88
TECHNICALREPORT October 11, 2013 Assessment and Inventory of Atmospheric Emissions from Heavy Oil Production Facilities in the Baytex Reno Field. Prepared For: Baytex Energy Ltd. Suite 2800, 520-3 rd street S.W Calgary, AB, T2P 0R3 Prepared by: Clearstone Engineering Ltd. 700, 900-6th Avenue S.W. Calgary, AB, T2P 3K2

BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

TECHNICALREPORT

October 11, 2013

Assessment and Inventory of Atmospheric Emissions from Heavy Oil Production Facilities in the Baytex Reno Field.

Prepared For: Baytex Energy Ltd. Suite 2800, 520-3rd street S.W Calgary, AB, T2P 0R3

Prepared by: Clearstone Engineering Ltd.

700, 900-6th Avenue S.W. Calgary, AB, T2P 3K2

Page 2: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

ii

DISCLAIMER

While reasonable effort has been made to ensure the accuracy, reliability and completeness of the information presented herein, this report is made available without any representation as to its use in any particular situation and on the strict understanding that each reader accepts full liability for the application of its contents, regardless of any

fault or negligence of Clearstone Engineering Ltd.

Page 3: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

iii

EXECUTIVE SUMMARY

Clearstone Engineering Ltd. conducted field studies at the Baytex Reno Field from February 26 to March 6, 2013 for purposes of characterizing atmospheric emissions and completing an emissions inventory for purposes of air quality modeling. The Reno Field consists of 23 operational cold heavy oil production pads with 41 individual wells, one water injection facility and one gas plant. Emission sources include lift pump engines, compressor engines, tank heaters, tank vents, flares and one incinerator. Emissions from these locations were included in the inventory.

To characterize emissions, Clearstone conducted flow measurement of produced fluids and solution gas vented to atmosphere or directed to flare. Casing gas, solution gas and combustion device flue gas samples were collected and submitted to the Alberta Innovates Technology Futures laboratory for comprehensive analysis. Operational data was recorded or subsequently obtained from Baytex for the test period and for the month of February 2013.

Gas streams were sampled using two types of sampling trains. Fixed gases, C1 to C4

hydrocarbons, volatile hydrocarbons and reduced sulphur compounds were sampled using a SilicoCan™ canister sampling train. Semi-volatile compounds were sampled using a PUF sampling train. The analytical protocols quantified over 160 substances.

A material balance, considering all fuel and flue gas substances identified, was completed for each combustion source type to determine the actual air to fuel ratio, combustion efficiency and flue gas to fuel gas ratio. Based on the results of these material balances,emission factors for all substances observed in the flue gas were determined and expressed in terms of mass emission per unit of energy input to the combustion device.For NOx, CO and PM published emission factors were applied to the combustion sources to complete the emission profile. Following this procedure, emission factors were determined for the lift pump and compressor engines and for the tank heaters.

Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the first production tank was measured using an ultrasonic flow measurement device. Measurements provided flow velocity, temperature and pressure, and assuming saturated conditions the dry gas vent rate was calculated. Vent gas sample analyses were used to correct the vent gas flow rate to an air-free dry flow rate and to determine emission factors. The dry air-free flow rate and the production data provided by Baytex were used to determine the vent gas GOR during the test period. The gas analyses were used to determine emission factors for all vented substances.

Page 4: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

iv

Based on the tests completed:1. Emission factors were developed for two operating scenarios:

a. Solution Gas venting where only solution gas associated with oil production was vented

b. Mixed Casing and Solution Gas venting where excess casing was directed to the top of the production tank and after mixing with the solution gas, was vented.

2. Average vent gas GOR ratios were determined for two operating scenarios:a. Solution Gas GOR, based on three tests, averaged 1.45 dsm3 gas/m3 oilb. Mixed casing and Solution Gas GOR, based on seven tests, averaged

51.1 dsm3 gas/m3 oil

In addition to the above, odour measurement data determined by RWDI was processed and expressed as odour units per dsm3 air-free vented gas. Raw data was sorted to develop odour emission factors for Solution Gas and Mixed Casing and Solution Gas.

Based on these results and production data provided by Baytex Energy Ltd., a complete emissions inventory for the Reno Field was compiled for the existing operations for February 2013. The inventory includes all production pads, the water injection or disposal facility and the gas plant where surplus gas in delivered to TCPL. The emissions inventory provides emissions for all compounds identified in grams per second and is source type and location specific. The inventory is contained in a data file suitable for application in dispersion modeling studies.

For this inventory, Combustion device emissions were based on the determined emission factors and the calculated fuel consumption of each device. Tank vent emissions were based on the applicable emission factors, the reported average daily oil production rate and a field vent gas GOR of 51 as specified by Baytex. The applied GOR is comparable to the value determined for those wells where mixed casing and solution gas was vented and considerably greater than the value determined for those wells where solution gas was vented. All hydrocarbon gas emissions were assumed to be released from the first production tank.Flare and incinerator combustion efficiencies of 98% and 99.5% respectively,were applied at those locations where vented gases were directed an emission control device.

Page 5: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

v

TABLE OF CONTENTS DISCLAIMER ................................................................................................................................ ii EXECUTIVE SUMMARY ........................................................................................................... iii TABLE OF CONTENTS ............................................................................................................... v LIST OF TABLES ........................................................................................................................ vii LIST OF FIGURES ....................................................................................................................... ix LIST OF ACRYNOMS .................................................................................................................. x 1 INTRODUCTION ................................................................................................................... 1 2 SCOPE OF WORK ................................................................................................................. 5 3 METHODOLOGIES ............................................................................................................... 7

3.1 Flow Measurements ........................................................................................................... 7 3.1.1 Oil Flow ..................................................................................................................... 7 3.1.2 Solution Gas .............................................................................................................. 7

3.2 Sampling Systems .............................................................................................................. 7 3.2.1 Inert, Volatile and Reduced Sulphur Compounds ..................................................... 7 3.2.2 Semi-Volatile Sampling Train ................................................................................... 8

3.3 Analytical Protocols ........................................................................................................... 8 3.3.1 Fixed Gases, VOC and RSH Protocol ....................................................................... 8 3.3.2 Semi-Volatile Analytical Protocol ............................................................................. 9

3.4 Emission Factor Development ........................................................................................... 9 3.4.1 Combustion Process Material Balance ...................................................................... 9 3.4.2 Method for NOx, CO and PM .................................................................................... 9

3.5 Combustion Efficiency ..................................................................................................... 10 4 FIELD MEASUREMENT RESULTS .................................................................................. 11

4.1 Vent Gas Flow Measurements ......................................................................................... 11 4.2 Vent Gas Analyses ........................................................................................................... 16 4.3 Vent Gas Composition ..................................................................................................... 17 4.4 Site Specific Emission factors .......................................................................................... 24

4.4.1 Lift Pump Engines ................................................................................................... 24 4.4.2 Compressor Engines ................................................................................................ 29 4.4.3 Fired Tank Heaters .................................................................................................. 33

4.5 NOx, CO and PM2.5 Emissions ......................................................................................... 37 4.6 Semi-Volatile Substances ................................................................................................. 37

4.6.1 Tank Emissions ........................................................................................................ 37 4.6.2 Engine Emissions .................................................................................................... 39

4.7 Odour Samples ................................................................................................................. 40 5 INVENTORY DEVELOPMENT ......................................................................................... 42

5.1 Combustion Device Emissions ......................................................................................... 42 5.1.1 Fuel Flow Rates ....................................................................................................... 42 5.1.2 Flare and Incinerator Flow Rates ............................................................................. 44 5.1.3 NOx, CO and PM2.5 Emission Rates ........................................................................ 45

Page 6: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

vi

5.2 Tank Vent Emission Factors ............................................................................................ 46 5.2.1 Tank Vent Flow Rates ............................................................................................. 46

5.3 Dehy Regenerator Emissions ........................................................................................... 53 5.4 Odour Sample Results ...................................................................................................... 54 5.5 Emission Inventory Data File ........................................................................................... 57

6 CONCLUSIONS ................................................................................................................... 58 7 REFERENCES ...................................................................................................................... 60 8 APPENDIX A - DETAILED SAMPLE RESULTS ............................................................. 61

Page 7: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

vii

LIST OF TABLES

TABLE 1. BAYTEX RENO FIELD PRODUCTION FACILITY LOCATIONS AND MAJOR EQUIPMENT LIST. ................ 3 TABLE 2. FUEL, FLUE AND PROCESS GAS STREAMS SAMPLE DATES USING SILICOCAN™ CANISTERS AND

ANALYZED BY AITF. ............................................................................................................................. 5 TABLE 3. SEMI-VOLATILE PUF SAMPLING LOCATIONS AND DATES. ............................................................... 6 TABLE 4. OPERATIONAL STATUS OF BAYTEX RENO FIELD WELLS DURING FIELD MEASUREMENT STUDY OF

FEBRUARY 26 TO MARCH 6, 2013. .......................................................................................................11 TABLE 5. SUMMARY OF MEASURED AVERAGE VELOCITY, TEMPERATURE, MOISTURE CONTENT AND VENT GAS

FLOW INCLUDING RELATIVE STANDARD DEVIATION AT SELECTED BAYTEX RENO FIELD PRODUCTION PADS. ....................................................................................................................................................12

TABLE 6. REPORTED OIL PRODUCTION AND GAS MEASUREMENTS AT BAYTEX RENO FIELD PADS.................16 TABLE 7. AVERAGE MOLE FRACTION COMPOSITION AND RELATIVE STANDARD DEVIATION OF CASING AND

SOLUTION GAS MIX VENTED AND SOLUTION GAS VENTED TO ATMOSPHERE AND MIXED GAS VENTED TO A FLARE OR INCINERATOR AT PRODUCTION PADS IN THE BAYTEX RENO FIELD. ...................................18

TABLE 8. MATERIAL BALANCE AND EMISSION FACTOR RESULTS FOR LIFT PUMP ENGINE AT PAD 2-1 OF BAYTEX RENO FIELD............................................................................................................................25

TABLE 9. MATERIAL BALANCE AND EMISSION FACTOR RESULTS FOR COMPRESSOR ENGINE AT PAD 13-14 OF

BAYTEX RENO FIELD............................................................................................................................30 TABLE 10. MATERIAL BALANCE AND EMISSION FACTOR RESULTS FOR TANK HEATER AT PAD 5-32 OF

BAYTEX RENO FIELD............................................................................................................................34 TABLE 11. SUMMARY OF NOX, CO AND PM2.5 EMISSION FACTORS APPLIED TO LIFT PUMP AND COMPRESSOR

ENGINES, TANK HEATERS AND FLARE AND INCINERATOR COMBUSTION SOURCES. ...............................37 TABLE 12. SUMMARY OF SEMI-VOLATILE COMPOSITION OF THE CASING AND SOLUTION GAS MIX VENTED

AND THE SOLUTION GAS VENTED AT PRODUCTION PADS IN THE BAYTEX RENO FIELD. ........................38 TABLE 13. SUMMARY OF SEMI-VOLATILE EMISSIONS FROM COMPRESSOR ENGINES OPERATING AT THE

BAYTEX RENO FIELD............................................................................................................................39 TABLE 14. ODOUR SAMPLE PAD, WELL, SAMPLE IDENTIFICATION AND SAMPLE DATE. ..................................40 TABLE 15. SUMMARY OF ESTIMATED CASING FUEL GAS ALLOCATIONS TO WELLS FOR LIFT PUMP AND

COMPRESSOR ENGINES, AND TANK HEATERS AT BAYTEX RENO FIELD. ................................................42 TABLE 16. CASING GAS ALLOCATIONS BY DEVICE AT EACH PAD IN THE BAYTEX RENO FIELD. ....................43 TABLE 17. MINIMUM, MAXIMUM AND AVERAGE MONTHLY AND AVERAGE DAILY FLARED OR INCINERATED

VOLUMES PER PAD AT BAYTEX RENO FIELD FOR JANUARY TO MARCH 2013 INCLUSIVE. ....................44 TABLE 18. SUMMARY OF NOX, CO AND PM2.5 EMISSIONS FROM COMBUSTION SOURCES AT PRODUCTION

PADS IN THE BAYTEX RENO FIELD BASED ON ESTIMATED DAILY FUEL CONSUMPTION RATES. .............45 TABLE 19 OIL PRODUCTION AND TANK VENT TO ATMOSPHERE FOR BAYTEX RENO FIELD PRODUCTION

WELLS FOR FEBRUARY 2013.................................................................................................................47 TABLE 20. SUMMARY OF EMISSIONS FACTORS FOR MIXED SOLUTION AND CASING GAS VENTED, SOLUTION

GAS VENTED AND MIXED SOLUTION GAS AND CASING GAS FLARED OR INCINERATED FROM PRODUCTION TANKS IN THE BAYTEX RENO FIELD......................................................................................................48

TABLE 21: GLYCOL DEHYDRATOR REGENERATOR EMISSION TO ATMOSPHERE AT BAYTEX RENO FIELD GAS PLANT...................................................................................................................................................54

TABLE 22. ODOUR SAMPLE RESULTS AND ODOUR STRENGTH OF SAMPLES EXPRESSED IN TERMS OF DRY AIR

FREE VENTED SOLUTION GAS OR MIXED CASING AND SOLUTION GAS....................................................56 TABLE 23. SUMMARY OF THE AIR IN VENT GAS AND AIR-FREE DRY MOLE FRACTION COMPOSITION PROFILES

OF GAS VENTED FROM PRODUCTION TANKS IN THE BAYTEX RENO FIELD WHEN CASING GAS AND SOLUTION GAS ARE HANDLED IN PRODUCTION TANKS BASED ON SAMPLES IN FEBRUARY 2013 AND JULY 2012. ...........................................................................................................................................61

Page 8: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

viii

TABLE 24. SUMMARY OF THE AIR IN VENT GAS AND AIR-FREE DRY MOLE FRACTION COMPOSITION PROFILES OF GAS VENTED FROM PRODUCTION TANKS IN THE BAYTEX RENO FIELD WHEN SOLUTION GAS ONLY IS HANDLED IN PRODUCTION TANKS BASED ON SAMPLES IN FEBRUARY 2013. .........................................66

TABLE 25. SUMMARY OF THE AIR IN SAMPLE AND AIR-FREE DRY MOLE FRACTION COMPOSITION PROFILES OF GAS FLARED FROM PRODUCTION TANKS IN THE BAYTEX RENO FIELD. .................................................71

Page 9: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

ix

LIST OF FIGURES

FIGURE 1. A BAYTEX RENO FIELD COLD HEAVY OIL PRODUCTION PAD. ........................................................ 2 FIGURE 2. BAYTEX RENO FIELD SCHEMATIC SHOWING PRODUCTION PAD LOCATIONS. .................................. 2 FIGURE 3. INERT, VOC AND RSC CANISTER SAMPLING TRAIN SCHEMATIC. ................................................... 8 FIGURE 4. SEMI-VOLATILE POLYURETHANE FILTER (PUF) SAMPLING TRAIN SCHEMATIC. ............................. 8 FIGURE 5. VENT GAS FLOW MEASUREMENT AT PAD 8-29. .............................................................................13 FIGURE 6. VENT GAS FLOW MEASUREMENT AT PAD 5-32. .............................................................................13 FIGURE 7. VENT GAS FLOW MEASUREMENT AT PAD 8-31E............................................................................13 FIGURE 8. VENT GAS FLOW MEASUREMENT AT PAD 8-21. .............................................................................14 FIGURE 9. VENT GAS FLOW MEASUREMENT AT PAD 9-21N. ..........................................................................14 FIGURE 10. VENT GAS FLOW MEASUREMENT AT PAD 9-15E..........................................................................14 FIGURE 11. VENT GAS FLOW MEASUREMENT AT PAD 10-12. .........................................................................15 FIGURE 12. VENT GAS FLOW MEASUREMENT AT PAD 13-14S........................................................................15 FIGURE 13. VENT GAS FLOW MEASUREMENT AT PAD 15-36. .........................................................................15 FIGURE 14. LIFT PUMP ENGINE LOCATED IN A SHEET METAL BUILDING WITH A ROOF TOP EMISSION

DISCHARGE POINT. ................................................................................................................................24 FIGURE 15. LIFT PUMP ENGINE LOCATED IN IN THE OPEN SHOWING EMISSION DISCHARGE POINT..................25 FIGURE 16. TYPICAL CASING GAS COMPRESSOR ENGINE DISCHARGE LOCATED ABOVE SHEET METAL

BUILDING WITH FLUE GAS SAMPLING EQUIPMENT SHOWN. ...................................................................29 FIGURE 17. TYPICAL PRODUCTION TANKS SHOWING FIRED HEATER STACK...................................................33

Page 10: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

x

LIST OF ACRYNOMS

AITF Alberta Innovates Technologies Futures laboratoryAMML Above maximum measurable limitASTM American Society for Testing and MaterialsBaytex Baytex Energy Ltd.Baytex Reno All Baytex Reno field operationsBDL Below detectible limitBS&W Basic sediment and waterC1C4 C1 to C4 hydrocarbon identification and quantificationCE Combustion efficiencyCEL Clearstone Engineering Ltd.CH4 MethaneCO Carbon monoxideCO2 Carbon dioxideg gramGC Gas chromatographGC/MS Gas chromatograph/mass spectrometerGJ Giga JouleHC HydrocarbonHP High pressurekg kilogramL LitreLDL Lower detection limitLHS Left hand sideLP Low Pressuremg milligramNA Not applicableNOx Oxides of nitrogenO2 OxygenPM Particulate matterppb part per billionppm part per millionPUF Polyurethane filterPVRV Pressure vacuum relief valveRHS Right hand sideRSC Reduced sulphur compoundsRSD Relative standard deviationRWDI RWDI Air Inc.s SecondTCPL TransCanada Pipe LinesTHC Total hydrocarbonTOC Total organic carbonUSEPA United States Environmental Protection Agency

Page 11: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

xi

VOC Volatile organic compoundmicro grams

Page 12: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

1

1 INTRODUCTION

Baytex Energy Ltd. (Baytex) operates heavy oil production facilities at the Reno Field southeast of Peace River Alberta. Reno Field operations are referred to as cold heavy oil production with wells and production facilities located at production pads. The production pads include one or more multi-leg horizontal production wells operating at depths of about 600 meters to recover oil from the Bluesky formation.

