120
HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ) BOUNDARY LAYER Thin region adjacent to surface of a body where viscous forces dominate over inertia forces Re = Re >> 1 inertia forces viscous forces Boundary layer separation Wake: viscous effects not important vorticity not zero Flow field around an arbitrary shape Inner flow Strong viscous effects Outer flow Viscouseffect s negligible Vorticity zero (Inviscid potential flow) BOUNDARY LAYER THEORY

BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Embed Size (px)

Citation preview

Page 1: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS(Re ∞)

BOUNDARY LAYER Thin region adjacent to surface of a body where viscous forces dominate over inertia forces

Re = Re >> 1

inertia forcesviscous forces⎛ ⎞⎜ ⎟⎝ ⎠

BoundarylayerseparationWake:

viscouseffects not importantvorticity not zero

Flow fieldaround an arbitraryshape

Inner flowStrongviscouseffects

Outer flowViscouseffects negligibleVorticity zero(Inviscidpotential flow)

BOUNDARY LAYER THEORY

Page 2: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Steady ,incompressible 2-D flow with no body

forces. Valid for laminar flow

O.D.E for To solve eq. we first ”assume” an approximate velocity profile inside the B.LRelate the wall shear stress to the velocity field

Typically the velocity profile is taken to be a polynomial in y, and the degree of fluid

this polynominal determines the number of boundary conditions which may be

satisfied

EXAMPLE: LAMINAR FLOW OVER A FLAT PLATE:

* 02

1( 2 )d dUdx dx U

τθ δ θθ ρ

+ + = 0 ( ) nud y

τ ∂∼

( )xθ

2 ( )u a b c fU

η η η= + + =

U∞

U ≈0,99U∞

Page 3: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Re ULν

=

High Reynolds Number Flow

• Laminar boundary layer predictable• Turbulent boundary layer poor predictability

• Controlling parameter

• To get two boundary layer flows identical match Re(dynamic similarity)

• Although boundary layer’s and prediction are complicated,simplify the N-S equations to make job easier

2-D , planar flow

u* = , x*, y*= * ,u vvU∞

= ,x yL

Page 4: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Dimensionless gov. eqs.

X ;

Y;

“Naïve” way of solving problem for

If you drop the viscous term Euler’s eqs. (inviscid fluid)

2 2

2 2

1 ( )Re

Put x y y x yν ν ν ν νν∂ ∂ ∂ ∂ ∂ ∂+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂

. 0V→

∇ =

* * * * 2 * 2 ** *

2 2

viscous terms

1 ( )Re

u u u P u uut x y x x y

ν∂ ∂ ∂ ∂ ∂ ∂+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂

*2

PPUρ ∞

=

1 0Re

→R e → ∞

Page 5: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

• We can not satisfy all the boundary B.C.s because order of eqs. Reduces by 1

Inside B-L can not get rid of viscous terms

Derivation of B-L eqs. From the N-S eqs

• Physically based argument :determine the order of terms in N-S

• Limiting procedure as Re ∞ eqs. and throw out small terms

U∞

U (x,y)y

L

U∞

δ* 1

100Lδδ = ⟨

Page 6: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Assumption 1

Term Order

*v

* 1Lδδ = ⟨⟨

*

*

ux∂∂

*

*yν∂∂

*

*xν∂∂

2 *

*2

uy∂∂

*

*

dudt

(1) 1(1)

=

*

* 1δδ

=

**

1δ δ=

2*

**

* 1uux∂

=∂

Page 7: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

(1) (1)

Neglect since of order

>>>1

2 2

* * * * 2 * 2 ** *

* * * * * *

1 ( )Re

Put x y y x yν ν ν ν νν∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +∂ ∂ ∂ ∂ ∂ ∂

* * * * 2 * 2 ** *

2 2

1 ( )Re

u u u P u uut x y x x y

ν∂ ∂ ∂ ∂ ∂ ∂+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂

**

1 1δδ= (1) 1

(1)=

2*δ 2

(1)(1) * 2

(1)( )δ

* 2

(1)( )δAlso for y –direction

*

*

( )(1)(1)

( )

δ

δ

**

*

*

( )( )( )

( )

δδδ

δ

* 2* *

*2 * 2

*

( ){ }(1) ( )

( )

δ δδδ

δ

+

*( )δ

Page 8: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

small relative to

To good approximation pressure at the edge of B-

L. is equal to pressure on boundary layer.

• Time – dependant known from the other

flow

• Pressure at all points is the same

• Only need to consider x-direction B-L. eqs.

*

*

Py

∂∂

*( )δ*

*

Px

∂∂

(1)

( )P P x≅

( , )P P x t≅

Page 9: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Prandtl (1904)

0u vx y∂ ∂

+ =∂ ∂

Outer flow(inviscid)

yx2-D planar

1)

2)2

2

1u u u P uu vt x y x y

νρ

∂ ∂ ∂ ∂ ∂+ + = − +

∂ ∂ ∂ ∂ ∂

Governingeqs.for B.L

B-L.eqs.still non-linearbut parabolic type

unknows u,v (x,y,t)

known from the potential flow( , )P P x t≅

Page 10: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Need B.C.s & I.C.(time dependant)

• 2-D, steady

BCs

• u= =0 at y=0

• u=u(y) at x=0

• u= (x) y (y ) marching condition

• B-L. eqs. can be solved exactly for several cases• Can approximate solution for other casesLimitation of B.L egs.: where they fail?(1) Abrupt chances

ν

U∞ ∞ δ

Page 11: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

(2) Eqs. are not applicable near the leading edge

* 1Lδδ = ⟨⟨L is small invalid

(3) Where the flow separates not valid beyond the separation point

Separation point

Bernouilli eqs. =constantρ

1 1 2 02

dP dVUdx dxρ

+ =2

constant2

P Vρ+ =

Page 12: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Valid along the streamlines

substitute the B.L eqs u,v can be found

known

0dpdx

=

1 dP dUUdx dxρ

− =

SIMILARITY SOLUTION TO B.L. EQS

Example 1

Flow over a semi-infinite flat plate

Zero pressure gradient p = constant

Steady ,laminar & U=constant ( )0dpdx

=

Page 13: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

• Bernouilli eqs. outsideB.L

U=constant ,

Governing (B.L. eqs.) become

2

2

u u uu vx y y

ν∂ ∂ ∂+ =

∂ ∂ ∂

Uy

x

21 .2

p U consρ+ =

0dpdx

=

0ux y

ν∂ ∂+ =

∂ ∂(1)

(2)

Page 14: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

B.C.• y=0 u= v =0 (no-slip) & y ∞ , u U• x=0 u=U

Blasuis(1908) :

1.Introduce the stream function (x,y)

• Recall ;

ψ

uyψ∂

=∂ x

ψν ∂= −

note that satisfies cont. eqs. substitute intoB.L. mom. Eqsψ

2 2 3

2 3. .y x y x y yψ ψ ψ ψ ψν∂ ∂ ∂ ∂ ∂

− =∂ ∂ ∂ ∂ ∂ ∂

(2’)

Page 15: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

• Now, assume that we have a similarity “stretching” variable, which has all velocity

profiles on plate scaling on .i.e

( , , )g U xδ ν∞=

δ

( )u yfU δ∞

=y

δx

dimensional analysis

( ) (Re)U xg gxδ

ν∞= = 21 ( )

Reδ∼ δ ν∼

xUνδ

∼ [ ]2

. .m m s ms m

= 1Rexx

δ ∼ both ( )δ

Viscous dif. Depth

Page 16: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

yηδ

=

Re U xν∞= 5 x

Uνδ

Let [-] similarity variable

Uyx

ην

∞= ( )u fU

η=

Use similarity profile assumption to turn

2 P.D.E 1 O.D.E

0 0 0

( ) ( )y y xudy Uf dy Uf d

U

η νψ η η η= = =∫ ∫ ∫x f ix e d

uyψ

=

∂=

Page 17: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

ψ

0

( ) ( )U x f d U xFη

ψ ν η η ν η= =∫

( )F η

( )U xFψ ν η=

( )U xFψ ν η= Uyx

ην

∞=

00

y

udyψ ψ− = ∫ d dy dxy xψ ψψ ∂ ∂

= +∂ ∂

•Now, substitute into P.D.E for (x,y) to get O.D.E for F( )ψ η

'12U F U xF

x x xνψ ην∞

∞∂ ∂

= +∂ ∂

' dFFdη

=2

''2

d FFdη

=

Page 18: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2''

2

UU Fy xψ

ν∞

∞∂

=∂

1 1 12 2

Uyx x x xη η

ν∞∂

= − = −∂

'1 ( )2U F F

x xνψ η∞∂

= −∂

' 'UU xF U Fy xψ ν

ν∞

∞ ∞∂

= =∂

2''

2U F

x y xψ η∞∂

= −∂ ∂

23'''

3

U Fy xψ

ν∞∂

=∂

Substituting into eq. (2’)

21 12 21'( ''') ( ) ( ') ( ) '' '''

2 2U U U UU F F F F U F Fx x x x

νη η νν ν

∞ ∞ ∞ ∞∞ ∞

⎡ ⎤ ⎡ ⎤− − − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ or

2

''2U Fxη∞−

21'2UFx∞−

21''2UF Fx∞+

2

'' ' UF Fx

η ∞= '''F

1''' '' 02

F FF+ = blasius eq. 3rd order , non linear ODE

Page 19: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

00

0y

y

uyψ

==

∂= =∂

Note: for BVP''' '' 0F FF+ =2Uyx

ην∞=

BC’s are

At y=0 u=v=0 0η =

BC 1) 0' 0U Fη∞ =

= F’(0)=0

BC 2)0

0y

ν== 1 ( ') 0

2U F Fxν η∞− − =

F(0)=0

BC 3) (x,y ∞ ) U∞

y

Uyψ

∞→∞

∂→

∂'U F Uη∞ ∞→∞

= '( )F η →∞ 1 '( ) 1F ∞ =

Page 20: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Or At x=0

F’( )=1 same with BC 3) Matching B.C

• Solution to blasius eg a)power series

b)runge-kutta

• results tabulated form for F,F’,F’’,etc

p.g 121

F( η ) dimensionless function

u U∞= 0' xU F Uη=∞ ∞→∞

=

Page 21: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

0 0 0 0.33206

F’’= 0.33206 From the solution

5.0 3.28329 0.99155 0.01591

Uyx

ην

∞= F ' uFU∞

= ''F

Page 22: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

• Velocity profile

5

[ ]12

1 ( ' )2

1 Re '2 x

U F Fx x

F FU

νψν η

ν η

∂= − = −

= −

1 (5 1 3.28)2

10.86Rex

U xx

U

νη ν

ν

∞∞

→ ∞ = −

=

RexUν

∞0.8

ηUyxγ∞=

5

F’= uU∞

Page 23: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Shear stress distribution along the flat plate

