21
Beijing, Feb 3 rd , 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Embed Size (px)

Citation preview

Page 1: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd, 2007 LEPOL 1

Low Energy Positron Polarimetry for the ILC

Sabine Riemann (DESY)

On behalf of the LEPOL Collaboration

Page 2: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 2

Outline

Low Energy Polarimeter (LEPOL)

Task within EUROTeV WP4 (Polarized Positron Source)

- Why & where do we need it ?

- Available processes Polarimeter options- Our suggestion: Bhabha polarimeter- Backup: Compton Transmission Polarimeter- Summary

Page 3: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 3

Measurement of positron polarization at the source

Control of polarization transport

Optimization of positron beam polarization

Commissioning

Desired: non-destructive method with accuracy at few percent level

Page 4: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 4

e+ Polarisation Measurement near the source

Polarization measurement measure asymmetries !

Find a process with• sensitivity to longitudinal polarization of positrons (electrons)• good signal/background ratio• significant asymmetryIn the energy range 30 MeV … 5000 MeV

Desired: non-destructive easy to handle fast (short measuring time)

e+ beam parameters e+ / bunch Ne+ 2·1010

bunches / pulse 2820Rep. Rate R 5 HzEnergy E 30 – 5000

MeVEnergy spread ΔE/E 10 %Normalized emittance ε*~ 3.6 cm

radBeam size σx,y ~ 1 cm

Page 5: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 5

Considered Processes

• Compton Scattering (ex.: SLC, HERA)– Laser backscattering on beam– Preferred polarimeter option at IP – Not an option for the LEPOL (very small rates due to large beam size)– after damping rings beam size smaller this

option is under study by Tel Aviv U (G. Alexander) – But: very far from source

• Mott– Transverse polarized positrons– Mott~E-4 Moller~E-2 Bhabha~E-2

high background at relevant energies

Page 6: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 6

Considered Processes• Compton Transmission (ex.: E166, ATF)

– Reconversion of e+ to in target– Polarization dependent transmission of through

magnetized Fe – Small, simple setup– Can deal with poor beam quality– Destructive Beam absorbed in relatively thick

target– Less efficient with increasing beam energy (E < 100 MeV)

Page 7: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 7

Considered Processes

• Synchrotron radiation (ex.: VEPP-4 storage ring) (S.A. Belomestnykh et al., NIM A 227 (1984) 173

– Transverse polarization needed– Angular asymmetries of synchrotron radiation in

damping ring– Relative simple setup– Non-destructive, non intrusive– Very small signal: Asymmetry < 10-3

– position far from source

Page 8: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 8

Considered Processes

• Laser Compton Scattering • Compton Transmission Experiment• Mott Scattering• Synchrotron radiation • Bhabha/Møller

magnetized iron target;

e- polarization in Fe: ~7%, angular distribution of

scattered particles

corresponds to e+

polarisation

Page 9: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 9

Bhabha Polarimetry• As Møller polarimeter already widely used (SLAC, VEPP)• Cross section:

• maximal asymmetry at 90°(CMS) ~ 7/9 ≈ 78 % • e+ and e- must be polarized

Example: Pe+= 80%, Pe-= 7% Amax ~ 4.4 %

42422

42

20 coscos67coscos69

sin16

cos1

eePPr

d

d

Page 10: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 10

Bhabha PolarimetryWorking point:

– After pre-acceleration 125 MeV – 400 MeV– First design studies done for 200 MeV

Used for simulations: Polarized GEANT4, release 8.2contact: A. Schälicke and collaborateurs,http://www-zeuthen.desy.de/~dreas/geant4

Page 11: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 11

Studies for a Bhabha Polarimeter

Ebeam = 200 MeV

Ebeam = ±10%2·108 positronsang. spread =±0.5o

80 m Fe target

PFe = 100%

Pe+ = 100%

electrons(+) electrons(-)positronsphotonsafter Bhabha scattering

Page 12: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 12

Regions of maximum asymmetry

Page 13: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 13

Bhabha Polarimeter

50MeV < E < 150 MeV 20MeV < E < 150 MeV 0.04 < < 0.120 0.04 < < 0.120

Page 14: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 14

Bhabha Polarimeter

Page 15: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 15

Bhabha PolarimeterSignificance

-

Energy range: 50 – 150 MeV 20 – 150 MeV cosθ: 0.04 – 0.12 rad 0.04 – 0.21 rad

Page 16: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 16

Photon distributions

cosθ: 0.08 – 0.4 rad no energy cut

Page 17: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 17

Bhabha Polarimetry• Best significance using asymmetries of scattered Bhabha

electrons • Working point:

– After pre-acceleration and separation of e+ beam: 120 MeV – 400 MeV

• Asymmetries:

– Detection of scattered Bhabha electrons is sufficient

– Detection of scattered Bhabha positrons for checks

– Use of photons (annihilation in flight)

Conclusion for layout

• Separation of energy range spectrometer

• Separation of e+ and e- magnetic field (spectrometer

• Separation of angular range masks

• Target

Page 18: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 18

~5m

e+

~2.5m

e+

Angular range large enough no bend needed to kick out the scattered e-,e+,

Detector size: O(40*60 cm2) signal rate: O(109) per second for 80 m Fe foil

detectormask, shieldingexit window (?)

spectrometer

higher energy, lower

lower energy, higher

electronspositronsphotons+background

Side view

top view

Page 19: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 19

Magnetized Iron TargetHeating of the target -> Magnetization decreases

– Simulation for 30 µm– Cooling by radiation– TC (Fe) = 1039 K; melting point 1808 K

Ongoing considerations on target layout– ΔT ΔM ΔP ΔAsy– Magnetization (monitoring, tilted target?)– Cooling in real

Multiple scattering additional angular spread of ≤4%

Target temperature vs. time

Magnetisation vs. Temperature

Page 20: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 20

Compton Transmission Method ?• Destructive !• Working point: Ee

+ < 100 MeVideal after capture section O(~30 MeV)

Dimensions O(1m) Experiences from E166, ATF

Thick Target (1 to 3 X0), with high energy deposition O(~kW) Small asymmetries O(<1%) at higher energies

Example: Ebeam 30 MeV, Pe-=7.92%, Target: 2X0 W, Absorber 15cm Fe

A(Pe+=30%) ~ 0.4% A(Pe+=60%) ~ 0.8%

Page 21: Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration

Beijing, Feb 3rd. 2007 LEPOL 21

SummaryRecommended for polarimetry near the source – but not yet tested: Bhabha

polarimeter at ~400 MeV

• In principle, the Bhabha polarimeter could work during ILC operation

• Backup possibility: Compton Transmission

• After DR: Compton polarimeter

To be discussed: - where will we need to check the e+ pol?

- when? Commissioning/ operation

type of polarimeter

Our plan:

Finalize the design study, think about target tests, suggest a polarimeter design

LEPOL Collaboration:

DESY: K. Laihem, S. Riemann, A. Schälicke, P. Schüler

HU Berlin: R. Dollan, T. Lohse

NC PHEP Minsk: P. Starovoitov

Tel Aviv U: G. Alexander