Surface facilities include wellheads equipped with hydraulically driven lift pumps and flow lines delivering the produced fluids to, typically, two production tanks operating in series. The production tanks are maintained at 70 to 80C with casing gas-fired, in-tank, tube heaters to facilitate fluid transportation. The produced fluids include oil, water, sand and solution gas. Solution gas disengages from the oil in the production tank and is either vented to atmosphere or sent to flare. Oil, water and sand production is removed from the production tanks and loaded into trucks for disposition to sales or disposal. Some water is recycled back into the producing wells.

Casing gas is produced at each well and is directed into a line held at a pressure of 35-70 kPa to provide fuel gas for the pad. The casing fuel gas is used for hydraulic drive lift pump engines, compressor engines, tank heaters, flare pilots and sweep gas. Where possible, the excess gas is directed through a small compressor into a gas gathering system. At the one site not connected to the gas gathering system, casing gas is used as fuel and any excess is directed to the production tank. Casing gas directed to production tanks is vented to atmosphere or to an emission control device. Some sites include separators to remove liquid from the casing gas and some include methanol injection facilities. Both methods are used for control of line freezing.

One of the production units at a production pad tested during the field study, with wellhead (RHS), gas engine for hydraulic motor drive (by wellhead), four production tanks (centre) and flare stack (LHS), is shown in Figure 1. A second production unit on the adjacent pad is shown in the background. The locations of production pads in the Reno Field are shown in Figure 2.

All surplus casing gas flows to the gas processing facility located at 10-22-79-20W5 via a gas gathering system (ABGS0003592). The gas plant includes a compressor and dehydrator. The gas is compressed, water removed and delivered into the TCPL pipeline. In the event that flaring is required, it occurs at the production pads, not at the gas plant.

The Reno Field production pads are listed in Table 1. The operation includes 23 pads with a total of 41 wells of which four are shut in. The number of wells at each pad is indicated along with the number of tanks, casing gas compressors and hydraulic drive engines. Tanks in use are heated using casing gas. In addition, there is one water injection location consisting of one disposal well, three unheated water tanks, all with open vents to atmosphere.

Page 13: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

2

Figure 1. A Baytex Reno Field cold heavy oil production pad.

Figure 2. Baytex Reno Field schematic showing production pad locations.

Page 14: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

3

Table 1. Baytex Reno Field production facility locations and major equipment list. Pad Producing Well ID's Compressor Size TKS TKS in Use Engines Status 8-36-79-21W5 100/12-36-79-21W5 2 0 Shut In

2-1-80-21W5 100/9-31-79-20W5 41HP 4 4 3 102/7-31-79-20W5 4 4

15-36-79-20W5 100/01-31-79-20W5 2 2 2 102/01-31-79-20W5 1 1

4-06-80-20W5 103/12-32-79-20W5 1 1 1 102/12-32-79-20W5 1 0 Shut In

16-31-79-20W5 103/10-28-79-20W5 41HP 4 4 1

12-32-79-20W5 W0/01-33-79-20W5/02 41HP 2 2 2 103/13-28-79-20W5 1 1

5-32-79-20W5 100/04-06-80-20W5/03 90HP 2 2 3 102/12-28-79-20W5 2 2 100/13-28-79-20W5 2 2

8-31-79-20W5 W 100/09-29-79-20W5 2 2 1

8-31-79-20W5 E 102/13-31-79-20W5/02 41HP 2 2 3 102/09-29-79-20W5 2 2 102/01-01-80-21-W5 1 1

16-19-79-20W5 100/08-25-79-21W5/02 2 2 1 9-29-79-20W5 104/13-22-79-20W5 2 2 1

8-29-79-20W5 100/12-22-79-20W5 41HP 2 2 2 102/13-22-79-20W5 1 1

4-28-79-20W5 Water Disposal Well No heated tanks 3 3

8-21-79-20W5 100/09-15-79-20W5 2 2 2 100/12-14-79-20W5/02 2 2

9-21-79-20W5 SW

100/13-14-79-20W5 2 x 41HP 2 2 2 102/13-14-79-20W5 2 2

9-21-79-20W5 SE

103/08-29-79-20W5 41HP 2 2 2 100/01-29-79-20W5 2 2

9-21-79-20W5 N 100/04-23-79-20W5 2 2 2 102/04-23-79-20W5 2 2

4-23-79-20W5 103/06-13-79-20W5 99HP 2 2 1

13-14-79-20W5 N

102/06-13-79-20W5 99HP 2 2 3 100/15-21-79-20W5 4 4 100/04-13-79-20W5 2 2

13-14-79-20W5 S 102/01-14-79-20W5/02 99HP 2 2 2 100/14-21-79-20W5 5 5

9-15-79-20W5 W 100/16-11-79-20W5 1 0 2 Shut In 102/16-11-79-20W5 2 0 Shut In

9-15-79-20W5 E 100/13-12-79-20W5 2 2 2 102/13-12-79-20W5 2 2

9-14-79-20W5 100/02-13-79-20W5 41HP 2 2 2 10-12-79-20W5 100/08-14-79-20W5/03 2 2 1

10-22-79-20W5 Gas Plant 100 HP 0 0 1

Glycol Dehydrator 0 0 1

Page 15: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

4

In an effort to characterize these operations, Clearstone Engineering Ltd. conducted a casing gas, solution gas and vent gas measurement and sampling program in February 2013. Fuel, flue and vent gas samples collected were analyzed of fixed gases, C1 to C4 hydrocarbons, sulphur compounds and volatile compounds. Ambient air samples collected with a polyurethane foam sampling system were analyzed for semi-volatile compounds including polycyclic aromatic hydrocarbons. Flow measurements were made using ultrasonic flow and radar measurement equipment. In addition, relevant operating conditions at sample locations were recorded.

To supplement these field study results, the results of a tank vent gas study conducted at Pads 8-31 and 10-12 in July 2012 are included. The scope of work for this study included gas flow measurements and emission characterization similar to the February study.

Page 16: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

5

2 SCOPE OF WORK

Compilation of the inventory of atmospheric emissions associated with the Reno Field included the following tasks:

Delineation of all fuel consuming devices and determining their emissions. This was completed by listing all combustion devices at each pad, documenting fuel consumption,estimating some emissions based on published emission factors and the calculating mostemissions based on site specific sampling.Collection of fuel, flue and process stream samples and completion of detailed analysis to facilitate the determination of site specific emission factors.Determination of vented, flared or incinerated casing and solution gas flow rates associated with site specific production.Determination of semi-volatile emissions based on sampling and analysis.Observation and qualitative reporting of fugitive emissions using an infrared camera.

Table 2 summarizes the target fuel, flue and process gas streams by source type and the well pad identity. A total of 19 samples were collected and analyzed. One sample was contaminated and not acceptable.

Table 2. Fuel, flue and process gas streams sample dates using SilicoCan™ Canisters and analyzed by AITF.

Pad Casing (Fuel)Gas

Engine Flue Gas

Tank Heater Flue Gas

Tank Vent to Atmosphere

Tank Vent to Flare

February 2013 Field Work4-23 Feb 2610-12 Mar 4

2-1 Mar 5, Lift Pump Engine

Mar 5, Lift Pump Engine Mar 5

9-15E Mar 4

13-14SMar 4,

CompressorEngine

Mar 4,Compressor

EngineMar 4

15-36 Mar 5

5-32Mar 5,

Compressor Engine

March 5,Sample

ContaminatedFeb 28 Feb 28

8-21 Mar 1 8-29 Feb 28

8-31 E Feb 289-21 N Mar 19-21 SE Feb 26July 2012 Field Work

10-12 July 12 July 128-31 W July 11 July 11

Page 17: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

6

In addition, six semi-volatile compound samples were collected at various sources. These are summarized in Table 3.

Table 3. Semi-volatile PUF sampling locations and dates.Pad Date Source Sampled5-32 Mar 5 Compressor5-32 Mar 6 Tank Vent,2-1 Mar 5 Compressor2-1 Mar 6 Tank Vent4-23 Mar 5 Compressor13-14 S Mar 4 Tank Vent

Upon receipt of all analytical results, the data were processed to develop site specific emissions factors for lift pump and compressor engines, and for gas-fired tank heaters. These site specific factors along with published emission factors were used to develop a comprehensive emission inventory for each production pad. Flare and incinerator emissions were based on assumed combustion efficiencies and average gas composition results.

Page 18: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

7

3 METHODOLOGIES

3.1 FLOW MEASUREMENTS

Process fluid flow measurements including production from wellhead to production tank and solution gas vented from production tanks was attempted at various pads using ultrasonic flow measurement devices. In addition, fluid production rate measurements were attempted using a thief hatch mounted microwave liquid level radar system.

3.1.1 OIL FLOWFluid (oil and BS&W) flow was attempted using a clamp on ultrasonic flow measurement device. Of six measurement attempts only one was considered to be acceptable and close to the production rate reported by Baytex. The microwave radar tank top measurement device was attempted at the seven locations with similarly poor results. The measurement results are not used in any calculations. All production rates used in calculations are those reported by Baytex and these are included as fluid production and oil production with the difference being BS&W.

3.1.2 SOLUTION GASUltrasonic gas flow measurements of solution gas were completed at 10 locations in February 2013. Wet gas was measured and corrected to dry gas based on the temperature measured at the ultrasonic device location and local barometric pressure. Due to the prevailing weather conditions the gas temperature at the flow measurement location was lower that the tank vapour space temperature and consequently water vapour was condensed in the 4-inch sample line connected to the top of the tank and the 3-inch flow measurement cell. The condensation did not affect flow measurement but the condensed water vapour is not included in the wet flow rate. In all cases, the first tank in the production train was sampled as it exhibited the higher visual emission rate. The second tank exhibited considerably lower emissions. No estimate of the secondary emission rate was attempted and emissions reported are based on the single tank measurement.

3.2 SAMPLING SYSTEMS

Two sampling methods were required to achieve the objectives of the study. Volatile (VOC) and reduced sulphur (RSC) compounds and inert gases were sampled using an evacuated canister sampling train. For Semi-volatile compounds a polyurethane filter (PUF) sampling train. In both cases, the field collected samples were returned to the AITF laboratory for detailed analysis. The two methods are briefly described below.

3.2.1 INERT, VOLATILE AND REDUCED SULPHUR COMPOUNDSThe canister sampling train is shown in Figure 3. It includes a probe, for insertion into the source,a valve and a SilicoCan™ canister. The SilicoCan™ canister is supplied clean and evacuated. The source is sampled by slowly opening the valve after the probe is inserted in to the source duct opening. The canister fills with the sampled gas to a pressure equal to the local barometric

Page 19: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

8

pressure. Local pressure and source temperature are noted. The canister is returned to the laboratory for analytical work based upon the prescribed protocol. The container is heated to approximately 15°C above the recorded source temperature prior to recover of sample for analyses. The sample train is based upon NCASI Method IM/CAN/WP-99.02 but does not include the impinger gas conditioning components.

Figure 3. Inert, VOC and RSC canister sampling train schematic.

3.2.2 SEMI-VOLATILE SAMPLING TRAINThe PUF sampling train includes impingers to remove condensable water prior to the samples gas passing through the PUF where semi-volatile compounds are trapped. After the water and semi-volatiles are removed the dry gas flows through a meter where the dry volume is measured and recorded. The sample is drawn through the sample train by a vacuum pump. The sampling train is shown schematically in Figure 4.

Figure 4. Semi-volatile polyurethane filter (PUF) sampling train schematic.

3.3 ANALYTICAL PROTOCOLS

Analytical work completed by Alberta Innovates followed prescribed protocols as outlined below.

3.3.1 FIXED GASES, VOC AND RSH PROTOCOLThe fixed gases, volatile and reduced sulphur compound analytical work included the quantification of numerous other organic compounds. The analytical procedure and lower detection limits used for the RSC/VOC/C1C4/Inert scans are:

RSC scans identified and quantifies reduced sulphur compounds by GC/SCD with a 1 ppb LDLVOC scans identified volatile organic compounds with by GC/MS 3 LDL

Sample Point

Impinger Train

PUF Dry Gas

Meter

Pump

Sample Point

SilicoCan™ Sample

Container

Valve

Page 20: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

9

C1C4 scans identified and quantified C1 to C4 hydrocarbons by GS/MS with a 50ppb LDLInerts scan identified and quantified all fixed gases by GC with a 50 to 100 ppm LDL

3.3.2 SEMI-VOLATILE ANALYTICAL PROTOCOLSemi volatile compounds were identified and quantified using the alkylated PAH protocol. The

submitted. The PAH samples were extracted using the PUF sampling system from, nominally, 1 m3 of dry gas 3.

3.4 EMISSION FACTOR DEVELOPMENTTwo methods were used to compile the emission inventory. For site specific emissions identified through the sampling program a combustion process material balance was applied. For NOx, CO and PM, USEPA Method 19 and ASTM D3588-91, along with published emission factors were applied.

3.4.1 COMBUSTION PROCESS MATERIAL BALANCEA simple combustion process is defined as one where the only input streams were fuel gas andcombustion air and the only output was a single flue gas stream. For this process, a material balance calculation was completed for all compounds identified in the fuel gas and the flue gas. Typically, the fuel gas contained about 100 compounds, some of which were present in the flue gas. Typically, the flue gas contained about 50-100 compounds, some of which were not present in the fuel gas and assumed to be manufactured in the combustion process.

Fuel gas was corrected for potential air contamination during the sampling process by removing all oxygen and the associated nitrogen. The remaining composition was normalized and used in the material balance calculation. Air was assumed to be pure oxygen and nitrogen with no organic compound contamination. Flue gas analytical results were receive on a dry basis and could not be corrected for potential air contamination. The dry basis oxygen content was used as the key to complete the material balance.

The EXCEL spreadsheet based material balance program balanced flue gas oxygen content with measured oxygen content. The material balance program allowed for partial destruction of all fuel gas compounds and the creation of new compounds measured in the flue gas. The program was manually managed though two or more iterations to produce the final material balance.

3.4.2 METHOD FOR NOX, CO AND PMThis method is based on the calculation of compressibility, higher heating value, specific gravity and gross calorific as outlined in ASTM D3588-91 (60F (15.6C) @ 1 atm) and F Factor based on USEPA 40 CFR, Part 60, Appendix A, Method 19. This procedure determines is based on fuel composition, combustion source type characteristics and the application of published emission factors that are based on energy input.

Page 21: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

10

3.5 COMBUSTION EFFICIENCY

Combustion efficiency was considered to be an important indicator of performance and was determined in various ways for each source sampled. Combustion efficiency not only indicated the fuel efficiency but may be an indicator of poor substance destruction or the potential formation of unwanted substances in the flue gas emissions.

The calculation methods for the three combustion efficiencies are:

CETOC =( , ) ( , )( , ) 100% (Equation 3.1)

Where:CETOC is the total organic carbon based combustion efficiencyCinlet,nonCO2 is the TOC in the inlet fuel gas excluding carbon dioxideCoutlet,nonCO2 is the TOC in the outlet flue gas excluding carbon dioxide

This method was used to make sure that all compounds identified in the fuel and flue gases were accounted for in the combustion efficiency calculation.

CECH4 = ( ) ( )( ) 100% (Equation 3.2)

Where:CECH4 is the total methane based combustion efficiencyCH4inlet is the methane in the inlet fuel gasCH4outlet is the methane in the outlet flue gas

This method considered methane to be a basic indicator of combustion efficiency.

CETHC = ( , ) ( )( , ) 100% (Equation 3.3)

Where:CETHC is the total hydrocarbon based combustion efficiencyCinlet,nonCO2 is the inlet gas without carbon dioxideTHCoutlet is the outlet total hydrocarbon

This method approximates the traditional use of a THC combustion analyzer to determine combustion efficiency.