* *

* *

( ) ( , )

u x yy x

u uy x y

ντ µ τ

ν τ µ

∂ ∂= +

∂ ∂

∂ ∂ ∂≅

∂ ∂ ∂

4

6

1 Re 10 0.00865100

1For Re 10 0.0008651000

x

x

ForU

U

ν

ν

= ⇒ = ≈

= ⇒ = ≈

At the wall (y=0) 00

( )y

uxy

τ µ=

∂=

( )w xτ2

0 2 00

( ) ''y

Ux U Fy x η

ψτ µ µν

∞∞ =

=

∂= =

3

0 ( ) ''(0)Ux Fx

τ µν

∞=

Distribution along the wall 0.332

Page 24: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Non dimensionalize :

0

2

2 ''(0) 0.664 . Re1 Re Re2

f xx x

F U xCU

τνρ ∞

= = = = 0.664fC Uxν

=

Friction coef.

0Note : 0

x τν

→ ⇒ →∞

→∞ y

xB.L eqs.are not valid near the leading edge

x

Up to the point we are considering

Drag force acting on the flat plate

We have to integrate shear stress

Page 25: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

00

unit width

( )x

per

dDF τ ζ ζ

= ∫

32 1.328( )DF b U xµρ∞=x

τ

x

Ddimensionless drag coef.( C )

we have 2 wetted sides

2

5 6

2 A=2bx12

1.328 valid for laminar flow i.e for Re 5.10 to 10

DD

D xx

FCU A

CRe

ρ ∞

=

= <

Width normal to the blackboard

Page 26: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

6xfor Re >10 turbulent drag becomes considerably greater→

Boundary Layer Thickness : δ

at 5 0.99 (Table)

55 ReRe x

x

U uy yx U

U U xxx

η η δν

δ δν ν

∞ ∞

= = ⇒ = → =

≅ ≅ =

:defined as the distance from the wall for which u=0.99Uδ ∞

Boundary Layer Parameter (thicknesses)

Most widely used is but is rather arbitrary y= when u=0.99 Uδ δ ∞

Page 27: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

hard to establish more physical parameters are needed

Displacement thickness: δ

U∞ U∞

δ*δ *δ

an imaginary displacement of fluid from the surface to account for “lost” mass flow in boundary layer

*

*

*

.

0 0 0

* *

0 0

or

( ) (1 )

tot

y

U

m udy U dy U dy U dy

uU U u dy dyU

δ

δ

ρ δ

ρ ρ ρ ρ

ρ δ ρ ρ δ

∞ ∞ ∞

∞ ∞ ∞=

∞ ∞

∞ ∞∞

= = = −

= − = −

∫ ∫ ∫ ∫

∫ ∫

Page 28: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

*if . always by definition consρ δ δ= >

Momentum thickness: θ

U∞

θ

an imaginary displacement of fluid of velocity to account for “lost” momentum due to the formation of a boundary layer velocity profile

U∞

2

0 0

Mass flow in B.L

Possible momentum actual momentum

( ) ( )

U udy U udy uρ θ ρ ρ∞ ∞

∞ ∞= −∫ ∫

"lost" momentum

Page 29: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

0

(1 ) will occur in B.L eqs.u u dyU U

θ∞

∞ ∞

= −∫

*

*

Various thinknesses defined above are,to some extend,an indication of the distance

noover which viscous effects extend.

, ( ) only> ( )

Definition is same

tes(remaks) f

xalways

δ θ

δ δ θ

∗>

∗or ZPG,APG,FPG,turbulance

5From flat plate analysis Rex

xδ ≅

[ ] [ ]

0

5 5* '

0 0

5

0

(1 )

(1 ) (1 )

1.725 3.283Re Re

x

y

x

uand dyu

u uremember y d dx x

u x xd F du u u

xx x xFu x x

δ

η

η η

η η

δ

ην ν

ν νδ

ν η

∞ ∞

= =

∞ ∞ ∞

= −

= ⇒ =

= − = −

− = − =

∫ ∫

Page 30: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

*

0

(5) 3.283

1.72Re

0.664, (1 )Rey

F

xx

u u xSimilarly du u x

δ

δ

θ∞ ∞

=

=

= − =∫

*

δ

δθ

*

δ

δθ

FALKNER-SKAN SIMILARITY SOLUTIONS

Stagnation-point flow (Hiemenz flow) Similarity methods

Flow over a flat plate (Blasius flow)( , )x y η⇒

Page 31: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Falkner & Skan (1931) general similarity solution of the B-L eqs.

Family of similarity solutions to the 2-D,steady B-L egs.

Look for general similarity solutions of the form

( , ) ( ) '( ) where (1) ( ) - unspecified function of x which will be determined later

( )

u x y U x fxy

x

ηζ

ηζ

=

=

(2) ( , ) ( ) ( ) ( ) check : u= ( ) ( )x y U x x f U x xyψψ ζ η ζ∂

= =∂

1'( )( )

fx

ηζ

2

2

2 2 3

2 3

B.L eqs. (3)

or in terms of ( , ) (3')

B.C.s no-slip, smooth matching

u u dU uu v Ux y dx y

dUx y Uy x y x y dx y

ν

ψ ψ ψ ψ ψψ ν

∂ ∂ ∂+ = +

∂ ∂ ∂

∂ ∂ ∂ ∂ ∂− = +

∂ ∂ ∂ ∂ ∂ ∂

Page 32: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

( )yxζη =Substitute eq .(2) into (3’)

2

2

2

( ) ( ) ( ) ( , ) ' , "

(

1

'

' )

df d fU x x f x y f fd d

Uf uy

dU d df df U f

dU d df U f U fx dx dx dx

Ux dx dx d dxd y d ddx dx dx

ψ ζ η ψη η

ψ

ψ ζ ηζ ζη

η

ψ ζ ζζ η

ζ ζηζ ζ

= = = =

∂= =

∂= + +

= −

∂= + −

= −

[ ]

2

2 '' '

' 1 = ' '

' "

"

dU fUf f Ux y x y x dx x

dU df dU df U

dU U df

f Ufdx d

fx y d

x dx dx

x dx

ψ ψ

η ζηη ζ

ψ ζ ηζ

⎛ ⎞∂ ∂

∂=

∂ ∂ ∂= = = +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎡ ⎤∂+ = +

∂ ∂

⎢ ⎥∂ ⎣ ⎦

Page 33: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

[ ]2

2

3

3 2

2

2 22

2

"

"'

' "

Substitute above results into (3')

' ' " "'

1( ') " " "'

(

'

)

"

'

Uf Ufy y

dU dU

U fy

U fy

U d df U fdx

d U dU UUf f f U f f U fdx dx dc dx

dU dU d dU UU f U ff U ff U fdx dx dx dxdUu f

dx

dx

η

ζζ ν

ψζ

ψζ

ζ ζηζ ζ

ζ νζ ζ

ηζ

∂ ∂= =

∂ ∂

⎡ ⎤ ⎡ ⎤− − + − = +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

∂=

= +

∂=

− −

( ) ( )

2

22

2

( ) " "'

To put the eq. into standard form, multiply by

"' " 1 ' 0 (4)d

U d dU UU ff U fdx dx

U

dUf U ff fdx dx

α β

ζ νζ ζ

ζν

ζ ζζν ν

⎡ ⎤⎡ ⎤ ⎡ ⎤+ + − =⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎦

− =

+

Transformed gov. Eq.

Page 34: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

If a similarity solution exists, eq.(4) must be an ODE for the function f in terms of η.

So, coefficieuts α & β must be constant for a similarity solution

( )2 Falker-Skan "' " 1 ' eq. (0 5)f ff fα β ⎡ ⎤+ + − =⎣ ⎦

B.C same as for flat plate (0) '(0) 0'( ) 1

: BCs don't depend on ,Exact solutions to the B-L. Eqs. May be obtained by pursuing the following PROremark

StepCEDURE

: Select & . (a p ar1

f ff η

α β

α β

= =→∞ →

2

ticular flow configuration is considered

this will not be known a priori but will be exident when step 2 is completed).: Determine U

( ) ,

(x) , (x)

(6a-b)

Step 2

d dUUdx dx

ζ ζα ζν

ζ

βν

= =

Page 35: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

'' ' 2

' '

: Determine the function f ( )which is the solution of the following problem

''' 1 ( ) 0

with BCs (0) (0) 0 , ( ) 1 as Calculate the stream fun

Step

ctionin

3

Step h4 p : y

f ff f

f f f

η

α β

η η

⎡ ⎤+ + − =⎣ ⎦= = → → ∞

( ) ( )2

2

sical coord.

