Bilateral Gamma Processes in Finance - Slides

Embed Size (px)

Citation preview

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    1/32

    Bilateral Gamma Processes

    in Finance

    Stefan TappeVienna Institute of [email protected]

    based on joint work with:Uwe Kuchler (Humboldt University Berlin)

    PRisMa 2008

    One-Day Workshop on Portfolio Risk Management

    September 29th, 2008, Vienna

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    2/32

    Stefan Tappe 2008/09/29

    Introduction

    0

    1000

    2000

    3000

    4000

    5000

    6000

    100 200 300 400 500 600 700

    Stochastic models for risky assets in financial markets.Bilateral Gamma Processes in Finance 1

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    3/32

    Stefan Tappe 2008/09/29

    Exponential Levy models

    Two financial assets:

    St = S0eXt,

    Bt = ert.

    X is a Levy process.

    Example: Black-Scholes model with Xt = Wt + ( 22 )t.

    Idea: Take X = X+X, where X+, X are independent subordinators.

    Bilateral Gamma Processes in Finance 2

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    4/32

    Stefan Tappe 2008/09/29

    Bilateral Gamma distributions

    Four parameters: Shape parameters: +, > 0,

    Scale parameters: +, > 0.

    (+, +; , ) is the distribution of X+ X, where X+ and X are independent,

    X+ (+, +), X (, ).

    Family of bilateral Gamma distributions.

    Bilateral Gamma Processes in Finance 3

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    5/32

    Stefan Tappe 2008/09/29

    Bilateral Gamma processes

    Characteristic function:

    (z) =

    +

    + iz+

    + iz

    , z R.

    Infinitely divisible with Levy measure

    F(dx) =

    +

    xe

    +x1 (0,)(x) +

    |x|e|x|

    1 (,0)(x)

    dx.

    We call the associated Levy process a bilateral Gamma process.

    Bilateral Gamma Processes in Finance 4

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    6/32

    Stefan Tappe 2008/09/29

    Outline of the talk

    Bilateral Gamma:1. Bilateral Gamma distributions.

    2. Bilateral Gamma processes.

    Applications to Finance:1. Option pricing in bilateral Gamma stock models.

    2. Illustration of the theory: DAX 1996-1998.

    Bilateral Gamma Processes in Finance 5

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    7/32

    Stefan Tappe 2008/09/29

    Related distributions

    Generalized tempered stable distributions (Cont and Tankov 2004):

    F(dx) =

    +

    x1++e

    +x1 (0,)(x) +

    |x|1+e|x|

    1 (,0)(x)

    dx.

    CGMY distributions (Carr, Geman, Madan and Yor 1999):

    F(dx) =

    C

    x1+YeMx 1 (0,)(x) +

    C

    |x|1+YeG|x|

    1 (,0)(x)

    dx.

    Variance Gamma distributions (Madan, Carr and Chang 1998).

    Bilateral Gamma Processes in Finance 6

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    8/32

    Stefan Tappe 2008/09/29

    Characterization of Variance Gamma distributions

    Variance Gamma distribution V G(, 2, ):

    (z) =

    1 iz+

    2

    2z21

    , z R.

    Let := (+, +; , ). There is equivalence between:1. is Variance Gamma;

    2. + = ;

    3. X is a time-changed Brownian motion Xt = WYt;

    4. is a limit of GH-distributions.

    Bilateral Gamma Processes in Finance 7

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    9/32

    Stefan Tappe 2008/09/29

    Representation of the density

    Density function for x > 0:

    f(x) =(+)

    +()

    (+ + )12(

    ++)(+) x12(++)1 ex2(+)

    W1

    2

    (+),1

    2

    (++1)(x(+ + )).

    W, denotes the Whittaker function

    W,(z) =ze

    z2

    ( + 12

    )

    0

    t12et

    1 +

    t

    z

    +12dt, z > 0

    for > 12

    .

    Bilateral Gamma Processes in Finance 8

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    10/32

    Stefan Tappe 2008/09/29

    Properties of the density

    Unimodality: f is strictly increasing/decreasing on (, x0)/(x0,).

    Smoothness: Let N N be such that N < + + N + 1. Then

    f CN1

    (R) \ CN

    (R).