Page 22: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

11

4 FIELD MEASUREMENT RESULTSDuring the February 2013 field sampling period, the operational details for the wells studied are summarized in Table 4. Key information includes oil production, and casing and solution gas GORs. Data provided is for the day that the location was studied and does not necessarily represent a monthly or yearly average. Typically, all casing gas not used as fuel or delivered to the gas gathering system is directed to one production tank. Consequently, the observed release rate to atmosphere or to flare/incinerator cannot be related to the production well associated with the production tank in question.

Table 4. Operational status of Baytex Reno Field wells during field measurement study of February 26 to March 6, 2013.

Pad WellFluid Prod1

BS&W

Oil Prod

Casing Gas GOR2

Solution Gas GOR2

Total GOR

Total Pad Gas Prod3

m3/d % m3 m3/m3 m3/m3 m3/m3 m3/d2-1 100/09-31 7.1 24% 5.4 680 2.86 682.862-1 102/07-31 64.4 10% 58.0 46 2.86 48.86 6516.615-36 100/01-31 6 2% 5.9 41 2.86 43.8615-36 102/01-31 4.8 12% 4.2 83 2.86 85.86 620.68-31E 102/13-31 12 7% 11.2 147 2.86 149.868-31E 102/09-29 3 24% 2.3 196 2.86 198.868-31E 102/01-01 4.9 10% 4.4 167 2.86 169.86 2874.95-32 100/04-06 30.0 5% 28.5 46 2.86 48.865-32 102/12-28 7.0 7% 6.5 150 2.86 152.865-32 100/13-28 5.0 20% 4.0 580 2.86 582.86 4719.18-29 102/13-22 6 6% 5.6 179 2.86 181.868-29 100/12-22 11 20% 8.8 91 2.86 93.86 1851.79-21N 100/04-23 1.4 9% 1.3 94 2.86 96.869-21N 102/04-23 7 14% 6.0 552 2.86 554.86 3463.78-21 100/09-15 5 20% 4.0 91 2.86 93.868-21 100/12-14 5 1% 5.0 56.4 2.86 59.26 668.89-15E 100/13-12 4 8% 3.7 270 2.86 272.869-15E 102/13-12 3 7% 2.8 0 2.86 2.86 1012.113-14S 102/01-14 8 19% 6.5 217 2.86 219.8613-14S 100/14-21 49.5 43% 28.2 269 2.86 271.86 9095.210-12 100/08-14 8 37% 5.0 461 2.86 463.86 2337.91. Fluid production is actual daily production for the date that the field study was conducted.2. GOR for casing and solution gas are reported by Baytex.3. Total Pad Gas Prod is combined total of all wells operation at the pad.

4.1 VENT GAS FLOW MEASUREMENTSTank vent flow measurements, using the ultrasonic flow measurement device, were attempted at ten locations and successful at eight. The results are summarized in Table 5. The ultrasonic device measures actual wet gas velocity at the conditions noted. These conditions are at the location of the device and are not the same as the tank top conditions. As noted previously,

Page 23: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

12

moisture condensation was observed at most locations due to the prevailing winter weather conditions during the field measurements. The results represent the average values for the measurement period and relative standard deviations for each measurement are indicated.

Measurement durations at each location and the actual velocity measurements are noted in figures 5 through 12 for the eight pads where measurements were successfully completed. In the figures, any gaps in measurement are reflective of operational issues related to the flow measurement device and do not reflect tank venting conditions. In general, lower flow rates are rather wispy with considerable variability while higher flow rates are relatively steady with minor variability. Average values were determined for the entire time period that measurements were obtained for a tank vent.

Table 5. Summary of measured average velocity, temperature, moisture content and vent gas flow including relative standard deviation at selected Baytex Reno Field production pads.

Pad Date and Start Time1Actual

Velocity2 RSD3Gas

Temp4 RSD Water5 RSDDry Gas6 RSD

m/s % °C % % % dsm3/h %08-29 02/27/2013 4:57:24 PM 2.973 8.4% 46.8 8.5% 11.4% 23.4% 30.27 8.6%05-32 02/28/2013 2:32:01 PM 2.112 40.0% 62.0 1.0% 22.8% 2.9% 18.12 39.6%08-31E 02/28/2013 12:00:13 PM 0.275 82.8% 15.3 30.4% 1.8% 31.4% 3.48 82.5%08-21 03/01/2013 2:29:30 PM 0.267 114.4% 11.5 18.8% 1.4% 15.1% 3.43 114.1%09-21N 03/01/2013 11:39:38 AM 8.664 7.9% 36.8 47.4% 8.8% 63.2% 87.87 10.0%09-15E 03/02/2013 11:26:58 AM 1.977 22.8% 43.9 1.7% 9.4% 4.0% 21.13 22.5%10-12 03/02/2013 3:20:25 PM 1.372 8.8% 43.3 6.1% 9.1% 13.6% 14.73 8.8%13-14S 03/02/2013 1:27:28 PM BDL7

02-01 03/03/2013 9:45:39 AM AMML8

15-36 03/03/2013 1:11:05 PM 1.103 40.7% 31.9 9.8% 4.9% 18.4% 12.87 40.5%1. Date and start time of measurements corresponds to the initial time indicated in the measured flow velocity figures.2. Velocity as measured in the Ultrasonic flow measurement cell.3. RSD = relative standard deviation4. As measured at the ultrasonic flow measurement location and not tank top temperature.5. Based on the Wagner & Pruss (1993) correlation and barometric pressure of 95.24 kPa.6. Dry gas flow rate correction is based on the noted temperature, pressure and moisture.7. BDL = Below detection limit.8. AMML = Above maximum measurement level.

Page 24: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

13

Figure 5. Vent gas flow measurement at Pad 8-29.

Figure 6. Vent gas flow measurement at Pad 5-32.

Figure 7. Vent gas flow measurement at Pad 8-31E.

Page 25: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

14

Figure 8. Vent gas flow measurement at Pad 8-21.

Figure 9. Vent gas flow measurement at Pad 9-21N.

Figure 10. Vent gas flow measurement at Pad 9-15E.

Page 26: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

15

Figure 11. Vent gas flow measurement at Pad 10-12.

Figure 12. Vent gas flow measurement at Pad 13-14S.

Figure 13. Vent gas flow measurement at Pad 15-36.

Page 27: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

16

4.2 VENT GAS ANALYSESOf the ten attempted flow measurements, eight successfully resulted in solution gas flow rates as presented in Table 6. The last column of the table indicates the expected presence of casing gas in the measured vent gas flow rate.

The tank vent flow rate at Pad 2-1 normally flows to a flare but was released to atmosphere for measurement purposes. However, the flow rate measured was above the maximum measurable limit of about 2000 dsm3/d. Comparing the estimated value to the expected value in Table 4 for pad confirms that the measured value was well below the actual rate.

Measurements at pads 2-1, 15-36, 5-32, 8-39, 9-21N, 9-15E and 10-12 were on tanks where excess casing gas was vented into the production tank. Measurements at pads 8-31E, 8-21 and 13-14S were on tanks that vented solution gas only.

The average solution gas GOR based on these three measurements was 1.45 m3/m3 based on total gas released divided by total oil production for the three wells. This value is approximately half of the solution gas GOR applied by Baytex when estimating solution gas production. For the remaining pads, where casing gas most likely was directed into the tank that were measured, the vent gas GOR value ranged from 10.1 to 285.1 m3/m3 and averaged 51.1 m3/m3. This average is based on the sum of the measure flow rates divided by the total oil production for the pads included in these measurements. The average of 51.1 m3/m3 is higher than the average of 31.4 m3/m3calculated for the same production pads using the appropriate data from Table 4.

Table 6. Reported oil production and gas measurements at Baytex Reno Field pads.

Pad

Pad Dry Oil Prod1 Well

Well Dry Oil Prod1

Tank Vent Measured

Tank Vent Measured

Air Frac

HC Vent Gas GOR

Includes Casing

Gasm3/d m3/d wsm3/d dsm3/d % m3/m3

2-1 63.4 102/07-31 58.0 AMML2 2000 48.7 16.2 Y15-36 10.1 100/01-31 5.9 325.7 308.9 34.7 20.0 Y8-31E 17.9 102/13-31 11.2 85.2 83.5 69.0 2.3 N5-32 39.0 100/04-06 28.5 564.2 434.4 8.9 10.1 Y8-29 14.4 102/13-22 5.6 823.2 726.4 0.8 49.9 Y9-21N 7.6 100/04-23 1.3 2407.03 2108.9 1.4 285.1 Y8-21 9.0 100/09-15 4.0 83.5 82.2 96.8 0.7 N9-15E 6.5 102/13-12 2.8 559.2 507.1 1.5 77.2 Y13-14S 34.7 102/01-14 6.5 BDL4 20 85.7 0.4 N10-12 5.0 100/08-14 5.0 388.6 353.3 11.1 62.3 Y1. Oil production is actual daily production for the date that the field study was conducted.2. Value is above the maximum measurable limit of the measurement device (AMML).3. Value is at or near the maximum measurement limit (MML).4. Value is below the measureable limit of the flow measurement device (BDL).

Page 28: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

17

4.3 VENT GAS COMPOSITIONGas vented from production tanks was sampled at ten locations and of these gas directed to flare was sampled at two locations during the February 2013 field study. Based on operations at each location the samples were allocated to one of three categories: Casing and Solution Gas Mix, Solution Gas and Mixed Gas to Flare or Incinerator. Two tank vent locations (Pad 10-12 and Pad 8-31W) were sampled in July 2012 and these results were included in the Casing and Solution Gas Mix category. All samples were analyzed by AITF.

The air-free average composition profiles, RSD and number of samples in each category of the gas vented to atmosphere or directed to a flared or incinerator are presented Table 7. These averages are based on detailed multi-sample results provided in Appendix A. Table 23 is for mixed casing and solution gas vented to atmosphere, Table 24 is for solution gas vented to atmosphere and Table 25 is for mixed gas directed to a flare or an incinerator. The amount of air in the vented gas was calculated by removing all oxygen and the associated nitrogen from the laboratory report and is included in the first row of each analysis. The quantity of air varies considerably and is related to the actual production rates and related activities at each facility.

Page 29: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

18

Tab

le 7

. A

vera

ge m

ole

frac

tion

com

posi

tion

and

rela

tive

stan

dard

dev

iatio

n of

cas

ing

and

solu

tion

gas

mix

ven

ted

and

solu

tion

gas

vent

ed t

o at

mos

pher

e an

d m

ixed

gas

ven

ted

to a

fla

re o

r in

cine

rato

r at

pro

duct

ion

pads

in t

he B

ayte

x R

eno

Fiel

d.

Subt

ance

1C

asin

g an

d So

lutio

nG

as M

ix V

ente

dSo

lutio

n G

as V

ente

dM

ixed

Gas

to F

lare

or

Inci

nera

tor

Num

ber

of sa

mpl

es in

ave

rage

93

2N

ame

Com

poun

dA

vera

geR

SD2

Ave

rage

RSD

Ave

rage

RSD

Air

in sa

mpl

e15

.3%

111%

83.9

%17

%0.

5%10

0%N

itrog

enN

20.

0207

2916

7.13

%0.

1075

4417

3.2%

0.00

4391

9.62

%H

ydro

gen

Sulp

hide

H2S

0.00

0000

284.

42%

0.00

0000

#DIV

/0!

0.00

0000

141.

42%

Car

bon

Dio

xide

CO

20.

0358

9928

.49%

0.11

3369

48.5

%0.

0699

8337

.37%

Met

hane

CH

40.

9364

224.

25%

0.73

7585

31.7

%0.

9091

753.

03%

Etha

neC

2H6

0.00

2380

31.3

3%0.

0032

2028

.5%

0.00

5264

21.4

7%Pr

opan

eC

3H8

0.00

0571

137.

18%

0.00

1007

36.1

%0.

0006

2854

.40%

But

ane

C4H

100.

0001

5452

.33%

0.00

1173

55.8

%0.

0005

6528

.13%

Isob

utan

eC

4H10

0.00

0228

57.7

6%0.

0010

3245

.9%

0.00

0628

12.0

1%Pe

ntan

eC

5H12

0.00

0159

67.2

6%0.

0011

8075

.9%

0.00

0664

17.8

0%Is

open

tane

C5H

120.

0004

5068

.13%

0.00

3704

93.4

%0.

0016

383.

27%

Hex

ane

C6H

140.

0002

2898

.25%

0.00

0800

68.3

%0.

0004

4772

.34%

Ben

zene

C6H

60.

0000

0015

3.01

%0.

0000

1117

3.2%

0.00

0000

#DIV

/0!

Hep

tane

C7H

160.

0000

6113

9.52

%0.

0001

6466

.1%

0.00

0034

62.4

4%1,

2,3-

Trim

ethy

lben

zene

C9H

120.

0000

0411

6.18

%0.

0000

2713

3.9%

0.00

0000

#DIV

/0!

1,2,

4-Tr

imet

hylb

enze

neC

9H12

0.00

0008

111.

10%

0.00

0027

102.

3%0.

0000

00#D

IV/0

!1,

3,5-

Trim

ethy

lben

zene

C9H

120.

0000

0410

9.01

%0.

0000

1510

2.7%

0.00

0000

#DIV

/0!

1,3-

But

adie

neC

4H6

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

1-B

uten

eC

4H8

0.00

0000

187.

85%

0.00

0000

173.

2%0.

0000

014.

33%

1-H

exen

eC

6H12

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

1-H

exen

e, 3

,4,5

-trim

ethy

l-C

9H18

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0012

52.6

3%1-

Pent

ene

C5H

100.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!2,

2,4-

Trim

ethy

lpen

tane

C8H

180.

0000

0030

0.00

%0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!2,

2-D

imet

hylb

utan

eC

6H14

0.00

0038

49.9

6%0.

0005

8676

.7%

0.00

0134

59.2

4%

Page 30: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

19

Tab

le 7

. A

vera

ge m

ole

frac

tion

com

posi

tion

and

rela

tive

stan

dard

dev

iatio

n of

cas

ing

and

solu

tion

gas

mix

ven

ted

and

solu

tion

gas

vent

ed t

o at

mos

pher

e an

d m

ixed

gas

ven

ted

to a

fla

re o

r in

cine

rato

r at

pro

duct

ion

pads

in t

he B

ayte

x R

eno

Fiel

d.

Subt

ance

1C

asin

g an

d So

lutio

nG

as M

ix V

ente

dSo

lutio

n G

as V

ente

dM

ixed

Gas

to F

lare

or

Inci

nera

tor

Num

ber

of sa

mpl

es in

ave

rage

93

2N

ame

Com

poun

dA

vera

geR

SD2

Ave

rage

RSD

Ave

rage

RSD

2,3,

4-Tr

imet

hylp

enta

neC

8H18

0.00

0012

67.9

0%0.

0001

8678

.0%

0.00

0010

31.2

2%2,

3-D

imet

hylb

utan

eC

6H14

0.00

0102

67.2

2%0.

0014

7776

.7%

0.00

0326

16.0

9%2,

3-D

imet

hylp

enta

neC

7H16

0.00

0092

82.3

2%0.

0012

2976

.2%

0.00

0172

7.36

%2,

4-D

imet

hylp

enta

neC

7H16

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

2,5-

dim

ethy

l Thi

ophe

neC

6H8S

0.00

0000

137.

30%

0.00

0003

95.8

%0.

0000

0047

.34%

2-et

hyl T

hiop

hene

C6H

8S0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!2H

-Pyr

an, t

etra

hydr

o-C

5H10

O0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

0614

1.42

%2-

met

hyl T

hiop

hene

C5H

6S0.

0000

0011

1.79

%0.

0000

0341

.0%

0.00

0000

35.3

4%2-

Met

hylh

epta

neC

8H18

0.00

0035

105.

42%

0.00

0175

57.8

%0.

0000

1220

.70%

2-M

ethy

lhex

ane

C7H

160.

0001

2897

.28%

0.00

0512

60.8

%0.

0001

8760

.84%

2-M

ethy

lpen

tane

C6H

140.

0003

8388

.43%

0.00

1945

77.6

%0.

0009

8942

.61%

2-pr

opyl

thio

phen

eC

7H10

S0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!3-

buty

l thi

ophe

ne(b

lank

)0.

0000

0011

4.17

%0.

0000

0399

.6%

0.00

0000

#DIV

/0!

3-m

ethy

l Thi

ophe

neC

5H6S

0.00

0001

92.6

4%0.

0000

1265

.8%

0.00

0001

59.0

8%3-

Met

hylh

epta

neC

8H18

0.00

0056

104.

08%

0.00

0252

44.3

%0.

0000

1615

.81%

3-M

ethy

lhex

ane

C7H

160.

0001

9192

.90%

0.00

1071

68.3

%0.

0003

0953

.69%

3-M

ethy

lpen

tane

C6H

140.

0002

8885

.26%

0.00

1830

78.9

%0.

0007

5935

.32%

Ace

tyle

neC

2H2

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Ally

l sul

phid

eC

6H10

S0.

0000

0010

9.09

%0.

0000

0464

.2%

0.00

0000

6.86

%B

utan

e, 2

,2,3

-trim

ethy

l-C

7H16

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0002

141.

42%

But

yl m

erca

ptan

C4H

10S

0.00

0000

300.