( , ) ( ) ( )( )

in step #2 , instead of working with eqs. 6 a-b)

(6a)'

Remar

E

2 (6b)

k

'

Flate Pxample #1

step

la

te (ZPG)

#1

yx y U x x fx

dU d Udx dx

η

ψ ζζ

ζ β ζ ν α βν

⎛ ⎞⎜ ⎟

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

= = −

( )2

'

means that flat plate at ZPG

1 = , =02

(6a)'

0 (6b)'

( ) 0 (6 ) leads to

step #2

U=con st0 .this

d UdxdUdx

dUx bdx

α β

ζ ν

ζν

ζ

=

=

≠ ⇒ = ⇒

Page 36: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

22(6 ) '

1 : ''' '' 0 (0) '(0) 02

; ' 1 compare with Blasius s

Step #3

Step #

olution

( , )

( )

,

4

( )

d xadx U U

f ff f f

y fxU

y x

xxU

yx y U f U fU x

U

x y U x f y

ζ ν νζ

η ην

νψ ζζ ν

ψ ν

νζ

= → =

+ = = =

= → ∞ →

⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠

=

=

same as Blasius solution Uxν

⎛ ⎞←⎜ ⎟⎜ ⎟

⎝ ⎠

( ) ( ) ( )2 2

FLOW OVER WEDGE

1, arbitrary constant

(6a' )

Exampl

2 2

e #2

Step

(7)

#1d U U xdx

α β

ζ ν β ζ ν β

= =

= − ⇒ = −

Page 37: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2

2

(6 ')

Divide eq. (6b') by (7)

ln ln ln outer flow is that over a wedge of angle (Fig.)2

1 12

( )

dUU dx x

U x

dUbdx

U cxx cββ

ζ νβ

β πβ

β

β

β

=−

=

+ ⇒ ==−

2(1 )2 2

2

2

2

1

2

(9)

Solve the BVP

''' '' 1 ( ') 0

(0) '(0) 0 ' 1 Solve numerically to get ( ), '( ), '

(2 )( )

Step #3

'( )

dU c xdx

f ff f

f fas f f

c

f

x x

f

ββ

ββ

βζ νβ ζ νββ

β

η η η η

ν βζ

− −

−−

−= =−

⎡ ⎤+ + − =⎣ ⎦

= =→∞ →

−=

Page 38: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

( ) ( )

( )( )( )

12 1 2

: Go back to the physical cStep oordinate

( , ) ( ) ( ) = 2 ( ) 2 /

4

y yx y U x x f c x f xx c

β β βψ ζ β νζ β ν

− − − −⎛ ⎞⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

STAGNATION-POINT ; FLO =W 1 1β α=

Flow over a wedge Let 1β→ =

2

Eq. (8) gives, ( )

(9) ( ) "' " 1 ( ') 0

(0) '(0) 0 as '( ) 1

( , ) x /

Not

U x cx

x f ff fc

f f fyx y c fc

νζ

η η

ψ νν

=

→ = + + − =

= = →∞ →

⎛ ⎞= ⎜ ⎟⎝ ⎠

e: See Hiemenz flowExact solution to the full Navier-Stokes equations obtained by Hiemenz for a stagnation point.

Page 39: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

FLOW IN A CONVERGENT CHANNEL 0 , 1α β= =

Boundary layer flow on the wall of a convergent channel.Exercise: pg. 132.Solve the BVP (F-S. eq.)

More on similarity solutions to the B.L.Evans (1968) “Laminar Boundary Layers”Numerical SolutionsFinite differencesH.B. Keller (1978)Ann. Rev. of Fluid Mech. Vol.10.pp. 417-433Finite Element Methods, Finite Volume MethodsSpectral (Element) Methods

APPROXIMATE SOLUTIONS:Solve exact eq. approximatelyVon Karman Momentum Integral Eqn(General Momentum Integral Equation for Boundary Layer)

Page 40: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

*

Develop an eqn. which can accept "approximate" vel. profiles as input & yield accurate (close, but approximate) shear stress , , as output.

Integrate the differen

I

tial B-L. eqs. Approac

ea:

h:

d

a

δ δ θ

2

2

cross the B-L. 0 y

Start with B-L. eqs.

0

. 0 , 0

First note

u u dU uu v Ux y dx y

u vx y

BC y u vy u U

δ

ν

δ

≤ ≤

∂ ∂ ∂+ = +

∂ ∂ ∂∂ ∂

+ =∂ ∂

= == =

( )

( ) 2

20 0 0

( ) ( )

Substitute into B.L eq. & integrate from y=0 to y= .

2

u uv v uv u uv u continuityy y y y

v uyx

uvu dU uu dy dy U dyx y dx

x

y

δ δ δ

δ

ν

∂ ∂= −

∂∂ ∂ ∂ ∂ ∂

= − = +∂ ∂ ∂ ∂ ∂

∂∂ ∂+ = +

∂ ∂ ∂∫ ∫ ∫

( )

0

00 ?

(1) (2) (3) (4)

Consider term (2) 0( , )

dy

uvdy uv U v x

y

δ

δδ δ

∂= = −

Page 41: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

0

0 0 0 0

2

20 0 0 0

00

Integrate cont. eq. dy

0 ( , ) 0 0

Integrate term (4

( , )

)

y y

y

u v u udy dy dy v x U U dyx y x x

u u u u udy dyy y y y y y

d

x

y

v

ud

δ

δ δ δ δ

δδ δ

δ

δ

τ µ

δ

= =

=

∂ ∂ ∂ ∂+ = ⇒ + − = = −

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= = = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

= ⇒

∫ ∫ ∫ ∫

∫ ∫

( )

20 0

0 0

0

20

0

00

0

( ) (4) Term(1) 2

( )B-L. eq. becomes

u uu dy dyx x

u dUdy U U dyx dx

uUu dUU

u dyx

u dyx

U dy ux x dx

δ

δ

δ δ

δ δ

δ

τ τνµ ρ

τρ

∂ ∂⇒ − = − ⇒ =

∂ ∂

∂− −

⎛ ⎞∂∂= = −⎜ ⎟∂ ∂

∂ ⎠

=

∫ ∫

∫ ∫

∫0

dyδ

=0

Page 42: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

( )

( ) ( )

20

0 0 0 0

2 0

0 0

2

( )Thus, get

uUu dU dUdy dy u dy U dyx x dx dx

dUu uU dy u U dyx dx

ux

δ δ δ δ

δ δ

τρ

τρ

∂∂− + − = −

∂ ∂

∂− + − = −

∂−

∫ ∫ ∫ ∫

∫ ∫

( )0

uU dyδ

Using Leibnitz’s rule permits the order of integ. & dif. to be interchanged

22 0

20 0

1u u u dUU dy U dyx U U U dx

δ δ τρ

⎛ ⎞∂ ⎛ ⎞− + − = −⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠∫ ∫

Multiply by -1 & factor U terms out of integrals,

2 0

0 0( ) *( )

1 1

x x

u u dU uU dy U dyx U U dx U

δ δ

θ δ

τρ

⎡ ⎤⎢ ⎥∂ ⎛ ⎞ ⎛ ⎞− + − =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦

∫ ∫

Page 43: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2 * 0

2

2 *

*

02

( )

2 , ( ) only

Divide eq. by U & get

( 2)

(

2

12 )

ff

d dUd

dUU Ux dx

dU dU U xx dx x dx

Cd dUor H H Cdx U dx

x U dx Uτθ δ θ

τθ δρ

θ θ θθ θ

τθ θ δθ

ρ+ +

∂+ =

↓∂ ∂

+ →∂

+

=

+ = = = 0

2 H= shape factor1

2Uρ

Ordinary Differential eq. for θ(x) & is called von Karman Momentum Integral eqn. or

Generalized momentum integral equation

To solve the integral eq. we first “assume” an approximate velocity profile, i.e. one that “fits” &

has proper “shape” and satisfies the proper B.C we do thin by using similarity concept again

& writing potential similarity velocity profiles in terms of the variable , & apply

B.C & get particular form.

evaluate θ(x), δ*(x) and from their definitions.

integral equation can be solved for the B.L. thickness, δ(x)

( )yx

ηδ

=

Page 44: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

η

0 ( )nudy

τ ∂∼U y δ=

An approximate velocity profile, for example

2u a b cU

η η= + +

* 02

1( 2 )d dUdx dx U

τθ δ θθ ρ

+ + =

( )xθ

2 ( )u a b c fU

η η η= + + =

2u a by cy= + +

Steady ,incompressible 2-D flow with no body

forces. Valid for laminar and turbulent flow

O.D.E for

To solve eq. we first ”assume” an approximate velocity profile inside the B.L

Relate the wall shear stress to the velocity field

Typically the velocity profile is taken to be a polynomial in y, and the degree of this polynomial

determines the number of boundary conditions which may be satisfied

EXAMPLE: LAMINAR FLOW OVER A FLAT PLATE:

laminar profile later as an example

or

Page 45: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

B.C 1-)u=0 at y=0 ( =0) a=0 b=2

2-)u=U at y= ( =1) 1=b+c c=-1

3-) at y= ( =1) 0=b+2c

Now use the approximate velocity profile to obtain terms in the momentum integral eq.

NOTE: Using the approximate velocity profile across the B.L will reduce the momentum

integral to an O.D.E for the B.L thickness, δ (x).

2 22 2( ) ( )u y yU

η ηδ δ

= − = −

*

0

(1 )u dyU

δ

δ = −∫ ( )yx

ηδ

= dydηδ

=

1 1* 2

0 0

(1 ) (1 2 )u d dU

η

δ δ η δ η η η=

= − = − +∫ ∫1

* 2 3

0

1( )3 3

δδ δ η η η= − + =

0uy∂

=∂

η

δ

δ

η

η

Page 46: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

or

1

0 0

(1 ) (1 )u u u udy dU U U U

ηδ

θ δ η=

= − = −∫ ∫1

2 2

0

(2 )(1 2 )dθ δ η η η η η= − − +∫ 215

θ δ=

000 0

1 2y

du du d du Udy d dy d ηη

ητ µ µ µ µη δ η δ== =

= = = =

(2 2U η−0

)η=

20

0

2 2( ) ( ) 2y

y y UUy

τ η µδ δ δ=

∂ ⎡ ⎤= − =⎢ ⎥∂ ⎣ ⎦

* 02

1( 2 )d dUdx U dx U

τθ δ θρ

+ + =

Momentum Integral eq. becomes

Page 47: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

For a flow over a flat plate U=const.