    Semi-heavy tails: We have the asymptotic behaviour

    f(x)

    C1x+1e

    +x for x C2|x|

    1e

    |x| for x .

    Bilateral Gamma Processes in Finance 9

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    11/32

    Stefan Tappe 2008/09/29

    Density shapes

    alpha-

    alpha+

    0

    1

    2

    1 2

    Bilateral Gamma Processes in Finance 10

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    12/32

    Stefan Tappe 2008/09/29

    Bilateral Gamma processes

    X = X+ X, in particular FV process and no Gaussian part.

    Infinitely many jumps in each compact interval.

    For 0 s < t we have:Xt Xs (+(t s), +; (t s), ).

    Efficient methods for simulating bilateral Gamma processes.

    Bilateral Gamma Processes in Finance 11

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    13/32

    Stefan Tappe 2008/09/29

    Quick Review

    Bilateral Gamma distributions: Simple characteristic function.

    Densities: unimodal, semi-heavy tailed.

    Bilateral Gamma processes: FV sample paths with infinitely many jumps on every interval.

    Easy to simulate.

    Bilateral Gamma Processes in Finance 12

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    14/32

    Stefan Tappe 2008/09/29

    Exponential bilateral Gamma models

    Two financial assets: St = S0e

    Xt,

    Bt = ert.

    X (+, +; , ) is a bilateral Gamma process.

    The market is: free of arbitrage,

    but not complete.

    Bilateral Gamma Processes in Finance 13

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    15/32

    Stefan Tappe 2008/09/29

    Option Pricing

    Price of a European Call Option:

    = EQ[(ST K)+],

    where QP is a martingale measure.

    Fourier transformation: Under appropriate conditions

    = erTK

    2

    i+i

    K

    S0

    izT(z)z(z i)dz,

    where T is the characteristic function of XT under Q.

    Bilateral Gamma Processes in Finance 14

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    16/32

    Stefan Tappe 2008/09/29

    Requirements on the martingale measure

    There are several martingale measures Q P.

    Under Q, the characteristic function T should be simple.

    Recall that for a bilateral Gamma process:

    (z) =

    +

    + iz+

    + iz

    , z R.

    Q should have an economic interpretation.

    Bilateral Gamma Processes in Finance 15

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    17/32

    Stefan Tappe 2008/09/29

    Esscher transforms

    For (, +) we define P P as

    dP

    dP Ft:= eXt()t, t 0.

    The cumulant generating function of X is given by

    (z) = + ln

    +

    + z

    + ln

    + z

    , z (, +).

    Bilateral Gamma Processes in Finance 16

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    18/32

    Stefan Tappe 2008/09/29

    Esscher martingale measure

    There exists (, +) such that P is a martingale measure iff

    + + > 1.

    In this case, it is the unique solution of the equation

    + + 1

    + +

    + + 1

    = erq, (, + 1).

    We have X (+, + ; , + ).

    Bilateral Gamma Processes in Finance 17

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    19/32

    Stefan Tappe 2008/09/29

    Relative entropy

    For each Q P define the relative entropy

    HFt(Q |P) = EQ

    lndQ

    dP

    Ft

    , t 0.

    Find a martingale measure Q P such that

    HFt(Q |P) = min

    QEMMHFt(Q |P), t 0.

    Minimal entropy martingale measure (MEMM).

    Bilateral Gamma Processes in Finance 18

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    20/32

    Stefan Tappe 2008/09/29

    Exponential transform

    Let Xt := L(eXt(rq)t) be the exponential transform.

    X is again a Levy process.

    For 0 we define P P asdP

    dP

    Ft

    := eXt()t, t 0.

    denotes the cumulant generating function of

    X.

    Bilateral Gamma Processes in Finance 19

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    21/32

    Stefan Tappe 2008/09/29

    Minimal entropy martingale measure

    If + > 1, there exists 0 such that P is a MEMM iff

    + ln

    +

    + 1

    + ln

    + 1

    r q.

    In this case, it is the unique solution of the equation

    +0

    e+x

    x(ex 1)e(ex1)dx + +

    0

    ex

    x(ex 1)e(ex1)dx

    = r q, 0.

    Bilateral Gamma Processes in Finance 20

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    22/32

    Stefan Tappe 2008/09/29

    Characteristic function

    X is a Levy process under P with

    (z) = exp

    R

    (eizx 1)e(ex1)F(dx)

    , z R.