00%

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

But

yl su

lphi

deC

8H18

S0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!C

arbo

n di

sulp

hide

CS2

0.00

0000

300.

00%

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Car

bon

mon

oxid

eC

O0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!C

arbo

nyl s

ulph

ide

CO

S0.

0000

0030

0.00

%0.

0000

0011

1.0%

0.00

0000

#DIV

/0!

Page 31: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

20

Tab

le 7

. A

vera

ge m

ole

frac

tion

com

posi

tion

and

rela

tive

stan

dard

dev

iatio

n of

cas

ing

and

solu

tion

gas

mix

ven

ted

and

solu

tion

gas

vent

ed t

o at

mos

pher

e an

d m

ixed

gas

ven

ted

to a

fla

re o

r in

cine

rato

r at

pro

duct

ion

pads

in t

he B

ayte

x R

eno

Fiel

d.

Subt

ance

1C

asin

g an

d So

lutio

nG

as M

ix V

ente

dSo

lutio

n G

as V

ente

dM

ixed

Gas

to F

lare

or

Inci

nera

tor

Num

ber

of sa

mpl

es in

ave

rage

93

2N

ame

Com

poun

dA

vera

geR

SD2

Ave

rage

RSD

Ave

rage

RSD

Chl

orob

enze

ne-d

5C

6D5C

l0.

0000

0024

.19%

0.00

0000

110.

8%0.

0000

002.

41%

cis-

2-B

uten

eC

4H8

0.00

0000

158.

71%

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

cis-

2-Pe

nten

eC

5H10

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Cyc

lohe

xane

C6H

120.

0002

7880

.30%

0.00

6443

83.5

%0.

0010

4133

.00%

Cyc

lohe

xane

, 1,1

,3-tr

imet

hyl-

C9H

180.

0000

1130

0.00

%0.

0000

00#D

IV/0

!0.

0000

1927

.17%

Cyc

lohe

xane

, 1,1

-dim

ethy

l-C

8H16

0.00

0002

300.

00%

0.00

0000

#DIV

/0!

0.00

0019

64.3

5%C

yclo

hexa

ne, 1

,2-d

imet

hyl-,

tran

s-C

8H16

0.00

0014

204.

52%

0.00

0000

#DIV

/0!

0.00

0019

141.

42%

Cyc

lohe

xane

, 1,3

-dim

ethy

l-, c

is-

C8H

160.

0000

2120

0.24

%0.

0000

00#D

IV/0

!0.

0000

4715

.43%

Cyc

lohe

xane

, 1,3

-dim

ethy

l-, tr

ans-

C8H

160.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

0914

1.42

%C

yclo

hexa

ne, 1

,4-d

imet

hyl-

C8H

160.

0000

0230

0.00

%0.

0000

00#D

IV/0

!0.

0000

0314

1.42

%C

yclo

hexa

ne, 1

,4-d

imet

hyl-,

cis

-C

8H16

0.00

0003

300.

00%

0.00

0000

#DIV

/0!

0.00

0004

141.

42%

Cyc

lohe

xane

, eth

yl-

C8H

160.

0000

1919

9.25

%0.

0000

00#D

IV/0

!0.

0000

0814

1.42

%C

yclo

pent

ane

C5H

100.

0000

5860

.87%

0.00

1393

80.7

%0.

0002

8325

.66%

Cyc

lope

ntan

e, 1

,1,2

-trim

ethy

l-C

8H16

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0005

141.

42%

Cyc

lope

ntan

e, 1

,1-d

imet

hyl-

C7H

140.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

7455

.85%

Cyc

lope

ntan

e, 1

,2,3

-trim

ethy

l-, (1

.alp

haC

8H16

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0039

17.3

7%C

yclo

pent

ane,

1,2

-dim

ethy

l-, c

is-

C7H

140.

0000

1720

3.63

%0.

0000

00#D

IV/0

!0.

0001

5422

.69%

Cyc

lope

ntan

e, 1

,2-d

imet

hyl-,

tran

s-C

7H14

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0127

141.

42%

Cyc

lope

ntan

e, 1

,3-d

imet

hyl-

C7H

140.

0000

1520

3.69

%0.

0000

00#D

IV/0

!0.

0000

6214

1.42

%C

yclo

pent

ane,

1,3

-dim

ethy

l-, c

is-

C7H

140.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

5914

1.42

%C

yclo

pent

ane,

1,3

-dim

ethy

l-, tr

ans-

C7H

140.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

6514

1.42

%C

yclo

pent

ane,

1-e

thyl

-3-m

ethy

l-C

8H16

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0006

6.78

%C

yclo

pent

ane,

1-m

ethy

l-3-(

1-m

ethy

leth

yl)

C9H

180.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

0614

1.42

%C

yclo

pent

ane,

eth

yl-

C7H

140.

0000

1220

2.43

%0.

0000

00#D

IV/0

!0.

0000

5914

.10%

Page 32: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

21

Tab

le 7

. A

vera

ge m

ole

frac

tion

com

posi

tion

and

rela

tive

stan

dard

dev

iatio

n of

cas

ing

and

solu

tion

gas

mix

ven

ted

and

solu

tion

gas

vent

ed t

o at

mos

pher

e an

d m

ixed

gas

ven

ted

to a

fla

re o

r in

cine

rato

r at

pro

duct

ion

pads

in t

he B

ayte

x R

eno

Fiel

d.

Subt

ance

1C

asin

g an

d So

lutio

nG

as M

ix V

ente

dSo

lutio

n G

as V

ente

dM

ixed

Gas

to F

lare

or

Inci

nera

tor

Num

ber

of sa

mpl

es in

ave

rage

93

2N

ame

Com

poun

dA

vera

geR

SD2

Ave

rage

RSD

Ave

rage

RSD

Dec

ane

C10

H22

0.00

0001

236.

24%

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Dim

ethy

l dis

ulph

ide

C2H

6S2

0.00

0000

155.

15%

0.00

0000

173.

2%0.

0000

0014

1.42

%D

imet

hyl s

ulph

ide

C2H

6S0.

0000

0021

8.29

%0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!D

imet

hyl t

risul

phid

eC

2H6S

30.

0000

0111

8.12

%0.

0000

1264

.2%

0.00

0000

#DIV

/0!

Dod

ecan

eC

12H

260.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!Et

hyl b

enze

neC

8H10

0.00

0013

118.

07%

0.00

0120

84.1

%0.

0000

00#D

IV/0

!Et

hyl m

erca

ptan

C2H

6S0.

0000

0019

8.78

%0.

0000

00#D

IV/0

!0.

0000

0014

1.42

%Et

hyl m

ethy

l sul

phid

eC

3H8S

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Ethy

l sul

phid

eC

4H10

S0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!Et

hyla

cety

lene

C4H

60.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!Et

hyle

neC

2H4

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Hep

tyl m

erca

ptan

C7H

16S

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Hex

ane,

2,3

-dim

ethy

l-C

8H18

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0009

15.0

3%H

exan

e, 2

,4-d

imet

hyl-

C8H

180.

0000

0620

0.40

%0.

0000

00#D

IV/0

!0.

0000

217.

23%

Hex

ane,

2,5

-dim

ethy

l-C

8H18

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0010

53.9

0%H

exyl

mer

capt

anC

6H14

S0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!Is

obut

yl m

erca

ptan

C4H

10S

0.00

0000

193.

84%

0.00

0000

146.

6%0.

0000

0014

1.42

%Is

obut

ylen

eC

4H8

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Isop

rene

C5H

80.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!Is

opro

pylm

erca

ptan

C3H

8S0.

0000

0019

8.72

%0.

0000

0017

3.2%

0.00

0000

141.

42%

Isop

ropy

lben

zene

C9H

120.

0000

0312

2.15

%0.

0000

0917

3.2%

0.00

0000

#DIV

/0!

m,p

-Xyl

ene

C8H

100.

0000

2313

4.01

%0.

0000

7759

.2%

0.00

0000

#DIV

/0!

m-D

ieth

ylbe

nzen

eC

10H

140.

0000

0110

7.23

%0.

0000

1717

3.2%

0.00

0000

#DIV

/0!

Met

hyl m

erca

ptan

CH

4S0.

0000

0030

0.00

%0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!M

ethy

lcyc

lohe

xane

C7H

140.

0004

4996

.58%

0.00

6599

77.7

%0.

0007

5919

.66%

Page 33: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

22

Tab

le 7

. A

vera

ge m

ole

frac

tion

com

posi

tion

and

rela

tive

stan

dard

dev

iatio

n of

cas

ing

and

solu

tion

gas

mix

ven

ted

and

solu

tion

gas

vent

ed t

o at

mos

pher

e an

d m

ixed

gas

ven

ted

to a

fla

re o

r in

cine

rato

r at

pro

duct

ion

pads

in t

he B

ayte

x R

eno

Fiel

d.

Subt

ance

1C

asin

g an

d So

lutio

nG

as M

ix V

ente

dSo

lutio

n G

as V

ente

dM

ixed

Gas

to F

lare

or

Inci

nera

tor

Num

ber

of sa

mpl

es in

ave

rage

93

2N

ame

Com

poun

dA

vera

geR

SD2

Ave

rage

RSD

Ave

rage

RSD

Met

hylc

yclo

pent

ane

C6H

120.

0002

0580

.70%

0.00

3238

75.6

%0.

0006

248.

44%

m-E

thyl

tolu

ene

C9H

120.

0000

0711

2.54

%0.

0000

1972

.5%

0.00

0000

#DIV

/0!

Non

ane

C9H

200.

0000

0218

2.60

%0.

0000

2317

3.2%

0.00

0000

#DIV

/0!

n-Pr

opyl

benz

ene

C9H

120.

0000

0410

3.01

%0.

0000

3210

2.6%

0.00

0000

#DIV

/0!

Oct

ane

C8H

180.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!O

ctyl

mer

capt

anC

8H18

S0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!o-

Ethy

ltolu

ene

C9H

120.

0000

0511

0.04

%0.

0000

2010

1.9%

0.00

0000

#DIV

/0!

o-X

ylen

eC

8H10

0.00

0009

122.

22%

0.00

0041

73.4

%0.

0000

00#D

IV/0

!p-

Die

thyl

benz

ene

C10

H14

0.00

0001

190.

19%

0.00

0017

173.

2%0.

0000

00#D

IV/0

!Pe

ntan

e, 2

,2,3

,4-te

tram

ethy

l-C

9H20

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0007

141.

42%

Pent

ane,

2,4

-dim

ethy

l-C

7H16

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0009

141.

42%

Pent

yl m

erca

ptan

C5H

12S

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

p-Et

hylto

luen

eC

9H12

0.00

0003

110.

34%

0.00

0011

83.3

%0.

0000

00#D

IV/0

!Pr

opan

e, 2

,2-d

imet

hyl-

C5H

120.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

2580

.84%

Prop

yl m

erca

ptan

C3H

8S0.

0000

0030

0.00

%0.

0000

0017

3.2%

0.00

0000

#DIV

/0!

Prop

ylen

eC

3H6

0.00

0001

140.

03%

0.00

0002

132.

8%0.

0000

0113

.27%

Prop

yne

C3H

40.

0000

1330

0.00

%0.

0013

4186

.8%

0.00

0000

#DIV

/0!

sec-

But

yl m

erca

ptan

C4H

10S

0.00

0000

172.

49%

0.00

0000

146.

5%0.

0000

0014

1.42

%St

yren

eC

8H8

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Sulp

hur d

ioxi

deS0

20.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!te

rt-B

utyl

mer

capt

anC

4H10

S0.

0000

00#D

IV/0

!0.

0000

0017

3.2%

0.00

0000

141.

42%

tert-

Pent

yl m

erca

ptan

C5H

12S

0.00

0000

#DIV

/0!

0.00

0000

173.

2%0.

0000

00#D

IV/0

!Te

trahy

dro

thio

phen

eC

4H8S

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Thio

phen

eC

4H4S

0.00

0001

94.7

8%0.

0000

1443

.0%

0.00

0002

35.4

7%To

luen

eC

7H8

0.00

0144

140.

99%

0.00

0179

106.

4%0.

0000

6932

.71%

Page 34: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

23

Tab

le 7

. A

vera

ge m

ole

frac

tion

com

posi

tion

and

rela

tive

stan

dard

dev

iatio

n of

cas

ing

and

solu

tion

gas

mix

ven

ted

and

solu

tion

gas

vent

ed t

o at

mos

pher

e an

d m

ixed

gas

ven

ted

to a

fla

re o

r in

cine

rato

r at

pro

duct

ion

pads

in t

he B

ayte

x R

eno

Fiel

d.

Subt

ance

1C

asin

g an

d So

lutio

nG

as M

ix V

ente

dSo

lutio

n G

as V

ente

dM

ixed

Gas

to F

lare

or

Inci

nera

tor

Num

ber

of sa

mpl

es in

ave

rage

93

2N

ame

Com

poun

dA

vera

geR

SD2

Ave

rage

RSD

Ave

rage

RSD

trans

-2-B

uten

eC

4H8

0.00

0002

173.

69%

0.00

0158

165.

9%0.

0000

0111

.75%

trans

-2-P

ente

neC

5H10

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Und

ecan

eC

11H

240.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!0.

0000

00#D

IV/0

!U

nkno

wn

Sulp

hur (

MW

=32)

(bla

nk)

0.00

0000

215.

09%

0.00

0000

134.

7%0.

0000

0014

1.42

%U

nkno

wn

Sulp

hurs

(MW

=32)

(bla

nk)

0.00

0029

170.

94%

0.00

0090

108.

5%0.

0000

0218

.69%

Unr

esol

ved

Hyd

roca

rbon

s (C

10+)

(bla

nk)

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

0.00

0000

#DIV

/0!

Tota

l0

1.00

0000

0.00

%1.

0000

000.

0%1.

0000

000.

00%

1 . Su

bsta

nce

list i

s com

mon

to a

ll ta

nk e

mis

sion

cat

egor

ies

2 . R

SD o

f #D

IV/0

! Ind

icat

es a

ll sa

mpl

es in

cat

egor

y di

d no

t con

tain

com

poun

d lis

ted.

Page 35: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

24

4.4 SITE SPECIFIC EMISSION FACTORS Three fuel and flue gas sample pairs were used to characterize the lift pump engines, compressor engines and fired tank heaters performance and develop site specific emission factors. The results for these three combustion devices are summarized in the following sections.

4.4.1 LIFT PUMP ENGINES Engines drive the hydraulic fluid pumps that operate the oil lift pumps. Combustion performance and emission factor development is based on fuel and flue gas samples collected at Pad 2-1. The discharge locations for these engines include ground level with horizontal directionality, above metal building compressor enclosure and above open area engine units as indicated in Figure 14 and Figure 15.

Figure 14. Lift pump engine located in a sheet metal building with a roof top emission discharge point.

Page 36: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

25

Figure 15. Lift pump engine located in in the open showing emission discharge point. The results for fixed gases, volatiles and reduced sulphur compounds are presented in Table 8. Fuel and flue gas analyses are based on laboratory analyses of samples collected at Pad 2-1. Emission factors are based on material balance calculations of all compounds. The lift pump engine was determined to be operating at an air-to-fuel ratio of 10.6 based on a measured O2 of 2.996% (dry basis lab result). The calculated combustion efficiency of the lift pump engine was 99% and residual THC in the flue gases totaled 971.5 ppmv.

Table 8. Material balance and emission factor results for lift pump engine at Pad 2-1 of Baytex Reno Field.