ODE for (x).solve (x)first then

Solving for ,

, ,

,

2

2 4 1 2 2( ) ( )15 3 15

d dU Udx U dx U U

δ δ δ µ νδρ δ

+ + = =

0dUdx

=

δ δ2 215ddx Uδ ν

δ=

*0, ,δ θ τ

δ2

0 0

15 152

x xd dxU U

δ ν δ νδ δ = ⇒ =∫ ∫

5.47730 5.477Rex

x x xU Uν νδ = = = Rex

Uxν

=* 1.826

3xU

δ νδ = =

2 0.7315

xU

δ νθ = =0

2

0.731 Re2

fx

CU

τ

ρ= =

0 2 Uτ µν

=

Page 48: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Comparing to (exact) blasius solution

note:2nd order profile but it should be zero

Additional BCs need to be imposed

(=0 for flat plate)

5,477 1.0955blasius

δδ

= =

*

*

1,826 1.0611,72blasius

δδ

= = 10%∼

2

2 2

2( ,0) 0u Uxy δ∂

= − ≠∂

0.73 1.0990.664B

θθ

= =

2 3 4u A B C D EU

η η η η= + + + +

u0y

ux

ν=

∂+

2

20 0

1

y y

u P uy x y

νρ= =

∂ ∂ ∂= − +

∂ ∂ ∂

2

20

1

y

u P dUUy x dx

νρ

=

∂ ∂= = −

∂ ∂

Page 49: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

BC#5 at y= all higher derivates should also be zero at y= for a smooth transition from the B-L. to the outer flow

Note: 2nd order profile

BC#4

by employing 3rd order profile , i.e the above condt. may be imposed

More accurate results are obtained

Flat Plate at zero incidence

Vel. Dist.

δ 2

2 0uy∂

=∂

δ

22( ) ( )u y yU δ δ

= −

2

2 2

2( ,0) 0u Uxy δ∂

= − ≠∂

2 3u a b c dU

η η η= + + +

( ) ( )u yf fU

ηδ

= =

( )f η η=

Page 50: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

,

Note 1: Once the variation of is known, viscous drag on the surface can be evaluated

by integration over the area of the flat plate.

Note 2: B-L thickness at transition

air ( )

less than 1% of development length,x.

viscous effects are confined to a very thin layer near surface of body

2( ) 2f η η η= −

33 1( )2 2

f η η η= −

3 4( ) 2 2f η η η η= − +

( ) sin( )2

f πη η=

4.64Rex

δ =

5.84Rex

δ =

4.80δ =

0.647Ref

x

xC =

0.685Ref

x

xC =

0.65fC =

5Re 5.10x =

30mU s= 0.24x m= ν 5.48 0.00775Rexx

δ= =

0.00775 1.86x mmδ = = ←

Page 51: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Boundary layer seperation

Separation wake formationincrease in dragtotal force exerted on body in direction offluid motion

Boundary layers have a tendency to separate and form wake

Wake leads to large streamwise pressure differentials across the body

results in substantial pressure drag (form drag)

For large Re ( or higher) bluff bodies (e.g circular cylinder) pressure drag constitutes

almost all the total drag

Total drag = pressure drag + viscous drag

due to shear stress along the surface

due to pressure differences caused by separation of flow

Wake

410

Page 52: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2) AIRFOILS-LIFT drops sharply “STALL” due to separation

force normal to flow directionShape of streamlines near point of separation

3) FLAT PLATE~ No separation

REMARK: After separation point ,external (decelerating) stream ceases to flow nearly parallel to the boundary surface

S

chord

tNo separation

Page 53: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Condition for separation

Pressure gradient ,

>0 adverse pressure gradient (decelerating external stream) increasing pressure in the flow direction

<0 favourable P.G and =0 (zero pressure gradient)

NOTE: pressure gradient along a B.L is determined by the outer flow

(Bern. Eq.)

Separation occurs only for APG condition

o Momentum contained in the fluid layers adjacent to surface will be insufficient

to overcome the force exerted by the pressure gradient , so that a region of

reverse flow occurs.

dPdx

dPdx

dPdx

dPdx

1dU dPUdx dxρ

= −

Page 54: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

i.e at some point downstream, the APG will cause the fluid layers adjacent to the surface to

flow in a direction opposite to that of the outer flow B.L separation

velocity profiles in a

B.L near separation

Note :shear stress changes its sign after separation

Definition of separation point = point at which the shear (or velocity gradient)vanishes

( ,0) 0, for separationu xy∂

=∂

δ

0

0uy∂

>∂

0

0uy∂

=∂ 0

0uy∂

<∂

. pointsep

Page 55: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

• Question show that separation can occur only in region of adverse pressure gradient !Steady state B.L eqs.

If <0

the same

u0y

u vx =

∂+

2

20 0

1

y y

u P uy x y

νρ= =

∂ ∂ ∂= − +

∂ ∂ ∂2

20y

u dPy dx

µ=

∂=

3

30

0y

uy

=

∂=

dPdx

2

2

uy∂∂ 2

2u Py x∂ ∂

=∂ ∂0y =

y δ=2

2 0uy∂

=∂

0uy∂

>∂

0uy∂

=∂

0u =

u U=

uy∂∂

y

u

U

?

Page 56: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

case

constant slope

Case APG

PI= point of inflection where

0Px

∂=

yy y

2

2 0uy∂

=∂

uy∂∂

u

0Px

∂>

uy∂∂

2

2 0uy∂

=∂

y

2

2 0uy∂

=∂

2

2 0wall

u dPy dx

µ ∂= >

PI

y y

u

U

PI

Page 57: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Control of separation by suction

Control of separation by variable geometry and by blowing

How to calculate the separation point ?

Goldstein

Stewartson

The Karman – Pohlhausen Approximate Method

Fourth order polynomial for u (y). Pohlhausen (1921)

Step #1 :coefs. a,b,c,d,e, in general, will be functions

of x, so that solutions which are not similar

may be obtained.

2 3 4u a b c d eU

η η η η= + + + +

yηδ

=

Page 58: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

δ

2

2

( )u U x dUy dxν∂

= −∂

y=0 y=

u=0 u=U

0y

uy δ=

∂=

1 dpdxµ

=2

2 0y

uy δ=

∂=

2

20

2

2 20

1 1( ) ( )

1 =

y

u u uy y y

u U dUdxη

δ η δ η

δ η ν

=

=

∂ ∂ ∂ ∂ ∂= =

∂ ∂ ∂ ∂ ∂

∂= −

2 2

2

impose B.C.s=0 0=a :dimensionless variable; a measure of

pressure gradient in outer flow

( )=0 2

u dUUdx

η

δηη ν

Λ

∂= −Λ = − =

∂1 1=a+b+c+d+e

=1 0=b+2c+3d+4e=1 0=2c+6d+12e

solution a=0 b=2+ c=- d=-2+ e=1-6 2 2 6

c

ηηη

=

Λ Λ Λ Λ→

Page 59: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2

3

3

where F( )=1-(1+ )(1- ) Pohlhausen parameter G( )= (1-

(x)= -12 1( ) ( ) (1

)

) 2

6

u F G dUdxU

η

η η η

η η

ν

η

δη= ≤Λ Λ Λ ≤+

Note : for velocity profile corresponds to a flat plate

Plot function F( ) & G( )

0Λ =

ηη

F( )ηG( )η

0.25

0.0161

1

1

12Λ < −0Λ <

0Λ =

0Λ >

12Λ >

uU

η

Page 60: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

thu0 : ( ) Flat surface in which the represantation is a 4 order polynominalUu>12 1 vel. in B.L. is not expected to exceed that of the outer flow locally.U

F ηΛ = =

Λ >

So must be less than 12<-12 negative velocity reverse flow.B.L. theory is not applicable after separation

ΛΛ ⇒ ∴

*δ1

*

0 01

3 3

0

1 2

0

( ) (1 ) (1 )

3 = (1+ )(1- ) (1 ) ( ) (2)6 10 120

momentum thickness

37(x)= (1 ) ( ) (3)315 945 9072

wall

u ux dy dU U

d

u u dU U

δ

δ δ η

δ η η η η η δ

θ δ η δ

= − = −

Λ Λ⎡ ⎤− − = −⎢ ⎥⎣ ⎦

Λ Λ− = − −

∫ ∫

∫0

0 00

shear stress :

( ) (2 )6

b

U u U U

η

τ

τ µ τ µδ η δ=

∂ Λ= = +

Step#2 Displacement thickness

Page 61: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Uθν

Step #3 Plug into the general momentum eq. Multiply the mom. Eq. by

* 0

2 * 20

2

2 2 22

2

*

2

(2 ) or

1 ( ) (2 ) (5)2

(x)= evaluate each term in terms of (x)

37( ) ( ) 315 945 9072

3(10 120

( )

U d dUdx dx Ud dUUdx dx U

dUdx

dU dU KK xd dxx

x

τ θθ θ θθ δν ν µ

τ θθ δ θν θ ν µ

δν

θ θν

θ

θδ ν

δ

+ + =

+ + =

Λ Λ

Λ Λ= Λ = − − Λ =

Λ−

=

=

2

20

)( ) (6)

37( )315 945 9072

f( ) f(x) but K=K(x) f(K)

37( ) , g(K)=(2+ )( )6 315 945 9072

f K

g KU

τ θµ

=Λ Λ

− −

Λ → ⇒

Λ Λ Λ= − −

Page 62: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

[ ]

[ ]{ }

0

2

2

2

(2 )6

1 ( ) 2 ( ) ( ) (7)2

where K= ( )

, let us take Z= as the new dependent variable so that K=Z and the mom,int. becomes

U 2 ( ) 2 ( ) ( U) or

U

dU f K K g Kdx

dU K xdx

d

dZ

UNowdx

dZ g K f K K H Kdx dx

τ µδθν

θν

θν

Λ= +

+ + =

=

= − + =

st

(8)

H(K) is known (1 order nonlinear , ODE for Z , solve numericallay , start x=0 stop =-12

)

(

H K=

→ Λ

[ ] separation )but complex H( )ODE for Z(x) - mom. int. reduces to above form IVP for ODfor any (x) K & H(K) may be evalu ted

Ea

Λ

Λ →

0.0783

0.47

H(K)

0.0783

0.47

H(K)

K

H(K)=0.47-6K (9)approximation

Linear in K over the range of interest

Page 63: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

56

0

65

Mom. Int. eq. becomes

U 0.47 6 ( ) 0.47 6 or

1 ( ) 0.47U

0.47( ) ( ) ( )

Mom. int. may be expressed interms of this quadrax

dZ dUK H K Zdx dxd ZU

Z x U dU

dx

xς ς

= − = = −

=

= ∫

2

2 56

0

ture

then , since Z= , the value of will be

0.47 ( ) ( ) (10)( )

x

x U dU x

θ θν

νθ ς ς= ∫

Procedure: Potential flow problem should be solved to yield the outer

velocity U(x) (for a given boundary shape)