    The value of the minimal relative entropy is given by

    HF1(P |P) = r q

    +

    0

    e+x

    x (e

    (ex1)

    1)dx

    0

    e+x

    x (e

    (ex1)

    1)dx.

    Bilateral Gamma Processes in Finance 21

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    23/32

    Stefan Tappe 2008/09/29

    Martingale measures considered so far

    Esscher martingale measure: Pro: Easy to obtain, X remains bilateral Gamma under P.

    Contra: No economic interpretation.

    Minimal entropy martingale measure: Pro: Easy to obtain, economic interpretation.

    Contra: Characteristic function of X under P not in closed form.

    Bilateral Gamma Processes in Finance 22

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    24/32

    Stefan Tappe 2008/09/29

    Bilateral Esscher transforms

    Recall that X = X+ X.

    For + (, +) and (, ) we define P(+,) P as

    dP(+

    ,

    )

    dP

    Ft

    := e+X+t

    +(+)t eXt ()t, t 0.

    +, denote the cumulant generating functions of X+, X.

    Bilateral Gamma Processes in Finance 23

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    25/32

    Stefan Tappe 2008/09/29

    Bilateral Esscher martingale measures

    Define : (, + 1) (, ) as

    () :=

    + + 1

    +

    e(rq) 11

    .

    Then P(,()) is a martingale measure for each (, + 1).

    We have X (+, + ; , ()) under P(,()). Thus:

    = erTK

    2i+i

    KS0iz + + + iz

    +T () () izT

    dz

    z(z i).

    Bilateral Gamma Processes in Finance 24

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    26/32

    Stefan Tappe 2008/09/29

    Minimizing the relative entropy

    Find (, + 1) such that

    HF1(P(,()) |P) = min

    (,+1)HF1(P

    (,()) |P) minQEMM

    HF1(Q |P).

    The relative entropy is given by:

    HF1(P(,()) |P) = +

    +

    + 1 ln

    +

    +

    +

    () 1 ln

    (), (, + 1).Bilateral Gamma Processes in Finance 25

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    27/32

    Stefan Tappe 2008/09/29

    Example: DAX 1996-1998

    0

    1000

    2000

    3000

    4000

    5000

    6000

    100 200 300 400 500 600 700

    We assume St = S0eXt, where X (+, +; , ).

    Bilateral Gamma Processes in Finance 26

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    28/32

    Stefan Tappe 2008/09/29

    Estimates

    Maximum Likelihood Estimate:

    (+, +; , ) = (1.55, 133.96;0.94, 88.92).

    With = 5.30 we haveHF1(P

    (,()) |P) = min(,+1)

    HF1(P(,()) |P) = 0.0029411

    and X (1.55, 139.26;0.94, 83.65) under P(,()).

    Note that minQEMMHF1(Q |P) = 0.0029409.

    Bilateral Gamma Processes in Finance 27

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    29/32

    Stefan Tappe 2008/09/29

    Black Scholes and Bilateral Gamma Prices

    4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 60000

    200

    400

    600

    800

    1000

    1200

    Bilateral Gamma Processes in Finance 28

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    30/32

    Stefan Tappe 2008/09/29

    Implied volatility surface

    4320

    4340

    4360

    4380

    4400

    4420

    4440

    4460

    3*10^5*sigma

    4000

    4400

    4800

    5200

    5600

    6000

    K

    1000

    1200

    1400

    16001800

    2000

    10*T

    Bilateral Gamma Processes in Finance 29

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    31/32

    Stefan Tappe 2008/09/29

    Relation to the Normal distribution

    The Central Limit Theorem yields:

    (+, +; , ) N

    +

    +

    ,

    +

    (+)2+

    ()2

    .

    Berry-Esseen gives us:

    supxR

    |Fn(x) n(x)| cn

    ,

    where + n+ and n for some n N.

    Bilateral Gamma Processes in Finance 30

    S f / /

  • 8/9/2019 Bilateral Gamma Processes in Finance - Slides

    32/32

    Stefan Tappe 2008/09/29

    Conclusion

    Stock models based on bilateral Gamma processes.

    Option pricing using historical data.

    Current Research: Model calibration to option price data.

    Bilateral Gamma Processes in Finance 31