Fuel Gas (Lab)

Flue Gas (Lab) Emission Factor

Component CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel) Oxygen 7782-44-7 32 O2 0.000000 29953.877 379400253 10.232408 Helium 7440-59-7 4 He 0.000000 0.000 0.0 0.000000 Hydrogen 1333-74-0 2 H2 0.000000 0.000 0.0 0.000000 Nitrogen 7727-37-9 28 N2 0.104188 853746.140 9461965826 255.188795 Hydrogen Sulphide 7783-06-4 34 H2S 0.000000 0.000 0.0 0.000000 Carbon Dioxide 124-38-9 44 CO2 1.838038 115328.491 2008555692 54.170657 Methane 74-82-8 16 CH4 97.897652 897.404 5683324 0.153279 Ethane 74-84-0 30 C2H6 0.094752 7.034 83521.8 0.002253 Propane 74-98-6 44 C3H8 0.010124 0.000 0.0 0.000000 Butane 106-97-8 58 C4H10 0.003155 0.000 0.0 0.000000 Isobutane 75-28-5 58 C4H10 0.005298 0.006 126.4 0.000003 Pentane 109-66-0 72 C5H12 0.002772 0.000 0.0 0.000000 Isopentane 78-78-4 72 C5H12 0.009318 0.024 677.4 0.000018

Page 37: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

26

Table 8. Material balance and emission factor results for lift pump engine at Pad 2-1 of Baytex Reno Field.Fuel Gas

(Lab)Flue Gas

(Lab) Emission FactorComponent CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Hexane 110-54-3 86 C6H14 0.003391 0.000 0.0 0.000000Benzene 71-43-2 78 C6H6 0.000000 0.070 2149.1 0.000058Heptane 142-82-5 100 C7H16 0.000666 0.003 124.3 0.0000031,2,3-Trimethylbenzene 526-73-8 120 C9H12 0.000021 0.004 180.3 0.0000051,2,4-Trimethylbenzene 95-63-6 120 C9H12 0.000036 0.003 157.3 0.0000041,3,5-Trimethylbenzene 108-67-8 120 C9H12 0.000019 0.000 0.0 0.0000001,3-Butadiene 106-99-0 54 C4H6 0.000000 0.000 0.0 0.0000001-Butene 106-98-9 56 C4H8 0.000020 0.285 6306.2 0.0001701-Hexene 592-41-6 84 C6H12 0.000000 0.023 766.1 0.0000211-Hexene, 3,4,5-trimethyl- 56728-10-0 126 C9H18 0.000000 0.000 0.0 0.0000001-Pentene 109-67-1 70 C5H10 0.000000 0.017 483.9 0.0000132,2,4-Trimethylpentane 540-84-1 114 C8H18 0.000000 0.000 0.0 0.0000002,2-Dimethylbutane 75-83-2 86 C6H14 0.000526 0.000 0.0 0.0000002,3,4-Trimethylpentane 565-75-3 114 C8H18 0.000133 0.000 0.0 0.0000002,3-Dimethylbutane 79-29-8 86 C6H14 0.001504 0.000 0.0 0.0000002,3-Dimethylpentane 565-59-3 100 C7H16 0.001111 0.000 0.0 0.0000002,4-Dimethylpentane 108-08-7 100 C7H16 0.000577 0.000 0.0 0.0000002,5-dimethyl Thiophene 638-02-8 112 C6H8S 0.000000 0.000 0.0 0.0000002-ethyl Thiophene 872-55-9 112 C6H8S 0.000000 0.000 0.0 0.0000002H-Pyran, tetrahydro- 142-68-7 86 C5H10O 0.000000 0.000 0.0 0.0000002-methyl Thiophene 554-14-3 98 C5H6S 0.000000 0.000 0.0 0.0000002-Methylheptane 592-27-8 114 C8H18 0.000564 0.004 169.1 0.0000052-Methylhexane 591-76-4 100 C7H16 0.002035 0.005 210.2 0.0000062-Methylpentane 107-83-5 86 C6H14 0.006055 0.012 412.8 0.0000112-propyl thiophene 1551-27-5 126 C7H10S 0.000000 0.000 0.0 0.0000003-butyl thiophene 34722-01-5 140 C8H12S 0.000002 0.000 0.0 0.0000003-methyl Thiophene 616-44-4 98 C5H6S 0.000001 0.000 0.0 0.0000003-Methylheptane 589-81-1 114 C8H18 0.000874 0.005 218.9 0.0000063-Methylhexane 589-34-4 100 C7H16 0.002949 0.008 322.6 0.0000093-Methylpentane 96-14-0 86 C6H14 0.004433 0.009 305.1 0.000008Acetylene 74-86-2 26 C2H2 0.000000 2.547 26208.6 0.000707Allyl sulphide 592-88-1 114 C6H10S 0.000000 0.000 0.0 0.000000Butane, 2,2,3-trimethyl- 464-06-2 100 C7H16 0.000000 0.000 0.0 0.000000Butyl mercaptan 109-79-5 98 C4H10S 0.000000 0.000 0.0 0.000000Butyl sulphide 544-40-1 146 C8H18S 0.000000 0.000 0.0 0.000000Carbon disulphide 75-15-0 76 CS2 0.000000 0.000 0.0 0.000000Carbon monoxide 630-08-0 28 CO 0.000000 0.000 0.0 0.000000Carbonyl sulphide 463-58-1 60 COS 0.000000 0.008 192.4 0.000005Chlorobenzene-d5 3114-55-4 112 C6D5Cl 0.000000 0.000 0.1 0.000000cis-2-Butene 590-18-1 56 C4H8 0.000029 0.004 88.3 0.000002cis-2-Pentene 627-20-3 70 C5H10 0.000000 0.000 0.0 0.000000Cyclohexane 110-82-7 84 C6H12 0.002133 0.007 228.2 0.000006Cyclohexane, 1,1,3-trimethyl- 3073-66-3 126 C9H18 0.000000 0.000 0.0 0.000000

Page 38: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

27

Table 8. Material balance and emission factor results for lift pump engine at Pad 2-1 of Baytex Reno Field.Fuel Gas

(Lab)Flue Gas

(Lab) Emission FactorComponent CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Cyclohexane, 1,1-dimethyl- 590-66-9 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,2-dimethyl-,trans- 6876-23-9 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,3-dimethyl-,cis- 638-04-0 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,3-dimethyl-,trans- 2207-03-6 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,4-dimethyl- 589-90-2 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,4-dimethyl-,cis- 624-29-3 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, ethyl- 1678-91-7 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane 287-92-3 70 C5H10 0.000404 0.000 0.0 0.000000Cyclopentane, 1,1,2-trimethyl- 4259-00-1 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1,1-dimethyl- 1638-26-2 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2,3-trimethyl-,(1.alpha 2613-69-6 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2-dimethyl-,cis- 1192-18-3 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2-dimethyl-,trans- 822-50-4 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl- 2453-00-1 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl-,cis- 2532-58-3 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl-,trans- 1759-58-6 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1-ethyl-3-methyl- 3726-47-4 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1-methyl-3-(1-methylethyl) 53771-88-3 126 C9H18 0.000000 0.000 0.0 0.000000Cyclopentane, ethyl- 1640-89-7 98 C7H14 0.000000 0.000 0.0 0.000000Decane 124-18-5 142 C10H22 0.000000 0.000 0.0 0.000000Dimethyl disulphide 624-92-0 94 C2H6S2 0.000000 0.000 0.0 0.000000Dimethyl sulphide 75-18-3 62 C2H6S 0.000000 0.000 0.0 0.000000Dimethyl trisulphide 3658-80-8 126 C2H6S3 0.000010 0.000 0.0 0.000000Dodecane 112-40-3 170 C12H26 0.000000 0.000 0.0 0.000000Ethyl benzene 100-41-4 106 C8H10 0.000071 0.005 203.5 0.000005Ethyl mercaptan 75-08-1 62 C2H6S 0.000000 0.000 0.0 0.000000Ethyl methyl sulphide 624-89-5 76 C3H8S 0.000000 0.000 0.0 0.000000Ethyl sulphide 352-93-2 90 C4H10S 0.000000 0.000 0.0 0.000000Ethylacetylene 107-00-6 54 C4H6 0.000000 0.000 0.0 0.000000Ethylene 74-85-1 28 C2H4 0.000000 12.976 143811.1 0.003879Heptyl mercaptan 1639-09-4 132 C7H16S 0.000000 0.000 0.0 0.000000Hexane, 2,3-dimethyl- 584-94-1 114 C8H18 0.000000 0.000 0.0 0.000000Hexane, 2,4-dimethyl- 589-43-5 114 C8H18 0.000000 0.000 0.0 0.000000Hexane, 2,5-dimethyl- 592-13-2 114 C8H18 0.000000 0.000 0.0 0.000000Hexyl mercaptan 111-31-9 118 C6H14S 0.000000 0.000 0.0 0.000000

Page 39: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

28

Table 8. Material balance and emission factor results for lift pump engine at Pad 2-1 of Baytex Reno Field.Fuel Gas

(Lab)Flue Gas

(Lab) Emission FactorComponent CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Isobutyl mercaptan 513-44-0 90 C4H10S 0.000000 0.000 0.0 0.000000Isobutylene 115-11-7 56 C4H8 0.000000 0.000 0.0 0.000000Isoprene 78-79-5 68 C5H8 0.000000 0.000 0.0 0.000000Isopropyl mercaptan 75-33-2 76 C3H8S 0.000000 0.000 0.0 0.000000Isopropylbenzene 98-82-8 120 C9H12 0.000000 0.000 0.0 0.000000

m,p-Xylene108-38-3 / 106-42-3 106 C8H10 0.000101 0.006 260.5 0.000007

m-Diethylbenzene 141-93-5 134 C10H14 0.000000 0.000 0.0 0.000000Methyl mercaptan 74-93-1 48 CH4S 0.000000 0.000 0.0 0.000000Methylcyclohexane 108-87-2 98 C7H14 0.004177 0.025 959.6 0.000026Methylcyclopentane 96-37-7 84 C6H12 0.002044 0.005 168.1 0.000005m-Ethyltoluene 620-14-4 120 C9H12 0.000031 0.006 277.6 0.000007Nonane 111-84-2 128 C9H20 0.000021 0.000 0.0 0.000000n-Propylbenzene 103-65-1 120 C9H12 0.000023 0.002 71.4 0.000002Octane 111-65-9 114 C8H18 0.000475 0.000 0.0 0.000000Octyl mercaptan 111-88-6 146 C8H18S 0.000000 0.000 0.0 0.000000o-Ethyltoluene 611-14-3 120 C9H12 0.000025 0.002 73.2 0.000002o-Xylene 95-47-6 106 C8H10 0.000046 0.003 122.6 0.000003p-Diethylbenzene 105-05-5 134 C10H14 0.000000 0.000 0.0 0.000000Pentane, 2,2,3,4-tetramethyl- 1186-53-4 128 C9H20 0.000000 0.000 0.0 0.000000Pentane, 2,4-dimethyl- 108-08-7 100 C7H16 0.000000 0.000 0.0 0.000000Pentyl mercaptan 110-66-7 104 C5H12S 0.000000 0.000 0.0 0.000000p-Ethyltoluene 622-96-8 120 C9H12 0.000017 0.000 0.0 0.000000Propane, 2,2-dimethyl- 463-82-1 72 C5H12 0.000000 0.000 0.0 0.000000Propyl mercaptan 107-03-9 76 C3H8S 0.000000 0.000 0.0 0.000000Propylene 115-07-1 42 C3H6 0.000000 2.425 40320.9 0.001087Propyne 74-99-7 40 C3H4 0.000000 0.000 0.0 0.000000sec-Butyl mercaptan 513-53-1 90 C4H10S 0.000000 0.000 0.0 0.000000Styrene 100-42-5 104 C8H8 0.000000 0.000 0.0 0.000000Sulphur dioxide 7446-09-5 64 S02 0.000000 0.000 0.0 0.000000tert-Butyl mercaptan 75-66-1 90 C4H10S 0.000000 0.000 0.0 0.000000tert-Pentyl mercaptan 1679-09-0 104 C5H12S 0.000000 0.000 0.0 0.000000Tetrahydro thiophene 110-01-0 88 C4H8S 0.000000 0.000 0.0 0.000000Thiophene 110-02-1 84 C4H4S 0.000007 0.000 0.0 0.000000Toluene 108-88-3 92 C7H8 0.000075 0.039 1413.2 0.000038trans-2-Butene 624-64-6 56 C4H8 0.000049 0.010 213.7 0.000006trans-2-Pentene 646-04-8 70 C5H10 0.000000 0.000 0.0 0.000000Undecane 1120-21-4 156 C11H24 0.000000 0.000 0.0 0.000000Unknown Sulphur (MW=32) 32 0.000001 0.000 0.0 0.000000Unknown Sulphurs (MW=32) 32 0.000047 0.000 0.0 0.000000Unresolved Hydrocarbons (C10+) 142 0.000000 48.508 2726459.3 0.073532

Page 40: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

29

4.4.2 COMPRESSOR ENGINES Engines drive the compressors used to compress excess casing gas and deliver it into the gas gathering system. Combustion performance and emission factor development is based on fuel and flue gas samples collected at Pad 13-14. The discharge location for these engines is approximately 4 m above grade with a vertically up directionality as shown in Figure 16.

Figure 16. Typical casing gas compressor engine discharge located above sheet metal

building with flue gas sampling equipment shown. The results for fixed gases, volatiles and reduced sulphur compounds are presented in Table 9. Fuel and flue gas analyses are based on laboratory analyses of samples collected at Pad 13-14. Emission factors are based on material balance calculations of all compounds. The compressor engine was determined to be operating at an air-to-fuel ratio of 11.4 based on a measured O2 of 5.76% (dry basis lab result). The calculated combustion efficiency of the compressor engine was 98.4% and residual THC in the flue gases totaled 1,390.5 ppmv. The compressor at the gas plant located at 10-22-79-20W5 was assigned the same emission factors.

Page 41: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

30

Table 9. Material balance and emission factor results for compressor engine at Pad 13-14 of Baytex Reno Field.

Fuel Gas (Lab)

Flue Gas (Lab) Emission Factor

Component CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Oxygen 7782-44-7 32 O2 0.000000 57587.301 802049683 23.287054Helium 7440-59-7 4 He 0.000000 0.000 0.0 0.000000Hydrogen 1333-74-0 2 H2 0.000000 0.000 0.0 0.000000Nitrogen 7727-37-9 28 N2 1.529791 845472.764 10303439453 299.154472Hydrogen Sulphide 7783-06-4 34 H2S 0.000337 0.000 0.0 0.000000Carbon Dioxide 124-38-9 44 CO2 7.925304 95549.325 1829805258 53.127349Methane 74-82-8 16 CH4 90.109619 1318.264 9180087 0.266539Ethane 74-84-0 30 C2H6 0.242793 7.632 99652.3 0.002893Propane 74-98-6 44 C3H8 0.018357 0.396 7592.6 0.000220Butane 106-97-8 58 C4H10 0.015101 0.496 12523.0 0.000364Isobutane 75-28-5 58 C4H10 0.018111 0.459 11597.2 0.000337Pentane 109-66-0 72 C5H12 0.007758 0.198 6212.1 0.000180Isopentane 78-78-4 72 C5H12 0.028721 0.825 25842.3 0.000750Hexane 110-54-3 86 C6H14 0.001609 0.049 1843.9 0.000054Benzene 71-43-2 78 C6H6 0.000095 0.149 5047.3 0.000147Heptane 142-82-5 100 C7H16 0.001451 0.000 0.0 0.0000001,2,3-Trimethylbenzene 526-73-8 120 C9H12 0.000000 0.020 1030.2 0.0000301,2,4-Trimethylbenzene 95-63-6 120 C9H12 0.000000 0.012 641.9 0.0000191,3,5-Trimethylbenzene 108-67-8 120 C9H12 0.000000 0.004 209.7 0.0000061,3-Butadiene 106-99-0 54 C4H6 0.000000 0.000 0.0 0.0000001-Butene 106-98-9 56 C4H8 0.000000 0.308 7501.1 0.0002181-Hexene 592-41-6 84 C6H12 0.000000 0.030 1108.9 0.0000321-Hexene, 3,4,5-trimethyl- 56728-10-0 126 C9H18 0.000000 0.000 0.0 0.0000001-Pentene 109-67-1 70 C5H10 0.000000 0.051 1543.1 0.0000452,2,4-Trimethylpentane 540-84-1 114 C8H18 0.000000 0.000 0.0 0.0000002,2-Dimethylbutane 75-83-2 86 C6H14 0.001846 0.060 2263.1 0.0000662,3,4-Trimethylpentane 565-75-3 114 C8H18 0.000966 0.000 0.0 0.0000002,3-Dimethylbutane 79-29-8 86 C6H14 0.005833 0.158 5898.9 0.0001712,3-Dimethylpentane 565-59-3 100 C7H16 0.004096 0.000 0.0 0.0000002,4-Dimethylpentane 108-08-7 100 C7H16 0.000000 0.000 0.0 0.0000002,5-dimethyl Thiophene 638-02-8 112 C6H8S 0.000003 0.000 0.0 0.0000002-ethyl Thiophene 872-55-9 112 C6H8S 0.000000 0.000 0.0 0.0000002H-Pyran, tetrahydro- 142-68-7 86 C5H10O 0.000000 0.000 0.0 0.0000002-methyl Thiophene 554-14-3 98 C5H6S 0.000005 0.000 0.0 0.0000002-Methylheptane 592-27-8 114 C8H18 0.002990 0.000 0.0 0.0000002-Methylhexane 591-76-4 100 C7H16 0.002309 0.000 0.0 0.0000002-Methylpentane 107-83-5 86 C6H14 0.003642 0.119 4452.0 0.0001292-propyl thiophene 1551-27-5 126 C7H10S 0.000000 0.000 0.0 0.0000003-butyl thiophene 34722-01-5 140 C8H12S 0.000005 0.000 0.0 0.0000003-methyl Thiophene 616-44-4 98 C5H6S 0.000018 0.000 0.0 0.0000003-Methylheptane 589-81-1 114 C8H18 0.004945 0.000 0.0 0.0000003-Methylhexane 589-34-4 100 C7H16 0.004757 0.000 0.0 0.0000003-Methylpentane 96-14-0 86 C6H14 0.004116 0.130 4860.1 0.000141

Page 42: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

31

Table 9. Material balance and emission factor results for compressor engine at Pad 13-14 of Baytex Reno Field.