Use eq. (10) to evaluate the momentum thickness ( )xθ

Page 64: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2 22

Pr parameter (x) may be evaluated from the relation

(11) difficult to find (x)

found (x), (x) is evaluated from eq. (3)

3

37 (x)

7( ) ( )315 945

= (315

072

945

9

essure

havi

dU K xx

n

d

g δ

θ δ

θν

Λ Λ= = − −

Λ

Λ

Λ

Λ− −

2*

*

0

) and eq. (2)9072

3( ) 10 120

u ( ) ( ) vel. distribution eq (1)U

shear stress at the surface is given by eq. (4)

(2 )6

F G

Uu

δ

δ δ

η η

τ µ

Λ

Λ= −

= +Λ ←

Λ= +

Page 65: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

In practice it is difficult to evaluate the quality from eq (11) unless

is a constant

Instead : choose specific functions and use foregoing eqs. to

determine the outer-flow vel. & hence the nature of the boundary shape

EXAMPLE Karman-Pohlhausen approx. applied to the case of flow over

a flat plate

( )xΛ

Λ

( )xΛ

2

x

2

x xtan eq. (10) 0.47 =0.686 =0.686U Re

0 eq. (11)

0 ( )

xU cons tU

dUdx

dUdx

ν νθ θ θ

δν

= → = →

= ⇒

Λ =

Page 66: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

* *

00

2 x

37 x 5.84 eq. (3) (x)= =5.84315 U Re

3 1.75.(2) 10 Re

0.686.(4) 2 1 Re2

x

x

xFrom

xeq

UeqU

νθ δ δ

δ δ δ

ττ µδ ρ

→ =

⇒ = → =

⇒ = ⇒ = ΘExact 0.664

4th order vel. pr 0.686

2nd order vel. pr 0.73

3.5% error

STABILITY OF STEADY FLOWS

Boundary – Layers

Instabilities

Usually laminar flow becomes turbulent flow

Page 67: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

EXAMPLE: Flow over a circular cylinder

~ 82~ 108

Re

DC

Laminar B.L Turbulent B.L

• Due to vel. profile difference between lam. & turb. flow

Significant drop in the drag coefficent DC•

x

y flow

V(y) is knownundisturbed flow "base flow"

v=0

parallel

⎫⎬⎭

Page 68: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Linear Stability Analysis: The Method of Small Perturbations

Introduce arbitrary small (infinitesimal) disturbance into the flow eqs. & determine whether

this disturbance grows or decays with time

if the disturbance grows with time, the flow (the B.L) will be classified as unstable

if the disturbance decays with time, the flow (the B.L) will be classified as stable

marginal stability (neutral): the disturbance neither grows nor decays

Non linear stability analysis: no restriction on disturbance size

A1 Introduce small disturbance to the velocity profile

u(x,y,t) = V(y) + u’(x,y,t)

0

( , , ) = ( ) + '( , , )( , , ) 0 '( , , )( , , ) ( ) '( , , )

u x y t V y u x y tv x y t v x y tp x y t p x p x y t

= += +

0

u' ' p' 1 ; 1 ; 1V V p

vwhere << << <<

Page 69: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

A2 Substitute A1 into the N-S eqs. & continuity

20

2

2 2

2 2

2 2

2 2

' ' 0

' ' ' 1 ' ' ' ; ( ') '( ) ( ) ( )

' ' ' 1 ' ' ' ; ( ') ' ( )

u vx y

u u dV u dp u ux V u vt x dy y dx x yv v v dp v vy

dp Vdx y

V u vt x x dy x y

νρ

νρ

∂ ∂+ =

∂ ∂

∂ ∂ ∂ ∂ ∂+ + + + = − + + + +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂+ + + = − + +

∂ ∂

∂ ∂

A3 When the perturbation is zero, the above eqs. reduce to

20

2

10 dp d Vdx dy

νρ

= − +Undisturbed flow

(parallel)

A4 Drop term A3 in x-mom. Eq.

Since the perturbation is assumed to be small, products of all primed quantities may be

neglected as being small

Page 70: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Thus , Linearized eqs. governing the motion of the disturbances are

2 2

2 2

2 2

2 2

' ' 0

' ' 1 ' ' ' ; ' ( )

' ' 1 ' ' ' ; ( )

u vx yu u dV dp u uX V vt x dy dx x yv v dp v vY Vt x dy x y

νρ

νρ

∂ ∂+ =

∂ ∂

∂ ∂ ∂ ∂+ + = − + +

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ = − + +

∂ ∂ ∂ ∂

Introduce a perturbation stream - function (to reduce number or eqs. by one)ψA5' , '=

xu v

yψ ψ∂ ∂

= −∂ ∂

In terms of this stream function the governing eqs. become

2 2 3 3

2 3

2 2 3 3

2 3 2

1 ' ( )

1 ' ( )

dV dpVy t x y x dy dx x y y

dpVx t x dy x x y

ψ ψ ψ ψ ψνρ

ψ ψ ψ ψνρ

∂ ∂ ∂ ∂ ∂+ − = − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂− − = − − +∂ ∂ ∂ ∂ ∂ ∂

Page 71: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

A6 Eliminate the pressure term by forming mixed derivative, above two eqs.

above two eqs. may be reduced to one ,

2 'px y∂∂ ∂

2 2 2 4 4 4

2 2 2 4 2 2 4( )( ) ( 2 )d VVt x y x dy x y y x x

ψ ψ ψ ψ ψ ψν∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

Stream function for the disturbance must satisfy this linear , 4th order , PDE

A7 Since the disturbance under consideration is arbitrary in form, Perturbation

stream function may be represented by the following Fourier – lntegral:

( )

0

( , , ) ( ) c:time coefficienti x ctx y t y e dαψ φ α∞

−= ∫

[ ]

: & positive (inverse wavelength)2= m

wave length of the disturbances

realαπλα

Page 72: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

-i ct

-i cti

: time variation e if c > 0 e as t

disturbance will grow unstablein general co

r i

notec c c i

α

α= + → → → ∞ →∞

→-i ct

i

i

mplex number: if c < 0 e 0 as t

disturbance will decay stable c = 0 ne

α→ → →∞

→→ utrally stable

(c=0)

Plug in A6 yields the integro – differential equation:

( ) 2 i (x-ct)

0

2 2 4

2 4

2 4

4 i (x-ct)

0

( " ) " e

( ''' 2 " , i 1 i 1

" , ""= ,..

) e

.

i c i V i

d dd d

d

y

V d

y

α

α

α α φ α φ αφ α

ν φ α

φ φ

α

φ

φ φ

φ

α

⎡ ⎤− + − −⎣ ⎦

⎡ ⎤= − + −

=

⎣ ⎦ = =

Page 73: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Above equation should be valid for arbitrary . , the integrand should vanish (because eq. should be valid for arbitrary disturbance)

Thusα

2 2 4(V-c)( "- )-V = ( '''' 2 " ) (A)i

Orr-Sommerfield equation

νφ α φ φ φ α φ α φα

− +

B.C disturbance should vanish at the surface y=0 and at the edge of the Boundary Layer

' ( , 0, ) 0 , '( , 0, ) 0' ( , , ) '( , , ) 0 as y u x y t v x y tu x y t v x y t

= = = == = → ∞

0

0

in terms of the stream function (y)

' 0

' 0

y

y

uy

vx

ψ

ψ

ψ=

=

∂= = →∂

∂= − = →

'(0) 0

(B)(0) 0'( ) ( ) 0 as y y y

φ

φφ φ

=

== → → ∞

Page 74: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Solution of the Orr – Sommerfeld EquationUndisturbed vel. profile V(y) and disturbance wavelength is specifiedα

( ) & knownV y α

. (A) with BC.(B)represent an eigenvalue problem for the time coefficient , c , 0 flow stable 0 flow unstable ( ) , 0

r i i

i

i

Eqc c i c c

ci x ct cα

= + < ⇒> ⇒

− = neutral stablity⇒

i (x-ct) (y) e αψ φ=

unstable

stable

, 0istable c <

*

Re Uαν

=

Recritical

* α δ

Steady laminar flow can become another steady lam. flow

HTLT

. PrRa Gr=

Diagram:Stability

Page 75: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Orszag (1971):

000

i

i

i

ccc

<>

<

V

α

typical stability – calculation result for fixed , is varied. Then, by considering all

possible values of the undisturbed B.L vel. (which less than the outer –flow vel.) a stability

diagram is constructed

V α

possible values of ( ) in the range 0 ( ) ( )All V y

V y U x≤ ≤

Flow over a flat surface

*

Re 420crcr

Uαν

= =

Page 76: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

unstable

boundarystability

420

* α δ

*

Re Uαν

=

0.34

575 RecrSchlichting =

Re >420 arbitrary disturbance will be unstable.

manifest themselves in the form of turbulence

Page 77: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

FREE – SHEAR FLOWS (LAYERS)

Unaffected by walls

Develop and spread in an open ambient fluid

Possess vel. gradient created upstream mechanism

viscous diffusion convective deceleration⇔

EXAMPLE: 1) The free-shear layer between parallel moving streams:

