    =+=

    n

    0x

    xnxn qpxn

    qp1

  • 67

    Binomial Distribution

    • Mean or Expected Value

    µ = np

    • Standard Deviation

    ( )21

    npqσ =

  • 68

    The Binomial Model in Excel

    Excel provides an easier way of finding probabilities:

    Click the Insert button on the menu bar (at the top of the Excel page) Go to the function option Choose Statistical from the Function Category

    window (a list of all available statistical functions will appear in the Function Namewindow)

    Choose the BINOMDIST function Type in parameters:

    number_s => X Trials => N Probability_s => p Cumulative (logical) => TRUE for cumulative

    function, FALSE for mass function.

  • 69

    Example - Binomial Distribution

    When circuit boards used in the manufacture of compact disc players are tested, the long-run

    percentage of defects is 5%. Let X=the number of defective boards in a random sample size n=25, so

    X~B(25,0.05).

    a) Determine P(X ≤ 2).b) Determine P(X ≥ 5).

    c) Determine P(1 ≤ X ≤ 4).d) What is the probability that none of the 25

    boards are defective?e) Calculate the expected value and standard

    deviation of X.

  • 70

    Solution – Binomial Distribution

  • 71

    Negative Binomial Distribution

  • 72

    The Negative Binomial Model:

    The negative binomial distribution is based on an experiment satisfying the following conditions:

    1. The experiment consists of a sequence of independent and identical trials

    2. Each trial can result in either a success, S, or aFailure, F.

    3. The probability of success is constant from trialto trial, so P(S on trial i) = p for i = 1, 2, 3, …

  • 73

    The Negative Binomial Model:

    4. The experiment continues (trials are performed)until a total of r successes have been observed,

    where r is a specified positive integer.

    The associated random variable is:

    X = number of failures that precede the rth success

    X is called the negative binomial random variablebecause, in contrast to the binomial random

    variable, the number of successes is fixed and the number of trials is random.

    Possible values of X are x = 0, 1, 2, ...

  • 74

    The Negative Binomial Model:

    The probability mass function of the negativebinomial random variable X with parameters

    r = number of successes and

    p = probability of success on a single trial

    ( ) ( ) .0,1,2,.. x ,11

    1,; =−

    −−+

    = xr ppr

    rxprxNB

  • 75

    The Negative Binomial Model:

    The negative binomial model can also beexpressed as:

    X = total number of trials to get k successes

    k = number of successes and

    p = probability of success on a single trial

    ( ) ( ) .0,1,2,.. x ,111

    ,; =−

    −−

    = −kxk ppkx

    pkxNB

  • 76

    Negative Binomial Probability Mass Function Derivation

    Consider the probability of a success on the trial preceded by successes and failures in some specified order.

    Since the trials are independent, we can multiply all the probabilities corresponding to each desired outcome.

    Each success occurs with probability and each failure with probability

    Therefore, the probability for the specified order, ending in a success, is

    1−k kx −thx

    ppq −=1

    kxkkxk qppqp −−− =1

  • 77

    The total number of sample points in the experiment ending in a success, after the occurrence of successes and failures in any order, is equal to the number of partitions of

    trials into two groups with successes corresponding to one group and failures corresponding to the other group.

    The sample space consists of points, each

    mutually exclusive and occurring with equal probability

    We obtain the general formula by multiplying by

    1−k kx −1−x 1−k kx −

    −−

    11

    kx

    kxk qp −kxk qp −

    −−

    11

    kx

  • 78

    The Negative Binomial Model: Example

    Find the probability that a person tossing three coinswill get either all heads or all tails for the second time

    on the fifth toss.

    Solution( )successp P=

    )]()[( TTTorHHHP=

    81

    81+=

    41

    =

  • 79

    Since a success must occur on the fifth toss of the 3 coins, the following outcomes are possible:

    1 2 3 4 5S F F F SF S F F SF F S F SF F F S S

    Toss probability

    102427

    102427

    102427

    102427

  • 80

    Therefore, the probability of obtaining all heads or all tails for the second time on the fifth toss is

    25627

    102427.4 =

  • 81

    The Negative Binomial Model: Example Solution continued

    Or, using the Negative Binomial Distribution with r = 2, p = 0.25, and x = 3 gives

    ( ) ( ) 105.02562775.025.0

    14

    25.0,2;3 32 ==

    =NB

  • 82

    The Negative Binomial Model

    If X is a negative binomial random variable with probability mass function nb(x;r,p) then

    and

    ( ) ( )p

    prXE −= 1

    ( ) ( )21p

    prXVar −=

  • 83

    The Negative Binomial Model

    Note: By expanding the binomial coefficient in front of pr(1 - p)x and doing some cancellation, it can be seen that NB(x;r,p) is well defined even

    when r is not an integer. This generalized negative binomial distribution has been found to fit the observed data quite well in a wide variety of

    applications.