Fuel Gas (Lab)

Flue Gas (Lab) Emission Factor

Component CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Acetylene 74-86-2 26 C2H2 0.000000 1.487 16824.4 0.000488Allyl sulphide 592-88-1 114 C6H10S 0.000012 0.000 0.0 0.000000Butane, 2,2,3-trimethyl- 464-06-2 100 C7H16 0.000000 0.000 0.0 0.000000Butyl mercaptan 109-79-5 98 C4H10S 0.000000 0.000 0.0 0.000000Butyl sulphide 544-40-1 146 C8H18S 0.000000 0.000 0.0 0.000000Carbon disulphide 75-15-0 76 CS2 0.000000 0.000 0.0 0.000000Carbon monoxide 630-08-0 28 CO 0.000000 0.000 0.0 0.000000Carbonyl sulphide 463-58-1 60 COS 0.000000 0.000 0.0 0.000000Chlorobenzene-d5 3114-55-4 112 C6D5Cl 0.000000 0.000 0.0 0.000000cis-2-Butene 590-18-1 56 C4H8 0.000000 0.042 1026.7 0.000030cis-2-Pentene 627-20-3 70 C5H10 0.000000 0.013 395.6 0.000011Cyclohexane 110-82-7 84 C6H12 0.014607 0.276 10073.9 0.000292Cyclohexane, 1,1,3-trimethyl- 3073-66-3 126 C9H18 0.000000 0.000 0.0 0.000000Cyclohexane, 1,1-dimethyl- 590-66-9 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,2-dimethyl-,trans- 6876-23-9 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,3-dimethyl-,cis- 638-04-0 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,3-dimethyl-,trans- 2207-03-6 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,4-dimethyl- 589-90-2 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,4-dimethyl-,cis- 624-29-3 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, ethyl- 1678-91-7 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane 287-92-3 70 C5H10 0.004382 0.112 3412.3 0.000099Cyclopentane, 1,1,2-trimethyl- 4259-00-1 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1,1-dimethyl- 1638-26-2 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2,3-trimethyl-,(1.alpha 2613-69-6 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2-dimethyl-,cis- 1192-18-3 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2-dimethyl-,trans- 822-50-4 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl- 2453-00-1 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl-,cis- 2532-58-3 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl-,trans- 1759-58-6 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1-ethyl-3-methyl- 3726-47-4 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1-methyl-3-(1-methylethyl) 53771-88-3 126 C9H18 0.000000 0.000 0.0 0.000000Cyclopentane, ethyl- 1640-89-7 98 C7H14 0.000000 0.000 0.0 0.000000Decane 124-18-5 142 C10H22 0.000000 0.016 967.9 0.000028Dimethyl disulphide 624-92-0 94 C2H6S2 0.000000 0.003 127.3 0.000004Dimethyl sulphide 75-18-3 62 C2H6S 0.000000 0.000 0.0 0.000000

Page 43: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

32

Table 9. Material balance and emission factor results for compressor engine at Pad 13-14 of Baytex Reno Field.

Fuel Gas (Lab)

Flue Gas (Lab) Emission Factor

Component CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Dimethyl trisulphide 3658-80-8 126 C2H6S3 0.000049 0.004 237.0 0.000007Dodecane 112-40-3 170 C12H26 0.000000 0.000 0.0 0.000000Ethyl benzene 100-41-4 106 C8H10 0.001234 0.004 166.9 0.000005Ethyl mercaptan 75-08-1 62 C2H6S 0.000004 0.000 0.0 0.000000Ethyl methyl sulphide 624-89-5 76 C3H8S 0.000000 0.000 0.0 0.000000Ethyl sulphide 352-93-2 90 C4H10S 0.000000 0.000 0.0 0.000000Ethylacetylene 107-00-6 54 C4H6 0.000000 0.000 0.0 0.000000Ethylene 74-85-1 28 C2H4 0.000000 12.092 147364.6 0.004279Heptyl mercaptan 1639-09-4 132 C7H16S 0.000000 0.000 0.0 0.000000Hexane, 2,3-dimethyl- 584-94-1 114 C8H18 0.000000 0.000 0.0 0.000000Hexane, 2,4-dimethyl- 589-43-5 114 C8H18 0.000000 0.000 0.0 0.000000Hexane, 2,5-dimethyl- 592-13-2 114 C8H18 0.000000 0.000 0.0 0.000000Hexyl mercaptan 111-31-9 118 C6H14S 0.000000 0.000 0.0 0.000000Isobutyl mercaptan 513-44-0 90 C4H10S 0.000000 0.000 0.0 0.000000Isobutylene 115-11-7 56 C4H8 0.000000 0.000 0.0 0.000000Isoprene 78-79-5 68 C5H8 0.000000 0.000 0.0 0.000000Isopropyl mercaptan 75-33-2 76 C3H8S 0.000007 0.000 0.0 0.000000Isopropylbenzene 98-82-8 120 C9H12 0.000192 0.002 122.7 0.000004

m,p-Xylene108-38-3 / 106-42-3 106 C8H10 0.001471 0.005 251.5 0.000007

m-Diethylbenzene 141-93-5 134 C10H14 0.000000 0.024 1375.8 0.000040Methyl mercaptan 74-93-1 48 CH4S 0.000001 0.000 0.0 0.000000Methylcyclohexane 108-87-2 98 C7H14 0.028721 0.201 8582.2 0.000249Methylcyclopentane 96-37-7 84 C6H12 0.010659 0.240 8769.4 0.000255m-Ethyltoluene 620-14-4 120 C9H12 0.000098 0.005 237.1 0.000007Nonane 111-84-2 128 C9H20 0.000105 0.000 0.0 0.000000n-Propylbenzene 103-65-1 120 C9H12 0.000121 0.002 129.9 0.000004Octane 111-65-9 114 C8H18 0.000000 0.000 0.0 0.000000Octyl mercaptan 111-88-6 146 C8H18S 0.000000 0.000 0.0 0.000000o-Ethyltoluene 611-14-3 120 C9H12 0.000000 0.004 198.3 0.000006o-Xylene 95-47-6 106 C8H10 0.000518 0.003 135.4 0.000004p-Diethylbenzene 105-05-5 134 C10H14 0.000000 0.045 2612.9 0.000076Pentane, 2,2,3,4-tetramethyl- 1186-53-4 128 C9H20 0.000000 0.000 0.0 0.000000Pentane, 2,4-dimethyl- 108-08-7 100 C7H16 0.000000 0.000 0.0 0.000000Pentyl mercaptan 110-66-7 104 C5H12S 0.000000 0.000 0.0 0.000000p-Ethyltoluene 622-96-8 120 C9H12 0.000000 0.002 116.0 0.000003Propane, 2,2-dimethyl- 463-82-1 72 C5H12 0.000000 0.000 0.0 0.000000Propyl mercaptan 107-03-9 76 C3H8S 0.000000 0.000 0.0 0.000000Propylene 115-07-1 42 C3H6 0.000000 0.793 14494.9 0.000421Propyne 74-99-7 40 C3H4 0.000000 0.000 0.0 0.000000sec-Butyl mercaptan 513-53-1 90 C4H10S 0.000000 0.000 0.0 0.000000Styrene 100-42-5 104 C8H8 0.000000 0.000 0.0 0.000000Sulphur dioxide 7446-09-5 64 S02 0.000000 0.000 0.0 0.000000tert-Butyl mercaptan 75-66-1 90 C4H10S 0.000000 0.000 0.0 0.000000

Page 44: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

33

Table 9. Material balance and emission factor results for compressor engine at Pad 13-14 of Baytex Reno Field.

Fuel Gas (Lab)

Flue Gas (Lab) Emission Factor

Component CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)tert-Pentyl mercaptan 1679-09-0 104 C5H12S 0.000000 0.000 0.0 0.000000Tetrahydro thiophene 110-01-0 88 C4H8S 0.000000 0.000 0.0 0.000000Thiophene 110-02-1 84 C4H4S 0.000017 0.000 0.0 0.000000Toluene 108-88-3 92 C7H8 0.003089 0.033 1329.6 0.000039trans-2-Butene 624-64-6 56 C4H8 0.000000 0.108 2633.2 0.000076trans-2-Pentene 646-04-8 70 C5H10 0.000000 0.000 0.0 0.000000Undecane 1120-21-4 156 C11H24 0.000000 0.000 0.0 0.000000Unknown Sulphur (MW=32) 32 0.000000 0.029 401.7 0.000012Unknown Sulphurs (MW=32) 32 0.000139 0.111 1546.1 0.000045Unresolved Hydrocarbons (C10+) 142 0.000000 45.594 2817872.5 0.081815

4.4.3 FIRED TANK HEATERSCombustion performance and emission factor development for the gas fired tank heaters is based on fuel and flue gas samples collected at Pad 5-32. The flue gas stack discharge point was about 1 meter above the 9.75 meter high production tanks as shown in Figure 17.

Figure 17. Typical production tanks showing fired heater stack.

Page 45: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

34

The results for fixed gases, volatiles and reduced sulphur compounds are presented in Table 10.Fuel and flue gas analyses are based on laboratory analyses of samples collected at Pad 5-32.Emission factors are based on material balance calculations of all compounds. The tank heater was determined to be operating at an air-to-fuel ratio of 13.4 based on a measured O2 of 6.83% (dry basis Lab result). The calculated combustion efficiency of the tank heater was 99.99% and residual THC in the flue gases totaled 11.0 ppmv.

Table 10. Material balance and emission factor results for tank heater at Pad 5-32 of Baytex Reno Field.Fuel Gas

(Lab)Flue Gas

(Lab) Emission FactorComponent CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Oxygen 7782-44-7 32 O2 0.000000 68250.255 1108394061 29.990600Helium 7440-59-7 4 He 0.000000 0.000 0.0 0.000000Hydrogen 1333-74-0 2 H2 0.000000 0.000 0.0 0.000000Nitrogen 7727-37-9 28 N2 0.381443 837893.759 11906576827 322.164650Hydrogen Sulphide 7783-06-4 34 H2S 0.000015 0.000 0.0 0.000000Carbon Dioxide 124-38-9 44 CO2 2.513453 93844.101 2095557522 56.700978Methane 74-82-8 16 CH4 96.736240 5.078 41234.9 0.001116Ethane 74-84-0 30 C2H6 0.125673 0.000 0.0 0.000000Propane 74-98-6 44 C3H8 0.015207 0.000 0.0 0.000000Butane 106-97-8 58 C4H10 0.007620 0.000 0.0 0.000000Isobutane 75-28-5 58 C4H10 0.015683 0.000 0.0 0.000000Pentane 109-66-0 72 C5H12 0.012673 0.000 0.0 0.000000Isopentane 78-78-4 72 C5H12 0.044038 0.000 0.0 0.000000Hexane 110-54-3 86 C6H14 0.016580 0.000 0.0 0.000000Benzene 71-43-2 78 C6H6 0.000000 0.010 400.4 0.000011Heptane 142-82-5 100 C7H16 0.002123 0.000 0.0 0.0000001,2,3-Trimethylbenzene 526-73-8 120 C9H12 0.000116 0.604 36802.1 0.0009961,2,4-Trimethylbenzene 95-63-6 120 C9H12 0.000196 1.016 61852.3 0.0016741,3,5-Trimethylbenzene 108-67-8 120 C9H12 0.000089 0.446 27153.2 0.0007351,3-Butadiene 106-99-0 54 C4H6 0.000000 0.000 0.0 0.0000001-Butene 106-98-9 56 C4H8 0.000000 0.000 0.0 0.0000001-Hexene 592-41-6 84 C6H12 0.000000 0.000 0.0 0.0000001-Hexene, 3,4,5-trimethyl- 56728-10-0 126 C9H18 0.000000 0.000 0.0 0.0000001-Pentene 109-67-1 70 C5H10 0.000000 0.000 0.0 0.0000002,2,4-Trimethylpentane 540-84-1 114 C8H18 0.000000 0.000 0.0 0.0000002,2-Dimethylbutane 75-83-2 86 C6H14 0.001827 0.000 0.0 0.0000002,3,4-Trimethylpentane 565-75-3 114 C8H18 0.000390 0.014 787.4 0.0000212,3-Dimethylbutane 79-29-8 86 C6H14 0.006231 0.000 0.0 0.0000002,3-Dimethylpentane 565-59-3 100 C7H16 0.004436 0.000 0.0 0.0000002,4-Dimethylpentane 108-08-7 100 C7H16 0.000000 0.000 0.0 0.0000002,5-dimethyl Thiophene 638-02-8 112 C6H8S 0.000000 0.000 0.0 0.0000002-ethyl Thiophene 872-55-9 112 C6H8S 0.000000 0.000 0.0 0.0000002H-Pyran, tetrahydro- 142-68-7 86 C5H10O 0.000000 0.000 0.0 0.0000002-methyl Thiophene 554-14-3 98 C5H6S 0.000000 0.000 0.0 0.0000002-Methylheptane 592-27-8 114 C8H18 0.001584 0.069 4001.5 0.0001082-Methylhexane 591-76-4 100 C7H16 0.009082 0.000 0.0 0.0000002-Methylpentane 107-83-5 86 C6H14 0.029359 0.000 0.0 0.000000

Page 46: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

35

Table 10. Material balance and emission factor results for tank heater at Pad 5-32 of Baytex Reno Field.Fuel Gas

(Lab)Flue Gas

(Lab) Emission FactorComponent CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)2-propyl thiophene 1551-27-5 126 C7H10S 0.000000 0.000 0.0 0.0000003-butyl thiophene 34722-01-5 140 C8H12S 0.000008 0.030 0.0 0.0000003-methyl Thiophene 616-44-4 98 C5H6S 0.000003 0.000 0.0 0.0000003-Methylheptane 589-81-1 114 C8H18 0.003168 0.163 9401.6 0.0002543-Methylhexane 589-34-4 100 C7H16 0.012990 0.011 577.3 0.0000163-Methylpentane 96-14-0 86 C6H14 0.019643 0.000 0.0 0.000000Acetylene 74-86-2 26 C2H2 0.000000 0.000 0.0 0.000000Allyl sulphide 592-88-1 114 C6H10S 0.000000 0.000 0.0 0.000000Butane, 2,2,3-trimethyl- 464-06-2 100 C7H16 0.000000 0.000 0.0 0.000000Butyl mercaptan 109-79-5 98 C4H10S 0.000000 0.000 0.0 0.000000Butyl sulphide 544-40-1 146 C8H18S 0.000000 0.000 0.0 0.000000Carbon disulphide 75-15-0 76 CS2 0.000000 0.002 76.0 0.000002Carbon monoxide 630-08-0 28 CO 0.000000 0.000 0.0 0.000000Carbonyl sulphide 463-58-1 60 COS 0.000000 0.000 0.0 0.000000Chlorobenzene-d5 3114-55-4 112 C6D5Cl 0.000000 0.000 0.1 0.000000cis-2-Butene 590-18-1 56 C4H8 0.000000 0.000 0.0 0.000000cis-2-Pentene 627-20-3 70 C5H10 0.000000 0.000 0.0 0.000000Cyclohexane 110-82-7 84 C6H12 0.009642 0.018 766.4 0.000021Cyclohexane, 1,1,3-trimethyl- 3073-66-3 126 C9H18 0.000000 0.000 0.0 0.000000Cyclohexane, 1,1-dimethyl- 590-66-9 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,2-dimethyl-,trans- 6876-23-9 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,3-dimethyl-,cis- 638-04-0 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,3-dimethyl-,trans- 2207-03-6 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,4-dimethyl- 589-90-2 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, 1,4-dimethyl-,cis- 624-29-3 112 C8H16 0.000000 0.000 0.0 0.000000Cyclohexane, ethyl- 1678-91-7 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane 287-92-3 70 C5H10 0.001869 0.000 0.0 0.000000Cyclopentane, 1,1,2-trimethyl- 4259-00-1 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1,1-dimethyl- 1638-26-2 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2,3-trimethyl-, (1.alpha 2613-69-6 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2-dimethyl-,cis- 1192-18-3 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,2-dimethyl-,trans- 822-50-4 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl- 2453-00-1 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl-,cis- 2532-58-3 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1,3-dimethyl-,trans- 1759-58-6 98 C7H14 0.000000 0.000 0.0 0.000000Cyclopentane, 1-ethyl-3-methyl- 3726-47-4 112 C8H16 0.000000 0.000 0.0 0.000000Cyclopentane, 1-methyl-3-(1- 53771-88-3 126 C9H18 0.000000 0.000 0.0 0.000000

Page 47: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

36

Table 10. Material balance and emission factor results for tank heater at Pad 5-32 of Baytex Reno Field.Fuel Gas