2U

1U1U

interface

y1

1

0

2

2

u

ρµ

ρµ

2U

u

- shaped free-shear layer is due to viscous diffusionS

At x=0 , upper free stream lower free stream

1

2

Umeets as x=0

U⎫⎬⎭ 1 2 & U uniformU

Page 78: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

For each stream , can define a Blasius – type similarity variable

Lock(1951) – two different fluids with physical parameters

1 1 2 2( , ) & ( , )ρ µ ρ µ

1

1

j 1

, , j=1,22

2 ( )

jj j

j

j j j

uUy fx U

U x f

ην

ψ ν η

′= =

=

Following the same procedure as in derivation of Blasius equation, one can

obtain Blasius-type eq. for each layer

''' '' 0 j=1,2j j jf f f+ =

Page 79: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

1'( ) 1 asymptotic approach to the two stream veloci i s t ef +∞ =. . 1) BC s

22 2 2

1

1 1

Uy (- ) U ' U

as +

u f

u U

η

η

→ ∞ → →−∞ ⇒ → → =

→ → ∞

. . 2) BC s 1 2 1 2Kinematics equality , and at the interfaceu u v v= =

j 1 2 0 1 2

1 21 2 1 2

0 '(0) '(0) 0 u u

(0) (0) 0 x x

f f u

f f v v

η

ψ ψ

= → = ≠ = =

∂ ∂= = = ⇒ =

∂ ∂

. . 3) BC s11 2

1 2 j

11 1 11 1 1 1 1 1

1 10 0

(0) (0) or 2

' '' (1)2

i

y

y Uu uy y x

Uu fU U fy y x

µ µ ην

ηµ µ µη ν=

∂ ∂= =

∂ ∂

∂ ∂ ∂= =

∂ ∂ ∂

Equality of shear stress at the interface

Page 80: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

122 2 1 2

20

2 21 1 2 2 1 2

1 11 2

'' (2)2

1 1(1)=(2) ''(0) ''(0) ''(0) ''(0)

y

Uu U fy x

f f f f

µ µν

ρ µµ µρ µν ν

=

∂=

⇒ = → =

2 21 2

1 1

''(0) ''(0) k=f k f ρ µρ µ

=

1 2 1 2 : k=1 (identical fluids) ; : a gas flowing over a liquid k>>1

ex

Case 1Case 2

. air-water

Most p

interf

ractic

ace k 60000 k 2

al cas s

45

e

ρ ρ µ µ= =

≈ ⇒ ≈

Page 81: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body
Page 82: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

TURBULENCEINTRODUCTION

LAMINAR FLOW : Smooth , orderly flow limited to finite values of critical

parameters: Re, Gr, Ta, Ri

Beyond the critical parameter, Laminar flow is unstable a new flow regime turbulent

flow

Transition

Laminar

Turbulent

x

Page 83: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Characteristics

1) Disorder : not merely white noise but has spatial structure (Random variations)

2) Eddies : (or fluid packets of many sizes) Large & small varies continuously from shear –

layer thickness down to the Kolmogorov length scale ,

3) Enhanced mixing in laminar flow molecular action

mixing in turbulent flow turbulent eddies actively about in 3-D and

cause rapid diffusion of mass, momentum & energy

Heat transfer & friction are greatly enhanced compared to Lam. Flow

4) Fluctuations : (in pressure, vel. & temp. )

Velocity fluctuates in all three directions

5) Self-sustaining motion: Once trigged turbulent flow can maintain. Itself by

producing new eddies to replace those lost by viscous dissipation

δ3 1

43( )L

Uν δ

=

Page 84: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Experimental measurement :Hot-wire anemometer

measure fluctuations in velocity via heat transfer

Examine change in resistance assoc. with temp. (use wire ~ 0.0001” dia.)

u

t

u

t

u

t

Laminar B.L

Shedding cylinder

Turbulent B.L

Page 85: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Mathematical Description

N-S eqs. do apply to turbulent flow

Direct Numerical Simulation :Solve the N-S eqs. directly using computers

Problem: wide range of flow scales involved solutions requires supercomputers and

even then are limited to very low Reynolds numbers

Mesh points : beyond the capacity of present computers (trillions)

Eq. Turbulent flow in a pipe

7 22dAt Re 10 requires 10 numerical operatious computation would

take thousand years to complete (for the fine details of the turbulent flow)= → ⇒

Page 86: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Direct numerical simulation DNS

Because of complexity of the fluctuations, a purely numerical computation of turbulent flow has

only been possible in a few special cases.

Therefore, consider time average of turbulent motion

Difficulties in setting up eqs. of motion for mean motion

Turbulent fluctuations coupled with mean motion

Time averaging N-S additional terms (determined by turbulent fluctuations)

Additional unknowns in computation of mean motion

We have more unknowns than eqs.

To close system of eqs. of motion need additional eqs ⇒

These eqs. can no longer be set up purely from the balances of mass momentum & energy

But, they are model eqs. which model relation between the fluctuations & mean motion

called turbulence modelling central problem in computing the mean motion of turbulent

flows

Page 87: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Mean Motion & Fluctuations

, time average valueu'u

Decompose the motion into a mean motion & a fluctuating motion

'

'

'

'

u u u

v v v

w w w

p p p

= +

= +

= +

= +

compressible turbulent flows

= ' ; '

In

T T Tρ ρ ρ+ = +

Average is formed as the time average at a fixed point in space

0

0

1 integral is to be taken over a sufficently large time interval T so that ( )t T

t

u u dt u f tT

+

= ← ≠∫

Page 88: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

122

0

Characterization of fluctuation RMS

1 ( )T

u u u d tT

⎫⎧⎪ ⎪= −⎨ ⎬⎪ ⎪⎩ ⎭∫

' ( )

' ( )

u g t

u u u f t

=

= + =

definition time average of fluctuating quautities are zero i.e.

' 0 , ' 0 , ' 0 , ' 0 assume that mean motion indep. of time steady turbulent flow

By

u v w pFirst= = = =

u

t

steady unsteady

Turb. flow

u

u

t

steady unsteady

Lam . flow

Page 89: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

' , ' , ' influence the progrees of mean motion , , , so that mean motionexhibit an apparent increase in resistance aganist deformation.Increased apparent viscosity

all

Fluctuations u v w u v wis

cenral of theoretical considerations on turbulent flow

, + , . .

u , ; ' ' ; ' 0x

of computation

u u u v u v u v u v

u udx udx uv

Rul

u v u v u vx

es

= + = =

∂ ∂= = = + =

∂ ∂ ∫ ∫

x

' 'xy xy xylam tur

u u vy

τ τ τ µ ρ∂= + = −

∂Additional shear stress

(Reynolds stress)

Page 90: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

( ') ( ' )= ' ' ' '

' ' '

:

' 0u v

uv u u v v uv uv vu u v

uv

Ex

uv u v u v

= + + + + +

= + ≠

Physical Interpretation of ' ' as a stress a)Consider fluid particle moving up from 1 to 2 ' 0 ' 0 (since

u v

v u

ρ

> < 1 2

turb

particle has velocity deficit i.e ) ' ' 0 0 cel. of flow at 2 b)if particle moves down from

u uu v deτ

<< ⇒ > ⇒

turb

2 to 1 ' 0 ' 0 (particle has excess vel.) ' ' 0 0 accel. of flow at 1

v uu v τ< >

∴ < ⇒ > ⇒

2

1'v

'u

2

1

Momentum

exchange

Turbulent shear stress is higher

Page 91: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Basic Eqs. for Mean Motion of Turbulent Flows

Consider flows with constant properties

Continuity equation

(1) '

' of (1)

u v w u u ux y z

u u uTime averagingx x x

∂ ∂ ∂+ + = +

∂ ∂ ∂

∂ ∂ ∂− = +

∂ ∂ ∂

(2) =0

' ' '(3) Also , using (1) 0

time average values &fluctuations satisfy laminar flow continuity eq Momentum Eqs.(Re

y

u v wx y z

u v wx y z

Both

∂ ∂ ∂+ +

∂ ∂ ∂∂ ∂ ∂

+ + =∂ ∂ ∂

2Incomp. N-S eqs. ( ( . ) )

nolds eqs.)

- (4)V V V p Vt

ρ µ∂+ ∇ = ∇ + ∇

Page 92: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Substitute ' ' ' ' into N-S s1) egu u u v v v w w w p p p= + = + = + = +

2) Time average the equations

3) Drop-out terms which `average` to zero . Use “Rules of Computation”

2

2

2

' '0 0 terms which are linear in fluctuating quantities 0

' 0 ' ' 0 terms which are quadratic in fluctuating quantities 0

u ut x

u u v

∂ ∂= = ← ⇒

∂ ∂

≠ ≠ ← ⇒

2

22

2

Resultant eqs. (called Reynolds eqs.)

( )

( )

' ' ' ' '( )

' ' ' ' '( )

u u u pu v w ux y z

u u v u wx y z

u v v v wx y

x

v v v pu v w vx y z zy

ρ

ρ

ρ µ

ρ µ

∂ ∂ ∂+ +

∂∂ ∂ ∂ ∂

+ + = − +∂ ∂

∂ ∂ ∂+

∇ −∂ ∂ ∂ ∂

∂ ∂ ∂ ∂+ + = − + ∇ −

∂ ∂+

∂∂ ∂ ∂∂

Page 93: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

22

( )

treat unsteady "fluctuations" add

' ' ' ' '(

itional terms due to turbulentas added stresses call

)

ed

w w w pu v w wx

u w v w wx yy z z z

µ ρρ ∂ ∂ ∂+ +

∂ ∂ ∂∂ ∂ ∂ ∂

+ + = − + ∇ −∂ ∂ ∂ ∂

∴⇒ fluctuating motion momentum

Reynolds stresses(turbulent stresses) exchange due to fluctuations "stresses"⇒

2xx

xyRe stressapparent turbulentviscous stresses laminar stresses

Complete stresses consist of

2 ' fluctuatios

( ) ' ' ,.......ynolds

up ux

u v u vy x

σ µ ρ

τ µ ρ

∂= − + − →

∂∂ ∂

= + −∂ ∂

In general , Reynolds stresses dominate over viscous stresses, except for regions directly at the wall

Page 94: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Closure problemtoo few eqs : 4

too many unknowns : 10

Figure some way to approximate Reynolds stresses

Objective : Establish relationship between Reynolds stresses & mean motions, i.e , , u v w

model eqs. must be developed turbulence models or turbulence modeling.

model equations contain empirical elements

⇒∴

lam

turb

. cos Attempt to approximate a "turbulent" viscosity

idea : Since

' '

viscosity

A Eddy vis ity

u uy y

uLet u vyEddy

τ µ νρ

τ ρ ρ

ν

∂ ∂= =

∂ ∂

∂= = −

∂⇒

∈>>

Page 95: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

: how to model ?For some situations const.

In general . ( , , , .)