  • 84

    The Negative Binomial Model in Excel

    Similar to the Binomial Dist in Excel: Click the Insert button on the menu bar

    (at the top of the Excel page) Go to the function option Choose Statistical from the Function Category

    window (a list of all available statistical functions will appear in the Function Namewindow)

    Choose the NEGBINOMDIST function Type in parameters:

    number_f => X Number_s => r Probability_s => p

  • 85

    The Geometric Distribution

    If repeated independent and identical trials can result in a success with probability p and a failure

    with probability q = 1 - p, then the probability mass function of the random variable x, the number of the trial on which the first success

    occurs, is:

    g(x;p) = pqx-1, x = 1,2,3…

  • 86

    The Geometric Distribution

    The mean and variance of a random variable following the geometric distribution are

    22

    pp1σ ,

    p1μ −==

  • 87

    The Geometric Distribution - Example

    At “busy time” a telephone exchange is very near capacity, so callers have difficulty placing their

    calls. It may be on interest to know the number of attempts necessary in order to gain a connection. Suppose that we let p = 0.05 be the probability of

    a connection during a busy time. We are interested in knowing the probability that 5 attempts are necessary for a successful call.

  • 88

    The Geometric Distribution - Example Solution

    The random variable X is the number of attempts for a successful call. Then

    X~G(0.05),So that for with x = 5 and p = 0.05 yields:

    P(X=x) = g(5;0.05)= (0.05)(0.95)4

    = 0.041And the expected number of attempts is

    200.05

    1μ ==

    Chapter 5�Discrete and Continuous �Probability DistributionsChapter GoalsSlide Number 3Discrete Probability DistributionsContinuous Probability DistributionsSlide Number 6The Binomial DistributionBinomial Distribution SettingsCounting Rule for CombinationsBinomial Distribution FormulaBinomial DistributionBinomial Distribution CharacteristicsBinomial CharacteristicsUsing Binomial TablesSlide Number 15The Poisson DistributionPoisson Distribution FormulaPoisson Distribution CharacteristicsUsing Poisson TablesGraph of Poisson ProbabilitiesPoisson Distribution ShapeSlide Number 22The Hypergeometric DistributionHypergeometric Distribution FormulaHypergeometric Distribution FormulaSlide Number 26The Normal DistributionSlide Number 28The Normal Distribution ShapeFinding Normal Probabilities Probability as �Area Under the CurveEmpirical RulesThe Empirical RuleImportance of the RuleThe Standard Normal DistributionThe Standard NormalTranslation to the Standard Normal DistributionExampleComparing x and z unitsThe Standard Normal TableThe Standard Normal TableGeneral Procedure for Finding ProbabilitiesZ Table exampleZ Table exampleSolution: Finding P(0 < z < 0.12)Finding Normal ProbabilitiesFinding Normal Probabilities�Upper Tail Probabilities�Upper Tail ProbabilitiesLower Tail ProbabilitiesLower Tail ProbabilitiesNormal Probabilities in PHStatSlide Number 53The Uniform DistributionThe Uniform DistributionUniform DistributionSlide Number 57The Exponential DistributionThe Exponential DistributionExponential DistributionExampleChapter SummaryComparing Binomial, Negative Binomial and Geometric DistributionsSlide Number 64Slide Number 65Slide Number 66Slide Number 67 The Binomial Model in ExcelSlide Number 69Slide Number 70Slide Number 71Slide Number 72Slide Number 73Slide Number 74Slide Number 75Negative Binomial Probability Mass Function DerivationSlide Number 77Slide Number 78Slide Number 79Slide Number 80Slide Number 81Slide Number 82Slide Number 83The Negative Binomial Model in ExcelSlide Number 85Slide Number 86Slide Number 87Slide Number 88