(Lab)Flue Gas

(Lab) Emission FactorComponent CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)methylethyl)Cyclopentane, ethyl- 1640-89-7 98 C7H14 0.000000 0.000 0.0 0.000000Decane 124-18-5 142 C10H22 0.000000 0.152 10978.8 0.000297Dimethyl disulphide 624-92-0 94 C2H6S2 0.000000 0.014 678.3 0.000018Dimethyl sulphide 75-18-3 62 C2H6S 0.000000 0.000 0.0 0.000000Dimethyl trisulphide 3658-80-8 126 C2H6S3 0.000046 0.091 5832.1 0.000158Dodecane 112-40-3 170 C12H26 0.000000 0.000 0.0 0.000000Ethyl benzene 100-41-4 106 C8H10 0.000264 0.100 5403.5 0.000146Ethyl mercaptan 75-08-1 62 C2H6S 0.000000 0.000 0.0 0.000000Ethyl methyl sulphide 624-89-5 76 C3H8S 0.000000 0.000 0.0 0.000000Ethyl sulphide 352-93-2 90 C4H10S 0.000000 0.000 0.0 0.000000Ethylacetylene 107-00-6 54 C4H6 0.000000 0.000 0.0 0.000000Ethylene 74-85-1 28 C2H4 0.000000 0.000 0.0 0.000000Heptyl mercaptan 1639-09-4 132 C7H16S 0.000000 0.000 0.0 0.000000Hexane, 2,3-dimethyl- 584-94-1 114 C8H18 0.000000 0.000 0.0 0.000000Hexane, 2,4-dimethyl- 589-43-5 114 C8H18 0.000000 0.000 0.0 0.000000Hexane, 2,5-dimethyl- 592-13-2 114 C8H18 0.000000 0.000 0.0 0.000000Hexyl mercaptan 111-31-9 118 C6H14S 0.000000 0.000 0.0 0.000000Isobutyl mercaptan 513-44-0 90 C4H10S 0.000000 0.000 0.0 0.000000Isobutylene 115-11-7 56 C4H8 0.000000 0.000 0.0 0.000000Isoprene 78-79-5 68 C5H8 0.000000 0.000 0.0 0.000000Isopropyl mercaptan 75-33-2 76 C3H8S 0.000000 0.000 0.0 0.000000Isopropylbenzene 98-82-8 120 C9H12 0.000077 0.160 9772.7 0.000264

m,p-Xylene108-38-3 / 106-42-3 106 C8H10 0.000469 0.221 11910.7 0.000322

m-Diethylbenzene 141-93-5 134 C10H14 0.000000 0.249 16921.8 0.000458Methyl mercaptan 74-93-1 48 CH4S 0.000000 0.000 0.0 0.000000Methylcyclohexane 108-87-2 98 C7H14 0.016792 0.042 2066.0 0.000056Methylcyclopentane 96-37-7 84 C6H12 0.009220 0.011 463.3 0.000013m-Ethyltoluene 620-14-4 120 C9H12 0.000142 0.671 40884.4 0.001106Nonane 111-84-2 128 C9H20 0.000000 0.096 6228.1 0.000169n-Propylbenzene 103-65-1 120 C9H12 0.000088 0.339 20658.7 0.000559Octane 111-65-9 114 C8H18 0.000000 0.000 0.0 0.000000Octyl mercaptan 111-88-6 146 C8H18S 0.000000 0.000 0.0 0.000000o-Ethyltoluene 611-14-3 120 C9H12 0.000113 0.530 32286.9 0.000874o-Xylene 95-47-6 106 C8H10 0.000169 0.142 7649.1 0.000207p-Diethylbenzene 105-05-5 134 C10H14 0.000000 0.406 27627.4 0.000748Pentane, 2,2,3,4-tetramethyl- 1186-53-4 128 C9H20 0.000000 0.000 0.0 0.000000Pentane, 2,4-dimethyl- 108-08-7 100 C7H16 0.000000 0.000 0.0 0.000000Pentyl mercaptan 110-66-7 104 C5H12S 0.000000 0.000 0.0 0.000000p-Ethyltoluene 622-96-8 120 C9H12 0.000068 0.321 19545.3 0.000529Propane, 2,2-dimethyl- 463-82-1 72 C5H12 0.000000 0.000 0.0 0.000000Propyl mercaptan 107-03-9 76 C3H8S 0.000000 0.000 0.0 0.000000Propylene 115-07-1 42 C3H6 0.000496 0.000 0.0 0.000000

Page 48: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

37

Table 10. Material balance and emission factor results for tank heater at Pad 5-32 of Baytex Reno Field.Fuel Gas

(Lab)Flue Gas

(Lab) Emission FactorComponent CAS MW Formula % Vol ppmv ug/ (m3 fuel) kg /(GJ fuel)Propyne 74-99-7 40 C3H4 0.000000 0.000 0.0 0.000000sec-Butyl mercaptan 513-53-1 90 C4H10S 0.000000 0.000 0.0 0.000000Styrene 100-42-5 104 C8H8 0.000000 0.000 0.0 0.000000Sulphur dioxide 7446-09-5 64 S02 0.000000 0.000 0.0 0.000000tert-Butyl mercaptan 75-66-1 90 C4H10S 0.000000 0.000 0.0 0.000000tert-Pentyl mercaptan 1679-09-0 104 C5H12S 0.000000 0.000 0.0 0.000000Tetrahydro thiophene 110-01-0 88 C4H8S 0.000000 0.000 0.0 0.000000Thiophene 110-02-1 84 C4H4S 0.000027 0.000 0.0 0.000000Toluene 108-88-3 92 C7H8 0.000281 0.010 488.4 0.000013trans-2-Butene 624-64-6 56 C4H8 0.000143 0.000 0.0 0.000000trans-2-Pentene 646-04-8 70 C5H10 0.000000 0.000 0.0 0.000000Undecane 1120-21-4 156 C11H24 0.000000 0.000 0.0 0.000000Unknown Sulphur (MW=32) 0 32 0 0.000002 0.000 0.0 0.000000Unknown Sulphurs (MW=32) 0 32 0 0.000223 0.867 14074.8 0.000381Unresolved Hydrocarbons (C10+)0 142 0 0.000000 0.000 0.0 0.000000

4.5 NOX, CO AND PM2.5 EMISSIONSEstimated emissions of NOx, CO and PM2.5 from combustion sources located at each production pad are based on applicable USEPA AP-42 emission factors as presented in Table 11 (USEPA).

Table 11. Summary of NOx, CO and PM2.5 emission factors applied to lift pump and compressor engines, Tank heaters and flare and incinerator combustion sources.

Type of Combustion Device NOx CO PM2.5

Lift Pump and Compressor Engine 976.0 1,509.0 4.1Tank Heater 42.0 35.0 0.8Flare and Incinerator 29.2 159.1 57.0Source: USEPA AP-42

4.6 SEMI-VOLATILE SUBSTANCESNumerous semi-volatile substances were identified and quantified. For each emission source the applicable average emission factor was determined and applied in the development of the Reno Field emission inventory.

4.6.1 TANK EMISSIONSSemi-volatile compounds were measured at three locations, Pad 2-1 and Pad 5-32 where the vented gas included casing and solution gas and Pad 13-14S where the vented gas was solution gas. The results of these analyses are presented in Table 12. The concentration of semi-volatile compounds in the vented solution gas (Pad 13-14) is much higher than in the vented mixed casing and solution gas (Pad 2-1 and 5-32). This was expected as the solution gas is produced with and

Page 49: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

38

released from the heated oil while the casing gas is produced separately and not intimately comingled with the produced oil. However, the actual vent rate of solution gas was less than the actual vent rate of casing gas in those cases where the two gases are vented from the same tank.As a result the mixed gas semi-volatile compound concentrations are observed to be lower.

Table 12. Summary of semi-volatile composition of the casing and solution gas mix vented and the solution gas vented at production pads in the Baytex Reno Field.

PAD 2-1Tank Vent of Casing and

Solution Gas

Pad 5-32 Tank Vent of Casing and

Solution Gas

Mixed Casing and Solution Gas Average

Pad 13-14 102/1-14

Solution Gas

Component 3 vented HC

3 vented HC

3 vented HC

3 vented HC

1-Methylnaphthalene 84.9693 208.0926 146.5309 642.12032-Methylnaphthalene 112.2130 270.3701 191.2915 801.6308Acenaphthene 0.0000 0.0000 0.0000 0.0000Acenaphthylene 0.0000 0.0000 0.0000 0.0000Anthracene 0.0000 0.0000 0.0000 0.0000Benzo(a)anthracene 0.0000 0.0000 0.0000 0.0000Benzo(a)pyrene 0.0000 0.0000 0.0000 0.0000Benzo(b,j,k)fluoranthene 0.0000 0.0000 0.0000 0.0000Benzo(ghi)perylene 0.0000 0.0000 0.0000 0.0000C1-Chrysene 0.0180 0.0000 0.0090 0.0000C1-Dibenzothiophene 0.7427 2.0492 1.3959 13.0353C1-Fluoranthene/pyrene 0.0338 0.0241 0.0289 0.0429C1-Fluorene 0.3632 1.4688 0.9160 9.3785C1-Phenanthrene/anthracene 0.3455 0.7577 0.5516 5.7663C2-Chrysene 0.0282 0.0000 0.0141 0.0000C2-Dibenzothiophene 0.7920 1.3533 1.0726 7.5957C2-Fluoranthene/pyrene 0.0456 0.0000 0.0228 0.0279C2-Fluorene 0.1953 0.7079 0.4516 4.4418C2-Naphthalene 92.3203 212.3033 152.3118 784.1776C2-Phenanthrene/anthracene 0.2834 0.3975 0.3404 1.8157C3-Chrysene 0.0106 0.0000 0.0053 0.0000C3-Dibenzothiophene 0.3856 0.2949 0.3402 1.4318C3-Fluoranthene/pyrene 0.0296 0.0000 0.0148 0.0150C3-Fluorene 0.1802 0.3884 0.2843 1.6113C3-Naphthalene 20.9113 67.9886 44.4499 284.3551C3-Phenanthrene/anthracene 0.1275 0.0962 0.1118 0.2209C4-Chrysene 0.0000 0.0000 0.0000 0.0000C4-Dibenzothiophene 0.1935 0.0925 0.1430 0.2989C4-Fluoranthene/pyrene 0.0000 0.0000 0.0000 0.0000C4-Fluorene 0.0262 0.0000 0.0131 0.0000C4-Naphthalene 1.2685 5.5004 3.3845 32.1065C4-Phenanthrene/anthracene 0.0392 0.0000 0.0196 0.0299Chrysene 0.0000 0.0000 0.0000 0.0000Dibenzo(ah)anthracene 0.0000 0.0000 0.0000 0.0000

Page 50: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

39

Table 12. Summary of semi-volatile composition of the casing and solution gas mix vented and the solution gas vented at production pads in the Baytex Reno Field.

PAD 2-1Tank Vent of Casing and

Solution Gas

Pad 5-32 Tank Vent of Casing and

Solution Gas

Mixed Casing and Solution Gas Average

Pad 13-14 102/1-14

Solution Gas

Component 3 vented HC

3 vented HC

3 vented HC

3 vented HC

Fluoranthene 0.0000 0.0162 0.0081 0.0467Fluorene 0.0000 0.0000 0.0000 0.0000Indeno(1,2,3-cd)pyrene 0.0000 0.0000 0.0000 0.0000Naphthalene 67.7140 151.0106 109.3623 462.7247Phenanthrene 0.3726 1.3000 0.8363 10.1445Pyrene 0.0000 0.0000 0.0000 0.0297

4.6.2 ENGINE EMISSIONSThe flue gases of three compressor engines were sampled for semi-volatiles and the results are presented in Table 13. The average emission factor was applied to all lift pump and compressor engines operating in the Baytex Reno Field. Because of the measured high combustion efficiency measured for the tank heater, no semi-volatile emission factors were applied to any of the heaters.

Table 13. Summary of semi-volatile emissions from compressor engines operating at the Baytex Reno Field.

Component

Pad 4-23 Compressor

Flue Gas

Pad 5-32Compressor

Flue Gas

Pad 2-1Compressor

Flue Gas

Emission Factor

Averageg/m3 fuel g/m3 fuel g/m3 fuel g/m3 fuel

1-Methylnaphthalene 53.5847 191.6521 85.4479 110.22822-Methylnaphthalene 57.7480 231.6712 112.7156 134.0449Acenaphthene 0.0000 0.0000 0.0000 0.0000Acenaphthylene 0.0000 0.0000 0.0000 0.0000Anthracene 0.0000 0.0000 0.0000 0.0000Benzo(a)anthracene 0.0000 0.0000 0.0000 0.0000Benzo(a)pyrene 0.0000 0.0000 0.0000 0.0000Benzo(b,j,k)fluoranthene 0.0000 0.0000 0.0000 0.0000Benzo(ghi)perylene 0.0000 0.0000 0.0000 0.0000C1-Chrysene 0.0000 0.0000 0.0000 0.0000C1-Dibenzothiophene 16.0238 20.3976 1.8622 12.7612C1-Fluoranthene/pyrene 0.1166 0.1658 0.0000 0.0941C1-Fluorene 9.5134 12.3886 1.2895 7.7305C1-Phenanthrene/anthracene 7.3857 8.4708 0.8885 5.5816C2-Chrysene 0.0000 0.0000 0.0000 0.0000C2-Dibenzothiophene 12.0957 11.6987 1.1452 8.3132C2-Fluoranthene/pyrene 0.0000 0.0000 0.0000 0.0000C2-Fluorene 5.6860 6.1857 0.8442 4.2386C2-Naphthalene 423.2311 521.0448 220.4184 388.2314

Page 51: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

40

Table 13. Summary of semi-volatile emissions from compressor engines operating at the Baytex Reno Field.

Component

Pad 4-23 Compressor

Flue Gas

Pad 5-32Compressor

Flue Gas

Pad 2-1Compressor

Flue Gas

Emission Factor

Averageg/m3 fuel g/m3 fuel g/m3 fuel g/m3 fuel

C2-Phenanthrene/anthracene 3.4883 2.8598 0.4988 2.2823C3-Chrysene 0.0000 0.0000 0.0000 0.0000C3-Dibenzothiophene 3.1588 3.4475 0.4090 2.3384C3-Fluoranthene/pyrene 0.0000 0.0000 0.0000 0.0000C3-Fluorene 2.8430 2.8781 0.5317 2.0843C3-Naphthalene 366.0701 272.3481 65.2425 234.5536C3-Phenanthrene/anthracene 0.5955 0.6899 0.1341 0.4732C4-Chrysene 0.0000 0.0000 0.0000 0.0000C4-Dibenzothiophene 0.8922 0.7674 0.0000 0.5532C4-Fluoranthene/pyrene 0.0000 0.0000 0.0000 0.0000C4-Fluorene 0.0000 0.1076 0.0000 0.0359C4-Naphthalene 26.3436 37.7341 3.5391 22.5389C4-Phenanthrene/anthracene 0.0000 0.0000 0.0000 0.0000Chrysene 0.0000 0.0000 0.0000 0.0000Dibenzo(ah)anthracene 0.0000 0.0000 0.0000 0.0000Fluoranthene 0.0000 0.0000 0.0000 0.0000Fluorene 0.0000 0.0000 0.0000 0.0000Indeno(1,2,3-cd)pyrene 0.0000 0.0000 0.0000 0.0000Naphthalene 28.6377 149.8612 56.7214 78.4068Phenanthrene 10.1990 13.5209 1.6531 8.4577Pyrene 0.0000 0.0000 0.0000 0.0000

4.7 ODOUR SAMPLESClearstone collected tank vent gas samples in Tedlar bags for odour studies completed by RWDI. All samples were collected using a sample train consisting of a sample tube, a hand operated aspirator and a discharge tube connecting to the Tedlar bag. The sample tube was inserted directly into the tank vent. Due to the high moisture content of the vent gases, moisture condensation occurred in the sample line and aspirator. Immediately upon collection of each sample they were transferred to RWDI for labeling and custody. Two samples were collected for each of four tanks as listed in Table 14.

Table 14. Odour sample pad, well, sample identification and sample date.Pad Well Sample ID Sample Date08-21 100/09-15-79-20W5 9-15-79-20-1A 27-Feb-1308-21 100/09-15-79-20W5 9-15-79-20-1B 27-Feb-1313-14S 100/14-21-79-20W5 100-14-21-1A 27-Feb-1313-14S 100/14-21-79-20W5 100-14-21-1B 27-Feb-1305-32 100/04-06-80-20W5 100-04-06-80-1A 27-Feb-1305-32 100/04-06-80-20W5 100-04-06-80-1B 27-Feb-13

Page 52: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

41

Table 14. Odour sample pad, well, sample identification and sample date.Pad Well Sample ID Sample Date02-01 102/07-31-79-20W5 102-7-31-2A 27-Feb-1302-01 102/07-31-79-20W5 102-7-31-1B 27-Feb-13

Page 53: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

42

5 INVENTORY DEVELOPMENTThe Baytex Reno Field emission inventory is based on February 2013 production and related activities. Monthly flow rates of solution and casing gas are presented as daily averages. Similarly, fuel, vent to atmosphere, flare and incinerator gas flow rates are presented as daily averages but derived from the monthly production data.

Fuel gas, flue gases, tank vent to flare or incinerator, and tank vent to atmosphere compositions are based on field studies in July 2012 and February/March 2013, and as reported in Section 4.

5.1 COMBUSTION DEVICE EMISSIONSEmissions were compiled for all combustion devices at all production pads, the water injection facility and the gas plant. All emissions are based on fuel consumption and applicable site specific emission factors.

5.1.1 FUEL FLOW RATESCasing gas produced at a pad is used as fuel for the lift pump engines, compressor engines and tank heaters. Fuel consumption is based on information provided by Baytex and is summarized by well, pad and device in Table 15. In the case of burner fuel the value is the total for all tanks associated with a production well. Compressor fuel is more accurately reflective as pad activity and not specific well activity. Compressor fuel rate of zero indicates no compressor at location.