In general, many wild

Pr

guesses are made, not many work

oblem

uconst f u y etcy

∈⇒ ∈ ≈

∂∈≠ ⇒ ∈ =

Energy Equation

Consider the energy equation for incompressible flow with constant properties

2pDTc k TDt

ρ = ∇ +Φ

Taking the time-average of the energy eq. , we obtain following eq. for the average temp.

field T ( , , )

( ) convectionp

x y z

T T Tc u v wx y z

ρ

=

⎫∂ ∂ ∂+ + ⎬∂ ∂ ∂ ⎭

Page 96: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2 2 2

2 2 2

p

2 2 2 2 2

=k( + + ) molecular heat transport

' ' ' ' ' '- c ( ) turbulent heat transport("apparent" heat conduction)

+ 2( ) 2( ) 2( ) ( + ) ( + ) (

T T Tx y z

u T v T w Tx y z

u v w u v u w vx y z y x z x z

ρ

µ

⎫∂ ∂ ∂⎬∂ ∂ ∂ ⎭

⎫∂ ∂ ∂+ + ⎬∂ ∂ ∂ ⎭

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂2+ ) direct dissipationw

y⎫⎡ ⎤∂ ⎪⎬⎢ ⎥∂ ⎪⎣ ⎦⎭

The same eq.holds for the average temp. fields as for laminar temp. fields, apart from

two additional terms

"apparent" heat conduction div( ' ')

"turbulent" dissipation ,

V T

ρ

2 2 2 2 2 22( ) 2( ) 2( ) ( + ) ( + ) ( + )u v w u v u w v wx y z y x z x z y

ρ µ⎫⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎪∈= + + + + +⎢ ⎥⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎪⎣ ⎦⎭

Page 97: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

In turbulent flows mechanical energy is transformed into internal energy in two different ways:

a) Direct dissipation : transfer is due to the viscosity (as in laminar flow)

b) Turbulent dissipation : transfer is due to the turbulent fluctuations

The Turbulence Kinetic Energy Equation (K-equation)

Many attemps have been made to add “turbulence conservation” relationsto the time-averaged continuity, momentum and energy equations derived.

A relation for the turbulence kinetic energy K of fluctuations.

( )

1 2 3

1 12 2

Einstein summation notation,( , , ) ( , , )

i i

i

K u u v v w w u u

u u u u u v w

′ ′ ′ ′ ′ ′ ′ ′≡ + + =

= =

Page 98: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

A conservation relation for K can be derived by forming the mechanicalenergy equation i.e., dot product of ui ve ith momentum equation subtractinstantaneous mechanical energy equation from its time averaged value.

Result: Turbulence kinetic energy relation for an incompressible fluid.

I IIIII

VIV

12

ji j j i j

i i

j j ji ij

i j i i j i

uDK pu u u u uDt x x

u u uu uux x x x x x

ρ

ν ν

′⎡ ⎤ ∂′⎛ ⎞∂ ′ ′ ′ ′ ′= − + − +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′′ ′∂ ∂ ∂∂ ∂∂ ⎢ ⎥′ ⎜ ⎟ ⎜ ⎟+ − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

I. Rate of change of turbulent (kinetic) energyII. Convective diffusion of turbulence energyIII. Production of turbulent energyIV. Viscous diffusion (work done by turbulence viscous stresses)V. Turbulent viscous dissipation

Reynolds stress equation: conservation equations for Reynolds stressessee F. White pg. 406

Page 99: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2-D Turbulent Boundary Layer Equations

Just as laminar flows, turbulent flows at high Re also have boundary layercharacter, i.e. large lateral changes and small longitudinal changes in flowproperties.

Ex.: Pipe flow, channel flow, wakes and jets.

δ(x)<<x

y

x

Same approximations as in laminar boundary layer analysis,

v ux y∂ ∂

<< <<∂ ∂

Assume that mean flow structure is 2D

20 0 but 0 w w

z∂ ′= = ≠∂

Page 100: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Basic turbulent equations (Reynolds equations) reduce to

Continuity: 0 (1)

1x-momentum: (2)

: free stream velocity

Thermal energy: (3)

where

ee

e

p

u vx y

dUu uu v Ux y dx y

U

T T q uc u vx y y y

τρ

ρ τ

τ

∂ ∂+ =

∂ ∂

∂ ∂ ∂+ ≈ +

∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂+ ≈ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

=

turbulent fluxmolecular flux

(4)p

u u vy

Tq k c v Ty

µ ρ

ρ

∂ ′ ′−∂

∂ ′ ′= −∂

Above equations closely resemble the laminar flow equations except that τand q contain turbulent shear stress and turbulent heat flux (ReynoldsStress) must be modelled.

Page 101: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

y-momentum equation reduces to

2

(5)p vy y

ρ′∂ ∂

≈ −∂ ∂

Integrating over the boundary layer yields:

2( )ep p x vρ ′≈ −Unlike laminar flow, p varies slightly across the boundary layer due tovelocity fluctuations normal to the the wall

2 .p v constρ ′+ ≈

Note: : wall pressure

no-slip v 0 ( )w

ew

p

p p x′⇒ ≡ ⇒ =

e e edp U dUρ≈ −Bernoulli equation in the (inviscid) free stream

Page 102: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Boundary Conditions:Free stream conditions Ue(x) and Te(x) are known.

No-slip, no jump: ( ,0) ( ,0) 0 , ( ,0) ( )

Free stream matching: ( , ) , ( , ) ( )w

e T e

u x v x T x T x

u x U T x T xδ δ

= = =

= =

The velocity and thermal boundary layer thicknesses (δ, δT) are not necessarily equal

u v if a suitable correlation for total shear τ is known.

but depend upon the Pr, as in laminar flow. Eqs. 1 and 2 can be solved for

Turbulent Boundary Layer Integral Relations:

The integral momentum equation has the identical form as laminar flow

( ) 2

*

0

*

22

1 , H= (momentum shape factor)

1

fe w

e e

e e

e

cdUd Hdx U dx U

u u dyU U

u dyU

τθ θρ

δθθ

δ

+ + = =

⎛ ⎞= −⎜ ⎟

⎝ ⎠⎛ ⎞

= −⎜ ⎟⎝ ⎠

∫Turbulent velocity profile is more complicated in shape and many different correlations have been proposed.

Page 103: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Example: Turbulent pipe flowOften used correlation is the empirical power-law velocity profile

Rxr

1/

1n

c

u rV R

⎛ ⎞= −⎜ ⎟⎝ ⎠

n=f(Re)

for many practical flows n = 7

10456

87

105 106

n

Re=ρVD/µ 00

1.0

1.0

r/Rlaminar

n=6n=8

n=10

Turbulentprofile

c

uV

Page 104: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Turbulent profiles are much “flatter” than laminar profileFlatness increases with Reynolds number (i.e., with n)

Turbulent velocity profile(s): The inner, outer, and overlap layers.Key profile shape consist of 3 layers

Inner layer: very narrow region near the wall (viscous sublayer) viscous (molecular) shear dominateslaminar shear stress is dominant, random eddying nature of flow is absentOuter layer: turbulent (eddy) shear (stress) dominatesOverlap layer: both types of shear important; profile smoothly connects inner and outer regions.

Example: Structure of turbulent flow in a pipeR

r

0

τlam τtur

τ

pipe wall

τwτ(r)

Shearstress

0

R

r

Vc

Viscoussublayer

overlap layer

outer layer

Average velocity

Page 105: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Inner law:

( , , , ) (1)wu f yτ ρ µ=

Velocity profile would not depend on free stream parameters.

Outer law:

( , , , , ) (2)ee w

dpU u g ydx

τ ρ δ− =

Wall acts as a source of retardation, independent of µ.

Overlap law:

(3)inner outeru u=We specify inner and outer functions merge together smoothly.

Dimensionless Profiles: The functional forms in Eqs.(1)-(3) are determined from experiment after use of dimensional analysis. Primary Dimensions: (mass, length, time) : 3Eq.(1) : 5 variablesΠ groups : 5-3 = 2 (dimensionless parameters)

Page 106: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Proper dimensionless inner law:1/2*

* w* ; =u yvf vv

τν ρ

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

Variable v* [m/s] called wall friction velocity. v* is used a lot in turbulent flow analyses.

Outer law using Π - theorem:

*w

, ; =e eU u dpygv dx

δξ ξδ τ

− ⎛ ⎞= ⎜ ⎟⎝ ⎠

Often called velocity defect law, with eU u−being “defect” or retardation of flow due to wall effects. At any given position x, defectg(y/δ) will depend on local pressure gradient ξ. Let ξ have some particular value. Then overlap function requires

Overlap law:*

* * -eUu v y yf gv v

δν δ δ

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

From functional analysis: both f and g must be logarithmic functions.

Page 107: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Thus, in overlap layer:*

*

*

1Inner variables: ln

1Outer variables: lne

u yv Bv kU u y Av k

ν

δ

= +

−= − +

Where K and B are near-universal constants for turbulent flow past smooth, impermeable walls. K≈0.41 , B≈5.0 pipe flow measurements, data correlationsA varies with pressure gradient ξ (perhaps with other parameters also).

*

*Let , and yu yvuv ν

+ += =

Inner layer details, Law of the wall.At very small y, velocity profile is linear.

5 : wuy or u yy

τ µ+ + +≤ = =

Page 108: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Example: Thickness of viscous sublayer

* *

5 : viscous length scale of a turbulent boundary layersub v vν νδ =

Flat plate airfoil data: v*=1.24 m/s , νair≈1.51x10-5 m2/sBetween 5 ≤y+≤30 buffer layer.Velocity profile is neither linear nor logarithmic but is a smooth merge between two. Spalding (1961) single composite formula.

( ) ( )2 3

12 6

KB KuKu Ku

y u e e Ku+

+ ++ + − +

⎡ ⎤⎢ ⎥= + − − − −⎢ ⎥⎣ ⎦

Notes:1

1 1

1

11

0 0

n

c

nc

u rV R

Vdu rdr n R R

dur Rdrdurdr

⎛ ⎞= −⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= = ∞

= ≠

Power law profile cannot be valid near the wall.Power law profile cannot be precisely valid near the centreline. However, it does provide a reasonable approximation to measured velocity profiles across most of the pipe.

Page 109: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Example:Water at 20 °C (ρ=998 kg/m3), ν=1.004x10-6 m2/s

Q=0.04 m3/sD=0.1m

2.59 /dp kPa mdx

=

δs = ? thickness of viscous sublayer?centreline velocity, Vc = ?ratio of turbulent to laminar shear stress, τturb/τlam = ? at a point midway between the centreline and pipe wall i.e., at r = 0.025 m.Law of the wall valid 5y± ≤ viscous sublayer

*

*

*

*

5

5 5 5 ss s

w

yvy

vy yv

v

νδ νδ δν

τρ

±

±

= ≤

= = ⇒ = =

=

Page 110: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Pressure drop and wall shear stres in a fully developed pipe flow is related by

4 wlpDτ

∆ = (Valid for both laminar & turbulent flow)

(Exercise: Obtain the above equation considering the force balance of a fluid element)

32

2*

3

65

(0,1)(2,59.10 ) 64,8 /4 4(1 )

64,8 /So, v 0, 255 /998 /

5.1,004.10 1,97.10 0,020, 255

w

s

D p Pa N ml m

N m m skg m

m mm

τ

δ−

∆= = =

= =

= = ≅

Imperfections on pipe wall will protrude into this sublayer and affect some of the characteristics of flow(i.e.,wall shear stres & pressure drop)

Page 111: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

3

2 2

56

5

0,04 / 5,09 /(0,1) / 45,09.(0,1)Re 5,07.101,004.10

Re 5,07.10 8, 4

Q m sV m sA mVD

n

π

ν −

= = =

= = =

= ⇒ =

Power-law profile

1/8,4

1/

02

2

22

c

(1 )

. (1 ) (2 )

2( 1)(2 1)

V 2 V ( 1)(2 1)

8,4 : V 1,186 1,186(5,09) 6,04 /

cR

nc

c

c

u rV R

rQ AV udA V r drR

nQ R Vn n

nQ R Vn n

n V m s

π

π

π

≅ −

= = = −

=+ +

= ∴ =+ +

= = = =

∫ ∫

Recall that Vc=2V for laminar pipe flow:

Page 112: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

0,025

?turb

lam r m

ττ

=

= Shear stres distribution throughout the pipe

2 wrDττ = (Valid for laminar or turbulent flow)

rR=D/2 2

1/ (1 ) /

(1 8,4) /8,4

0,025

2(64,8).0,025( 0,025) 32, 4 /0,1

32, 4

; (1 ) (1 )

6,04 0,025(1 ) 26,58,4(0,05) 0,05

lam turb

n n nclam c

r

r N m

Vdu r du ru Vdr R dr nR R

dudr

τ

τ τ τ

τ µ −

=

= = =

= + =

= − = − ⇒ = − −

= − − = −

6 2

( )

(1,004.10 ).(998).( 26,5) 0,0266 /32, 4 0,0266 1220

0,0266

lam

turb

lam

du dudr dr

N m

τ µ νρ

ττ

= − = −

= − − =−

= =

As expected

turb lamτ τ>>Thus

Page 113: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Turbulent Boundary Layer on a Flat Plate

Problem of flow past a sharp flat plate at high Re has been studied extensively,numerous formulas have been proposed for friction factor.

-curve fits of data-use of Momentum Integral Equation and/or law of the wall-numerical computation using models of turbulent shear

Momentum Integral Analysis

20 ( .) 2f wCdp dU const

dx dx Uτθρ

= = = =

Momentum Interal Equation valid for either laminar or turbulent flow.

For turbulent flowa reasonable approximation to the velocity profile ( / )u f y

Uδ=

Functional relationship describing the wall shear stress

Need to use some empirical relationship

For laminar flow0

wy

uy

τ µ=

∂=

Page 114: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Example: Turbulent flow of an incompressible fluid past a flat plateBoundary layer velocity profile is assumed to be

1/ 7( )u yU δ

= ← power law profile suggested by Prandtl(taken From pipe data!)

Reasonable approximation of experimentally observed profiles,except very near the plate,

0

!y

uy =

∂= ∞

Laminar Turbulent

100

1

yηδ

=

1/ 7( )u yU δ

=

Assume shear stress aggrees with experimentallydetermined formula

1/ 4 2 1/ 40,045Re or 0,0225 ( )

Re

f wC UU

U

δντ ρδ

δν

− ⎧ ⎫= =⎨ ⎬⎩ ⎭

=Determine; *, , and as a function of x.wδ δ θ τWhat is the friction drag coefficient CD,f=?

Page 115: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Momentum Integral Equation (with U=constant)1/ 7 1/ 7

2

1 11/ 7 1/ 7

0 0

1/ 4 1/ 4

1/ 4 1/ 4

0 0

1/5 4/5

; ( )2

7(1 ) (1 ) (1 )72

7 0,0225Re 0,0225( )72

0, 231( )

0,370( )

f w

o

x

Cd y u ydx U U

u u u udy d dU U U U

ddx U

d dxU

xU

δ

δ

τθ η ηρ δ δ

δθ δ η δ η η η

δ νδ

νδ δ

νδ

= = = = =

= − = − = − =

= =

=

=

∫ ∫ ∫

∫ ∫

or in dimensionless form 1/5

0,370Rexx

δ=

Boundary layer at leading edge of plate is laminar but in practice,laminar boundary layeroften exists over a relatively short portion of plate.

error associated with starting turbulent boundary layer with =0 at x=0 can be negligible.δ∴1 1

* 1/ 7

0 0 0

*

1/5

(1 ) (1 ) (1 )8

0,0463Rex

u udy d dU U

x

δδ δ η δ η η

δ

= − = − = − =

=

∫ ∫ ∫

Page 116: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

1/5 4 /5

*1/5

1/ 4 22

1/5 4 /5 1/5

1/5

7 0,0360( )720,036 Re

0,02880,0225(0,37)( / ) Re

0,058Re

x

wx

fx

xU

x

UUU U x

C

νθ δ

θ θ δ δ

ν ρτ ρν

= =

= < <

⎡ ⎤= =⎢ ⎥

⎣ ⎦

=

Friction drag on one side of plate,Df

2 1/5

0

21/5

1/52

4 /5 1/5

1/ 2 1/ 2

(0,0288 ) ( )

0,0360 where A=b.l area of plateRe

0,07201 Re2

Turbulent flow: ( ) ~ ; ( ) ~

Laminar flow: ( ) ~ ; ( ) ~

l l

f wo

fl

fDf

l

w

w

D b dx b U dxUx

AD U

DC

U A

x x x x

x x x x

ντ ρ

ρ

ρ

δ τ

δ τ

= =

=

= =

∫ ∫

Note:Results presented in this example arevalid only in the range of validity of originaldata, assumed velocity profile & shear stres.The range covers smooth flat plateswith 5x105<Rel<107

See Fig 6-20 (White, page 432)

Page 117: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Example 1 : Momentum Integral Equation-Approximate vel. profile

. ( 0)dUU constdx

= ⇒ =2

1 1

1 1

( )

For 0 1/ 2 2 1 at & 0 at 03 2

0, 4 / 34 : 0 1/ 23

Similarly,

wddx Uu yfU

f a b

f f

a buU

τθρ

η ηδ

η η

η η

η η

=

= =

≤ ≤ = +

= = = =

∴ = =

= ≤ ≤

1 1/ 2 1

0 0 1/ 2

00

1 2 1 for 13 3 2

4 4 1 2 1 2(1 ) (1 ) ( )(1 )3 3 3 3 3 3

0,1574

u 4=3

40,15743

40,1574 3

wy

uU

u u d d dU U

u Uy

ddx U

d dxU

η

η η

θ δ η δ η η η δ η η

δ

τ µ µ µη δ

δ νδνδ δ

==

= + ≤ <

= − = − + + − −

=

∂ ∂= =

∂ ∂

=

= ⇒

∫ ∫ ∫

0

2

( ) 4,12

0,6481 Re2

wf

x

xxU

CU

δ νδ

τ

ρ

=

= =

uU2U/3

/ 2δ

δ

Page 118: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

U

l

4l

a)

U 4l

l

b)

4

2, ,

2,

D,b

, ,

, ,

121,328 1,328 & 4

Re

, , is the same 1,328 1,328C

Re

2

4

l

l

D a D a

D a

D a D a

D b D b

F U AC

C A lU

U A

U

F C

l

l

F C

ρ

νρ

ν

=

= = =

= =

= =

a)

The shear stres decreases with distance from the leading edge of the plate. Thus, even though the plate area is the same for case (a) or (b), the averageshear stress (and the drag) is greater for case (a).

Example 2 : Viscous drag in thin plate

Page 119: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

Example 3: Thin flat plate in water tunnel

Parabolic velocity profile:2 2

5 56

0

w 00 0

2( ) ( ) 2

1,6.(0,3)Re 4,8.10 5.1010

Flow is laminar

Viscos drag 2 (2 sides of plate)

. (2 2 )

l

L

D w

y

u y yU

Ul

F bdx

u u Uy y η

η

η ηδ δ

ν

τ

η µτ µ µ ηη δ

== =

= − = −

= = = <

= =

∂ ∂ ∂= = = −

∂ ∂ ∂

0 0

2

5, 48Re

2 4 825,48 5,48

1,62

x

L L

D

D

U

x

U U dx b U ULF bdx b Ux

F N

µδ

δ

µ µµδ ν ν

=

=

= = =

=

∫ ∫

b=1m

L=0,3m

U

x

δ(x)

Page 120: BOUNDARY LAYER THEORY - İTÜweb.itu.edu.tr/~guneshasa/viscous/blt.pdf · HIGH RENOLDS NUMBER FLOW BOUNDARY LAYERS (Re ∞) BOUNDARY LAYER Thin region adjacent to surface of a body

2 30

* 2

2 * 20

. ,(0.3*0.3)*0.7 0.063 /

( ) ( 2 ) : effective area of the duct (allowing for the decreased flowrate in the b.l.)

Thus,( 2 ) 0.09

inlet

inlet

Continuity eq for incompressible flowQ d U m s

Q Q x UA U dA

d d

δ

δ

= = =

= = = −

= − = [ ]* *0 2 0.3 2 d d mδ δ⇒ = + = +

[ ]

[ ][ ]

5* 1.5*101.72 1.72 0.00796

0.3 0.0159

0.

m0.7

( 3 ) 328

d x

x x xU

m

d x m m

νδ−

= = =

=

=

+