Table 15. Summary of estimated casing fuel gas allocations to wells for lift pump and compressor engines, and tank heaters at Baytex Reno Field.

Lift Pump Fuel Burner Fuel CompressorPad Well ID (m3/d) (m3/d) (m3/d)08-36 100/12-36 Shut In Shut In02-01 100/09-31 189.1 160.0 45002-01 102/07-31 326.6 1828.6 015-36 100/01-31 167.3 274.3 015-36 102/01-31 265.0 457.1 004-06 103/12-32 142.1 114.3 016-31 103/10-28 229.3 662.9 45012-32 W0/01-33 142.1 91.4 45012-32 103/13-28 147.9 91.4 005-32 100/04-06 365.9 1028.6 78005-32 102/12-28 165.6 114.3 005-32 100/13-28 185.4 274.3 008-31W 100/09-29 156.8 137.1 008-31E 102/13-31 203.4 274.3 45008-31E 102/09-29 142.1 91.4 008-31E 102/01-01 161.0 91.4 016-19 100/08-25 128.2 91.4 009-29 104/13-22 195.9 228.6 008-29 100/12-22 184.1 205.7 450

Page 54: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

43

Table 15. Summary of estimated casing fuel gas allocations to wells for lift pump and compressor engines, and tank heaters at Baytex Reno Field.

Lift Pump Fuel Burner Fuel CompressorPad Well ID (m3/d) (m3/d) (m3/d)08-29 102/13-22 144.9 137.1 008-21 100/09-15 146.0 388.6 008-21 100/12-14 143.6 91.4 009-21SW 100/13-14 157.8 228.6 45009-21SW 102/13-14 158.2 160.0 45009-21SE 103/08-29 231.2 388.6 45009-21SE 100/01-29 188.1 731.4 009-21N 100/04-23 136.9 182.9 009-21N 102/04-23 181.0 137.1 004-23 103/06-13 208.7 548.6 84013-14N 102/06-13 131.8 182.9 84013-14N 100/15-21 252.8 1142.9 013-14N 100/04-13 127.5 137.1 013-14S 102/01-14 158.9 228.6 84013-14S 100/14-21 313.6 1577.1 009-15W 100/16-11 Shut In Shut In09-15W 102/16-11 Shut In Shut In09-15E 100/13-12 169.2 114.3 009-15E 102/13-12 155.6 182.9 009-14 100/02-13 172.7 320.0 45010-12 100/08-14 140.6 160.0 0IF Water Disposal1 4-28-79-20W5 0GP Dehy/Comp1 10-22-79-20W5 218.6 1342.72. Slop oil tank heater was not in operation during period..2. Gas Plant burner fuel is for dehydrator reboiler.

The same information consolidated to provide total allocations to each device type is presented in Table 16. In addition, flare or incinerator pilot and casing or solution gas or both are disposed of through the flare or incinerator is indicated. At those pads with a flare or incinerator, one device served all production at the pad. Waste gas flows to both devices through low pressure (LP) lines from tanks and high pressure (HP) flow lines from compressed casing gas.

Table 16. Casing gas allocations by device at each pad in the Baytex Reno Field.Lift Pump

FuelBurner Fuel

Compressor Fuel

Flare / IncineratorPilot Waste Gas

Pad (m3/d) (m3/d) (m3/d) (m3/d)08-36 Shut In Shut In 002-01 515.7 1988.6 450.0 6.4 120115-36 432.3 731.4 0.004-06 142.1 114.3 0.016-31 229.3 662.9 450.012-32 290.0 182.9 450.0

Page 55: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

44

Table 16. Casing gas allocations by device at each pad in the Baytex Reno Field.Lift Pump

FuelBurner Fuel

Compressor Fuel

Flare / IncineratorPilot Waste Gas

Pad (m3/d) (m3/d) (m3/d) (m3/d)05-32 716.8 1417.1 760.008-31W 156.8 137.1 0.008-31E 506.5 457.1 450.016-19 128.2 91.4 0.009-29 195.9 228.6 0.008-29 329.0 342.9 450.008-21 289.6 480.0 0.009-21SW 316.1 388.6 900.009-21SE 419.3 1120.0 450.0 6.4 9709-21N 317.9 320.0 0.004-23 208.7 548.6 840.0 6.4 568313-14N 512.1 1462.9 840.0 40.3 3713-14S 472.5 1805.7 840.0 6.4 53009-15W Shut In Shut In 009-15E 324.8 297.1 0.009-14 172.7 320.0 450.010-12 140.6 160.0 0.04-24 IF TH 010-22 GP Dehy &Comp 218.6 1342.7

5.1.2 FLARE AND INCINERATOR FLOW RATESWaste gas is flared at four pads and incinerated at one as indicated in Table 17. These results are based on January to March 2013 production reports. The composition of the vent gas going to flare or incinerator is presented in Table 20. Combustion efficiency of 98% and 99.5% are applied for the flare and incinerator, respectively.

Table 17. Minimum, maximum and average monthly and average daily flared or incinerated volumes per pad at Baytex Reno Field for January to March 2013 inclusive.

4-23-79-20W5

9-21-79-20W5

2-1-79-20W5

13-14N-79-20W5

13-14S-79-20W5

Flare Flare Flare Incinerator Flare e3m3/month e3m3/month e3m3/month e3m3/month e3m3/month

Maximum 325.3 3.1 55.6 1.9 25.9Minimum 47.8 2.8 5.8 0.3 9.7Average 170.5 2.9 36.0 1.1 15.9RSD 83.0% 3.8% 73.7% 73.2% 55.1%

m3/d m3/d m3/d m3/d m3/dAverage 5683 97 1201 37 530Pilot Fuel 6.4 6.4 6.4 6.4 6.4

Page 56: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

45

5.1.3 NOX, CO AND PM2.5 EMISSION RATESThe emissions of NOx, CO and PM2.5 from engines, tank heaters and flares or incinerators are presented in Table 18 and are based on and fuel gas, flare and incinerator gas flow rates summarized in Table 15 and Table 16 and emission factors discussed in Section 4.5.

Table 18. Summary of NOx, CO and PM2.5 emissions from combustion sources at production pads in the Baytex Reno Field based on estimated daily fuel consumption rates.

Pad Source Type QuantityAllocated

Fuel (m3/d)NOx Emissions

(g/d)1CO Emissions

(g/d)2PM2.5 Emissions

(g/d)3

08-36 Tank Heater 2 Shut In02-01 LP Engine 3 515.7 18,634 28,810 7802-01 C Engine 1 450.0 16,260 25,140 6802-01 Tank Heater 8 2,217.1 3,447 2,873 6602-01 Flare 1 1,207.4 1,305 7,112 2,54815-36 LP Engine 2 432.3 15,190 23,486 6415-36 Tank Heater 2 731.4 1,106 922 2104-06 LP Engine 1 142.1 4,993 7,720 2104-06 Tank Heater 2 114.3 173 144 316-31 LP Engine 1 229.3 8,057 12,457 3416-31 C Engine 1 450.0 15,811 24,446 6616-31 Tank Heater 4 662.9 1,002 835 1912-32 LP Engine 2 290.0 10,190 15,755 4312-32 C Engine 1 450.0 15,811 24,446 6612-32 Tank Heater 3 182.9 276 230 505-32 LP Engine 3 716.8 25,691 39,721 10805-32 C Engine 1 780.0 27,955 43,221 11705-32 Tank Heater 6 1,417.1 2,186 1,821 4208-31W LP Engine 1 156.8 5,510 8,520 2308-31W Tank Heater 2 137.1 207 173 408-31E LP Engine 3 506.5 17,797 27,517 7508-31E C Engine 1 450.0 15,811 24,446 6608-31E Tank Heater 5 457.1 691 576 1316-19 LP Engine 1 128.2 4,505 6,965 1916-19 Tank Heater 2 91.4 138 115 309-29 LP Engine 1 195.9 6,883 10,642 2909-29 Tank Heater 2 228.6 346 288 708-29 LP Engine 2 329.0 11,561 17,874 4808-29 C Engine 1 450.0 15,811 24,446 6608-29 Tank Heater 3 342.9 518 432 1008-21 LP Engine 2 289.6 10,174 15,730 4308-21 Tank Heater 4 480.0 726 605 1409-21SW LP Engine 2 316.1 11,106 17,171 4709-21SW C Engine 2 900.0 31,622 48,891 13309-21SW Tank Heater 4 388.6 588 490 1109-21SE LP Engine 2 419.3 14,731 22,775 6209-21SE C Engine 1 450.0 15,811 24,446 66

Page 57: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

46

Table 18. Summary of NOx, CO and PM2.5 emissions from combustion sources at production pads in the Baytex Reno Field based on estimated daily fuel consumption rates.

Pad Source Type QuantityAllocated

Fuel (m3/d)NOx Emissions

(g/d)1CO Emissions

(g/d)2PM2.5 Emissions

(g/d)3

09-21SE Tank Heater 4 1,120.0 1,693 1,411 3209-21SE Flare 1 103.4 109 592 21209-21N LP Engine 2 317.9 11,168 17,268 4709-21N Tank Heater 4 320.0 484 403 904-23 LP Engine 1 208.7 7,333 11,338 3104-23 C Engine 1 840.0 29,514 45,632 12404-23 Tank Heater 2 548.6 829 691 1604-23 Flare 1 5,689.4 5,981 32,586 11,67513-14N LP Engine 3 512.1 17,993 27,819 7513-14N C Engine 1 840.0 29,514 45,632 12413-14N Tank Heater 8 1,462.9 2,212 1,843 4213-14N Incinerator 1 77.3 81 443 15913-14S LP Engine 2 472.5 15,799 24,427 6613-14S C Engine 1 840.0 28,085 43,422 11813-14S Tank Heater 7 1,805.7 2,598 2,165 4913-14S Flare 1 536.4 537 2,923 1,04709-15W LP Engine 2 Shut In09-15W Tank Heater 3 Shut In09-15E LP Engine 2 324.8 11,412 17,645 4809-15E Tank Heater 4 297.1 449 374 909-14 LP Engine 1 172.7 6,069 9,384 2509-14 C Engine 1 450.0 15,811 24,446 6609-14 Tank Heater 2 320.0 484 403 910-12 LP Engine 1 140.6 4,940 7,638 2110-12 Tank Heater 1 160.0 242 202 508-28 IF Tank Heater 110-22 GP C Engine 1 1342.7 47,177 72,941 19810-22 GP Dehy Heater 1 218.6 331 275 61. NOx emission factor from AP-42 for uncontrolled heat source <29 MW applied to tank heaters, Recip 4-stroke rich burn applied to lift pump and compressor engines and flare applied to flares. 2. CO emission factor from AP-42 for uncontrolled heat source <29 MW applied to tank heaters, Recip 4-stroke rich burn applied to lift pump and compressor engines and flare applied to flares.3. PM2.5 emission factor from AP-42 for uncontrolled heat source <29 MW applied to tank heaters, Recip 4-stroke rich burn applied to lift pump and compressor engines and flare applied to flares.

5.2 TANK VENT EMISSION FACTORSEmissions were compiled for all production tanks at all production pads. All emissions are based on production based atmospheric vent rates and applicable site specific emission factors. Gas vented to a flare of incinerator is covered in Section 5.1.

5.2.1 TANK VENT FLOW RATES

Page 58: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

47

Daily well by well oil production and vented gas volumes are presented in Table 19. Oil production is as reported by Baytex for February and the GOR applied was specified by Baytex.Emissions are based on the application of the Mixed Casing plus Solution gas composition provided in Table 7. The compositions shown in Table 7, converted to emission factors expressed in grams per dsm3 of vented gas are presented in Table 20.

Table 19 Oil production and tank vent to atmosphere for Baytex Reno Field production wells for February 2013.

Pad WellOil

VolumeTank Vent

includes Casing Gas1,2,3,4,5,6

Tank Vent GOR Applied7

Tank Vent to Atmosphere

m3/d dsm3/m3 dsm3/d08-36 100/12-36-79-21W5 0 Shut In02-01 100/09-31-79-20W5 5.32 N, F, C 5102-01 102/07-31-79-20W5 49.50 Y, M, F 5115-36 100/01-31-79-20W5 1.96 Y, M 51 99.9615-36 102/01-31-79-20W5 4.40 N 51 224.4004-06 103/12-32-79-20W5 4.50 Y 51 229.5016-31 103/10-28-79-20W5 23.20 N, C 51 1183.2012-32 W0/01-33-79-20W5/02 3.44 N, C 51 175.4412-32 103/13-28-79-20W5 2.96 N 51 150.9605-32 100/04-06-80-20W5/03 33.25 Y, M, C 51 1695.7505-32 102/12-28-79-20W5 4.65 Y 51 237.1505-32 100/13-28-79-20W5 5.60 Y 51 285.6008-31W 100/09-29-79-20W5 5.76 Y 51 293.7608-31E 102/13-31-79-20W5/02 11.16 N, M, C 51 569.1608-31E 102/09-29-79-20W5 3.04 N 51 155.0408-31E 102/01-01-80-21-W5 3.60 N 51 183.6016-19 100/08-25-79-21W5/02 2.48 Y 51 126.4809-29 104/13-22-79-20W5 8.40 Y 51 428.4008-29 100/12-22-79-20W5 7.83 N, C 51 399.3308-29 102/13-22-79-20W5 5.64 N, M 51 287.6408-21 100/09-15-79-20W5 5.60 N, M 51 285.6008-21 100/12-14-79-20W5/02 3.96 N 51 201.9609-21SW 100/13-14-79-20W5 6.50 N, C 51 331.5009-21SW 102/13-14-79-20W5 5.39 N 51 274.8909-21SE 103/08-29-79-20W5 13.26 N, F, C 5109-21SE 100/01-29-79-20W5 19.52 N, F 5109-21N 100/04-23-79-20W5 2.73 Y, M 51 139.2309-21N 102/04-23-79-20W5 5.16 Y 51 263.1604-23 103/06-13-79-20W5 9.60 N, F, C 5113-14N 102/06-13-79-20W5 5.12 N, I, C 5113-14N 100/15-21-79-20W5 24.85 N, I 5113-14N 100/04-13-79-20W5 5.34 N, I 51

Page 59: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

48

Table 19 Oil production and tank vent to atmosphere for Baytex Reno Field production wells for February 2013.

Pad WellOil

VolumeTank Vent

includes Casing Gas1,2,3,4,5,6

Tank Vent GOR Applied7

Tank Vent to Atmosphere

m3/d dsm3/m3 dsm3/d13-14S 102/01-14-79-20W5/02 8.10 N, M, F, C 5113-14S 100/14-21-79-20W5 30.78 N, F 5109-15W 100/16-11-79-20W5 Shut In09-15W 102/16-11-79-20W5 Shut In09-15E 100/13-12-79-20W5 4.60 Y, M 51 234.6009-15E 102/13-12-79-20W5 2.79 Y 51 142.2909-14 100/02-13-79-20W5 7.28 Y, C 51 371.2810-12 100/08-14-79-20W5/03 4.41 Y, M 51 224.91

351.68 Total 7961.211. N indicated casing gas was not vented into the production tank.2. Y indicates that casing gas was vented into the production tank and then vented to atmosphere or directed to a flare or incinerator.3. M indicates vent gas rate measured during field study.4. F indicates that the pad has a flare for disposal of casing and solution gas.5. I indicates that the pad has an incinerator for disposal of casing and solution gas.6. C indicates casing gas compressor.7. Assumed vent gas GOR based on measurements as discussed in Section 4.1.

Tank vent emission factors are summarized for the three vent stream types in Table 20.

Table 20. Summary of emissions factors for mixed solution and casing gas vented, solution gas vented and mixed solution gas and casing gas flared or incinerated from production tanks in the Baytex Reno field.

Casing and Solution Gas Mix Vented

Solution Gas

Vented

Mixed Gas to Flare or Incinerator

Name Compound MW g/dsm3 air free

g/dsm3 air free

g/dsm3 air free

Air in Sample 15.3% 16.7% 0.5%Oxygen O2 32 0 0 0Helium He 4 0 0 0Hydrogen H2 2 0 0 0Nitrogen N2 28 24.802360 127.35143 5.1998946Hydrogen Sulphide H2S 34 0.000657 0.000000 0.000581Carbon Dioxide CO2 44 71.633612 210.963249 130.227575Methane CH4 16 632.510988 499.105849 615.216882Ethane C2H6 30 3.102040 4.085042 6.678428Propane C3H8 44 1.228043 1.874453 1.167805Butane C4H10 58 0.374607 2.877172 1.385878

Page 60: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

49

Table 20. Summary of emissions factors for mixed solution and casing gas vented, solution gas vented and mixed solution gas and casing gas flared or incinerated from production tanks in the Baytex Reno field.

Casing and Solution Gas Mix Vented

Solution Gas

Vented

Mixed Gas to Flare or Incinerator

Name Compound MW g/dsm3 air free

g/dsm3 air free

g/dsm3 air free

Isobutane C4H10 58 0.517890 2.532562 1.540457Pentane C5H12 72 0.396439 3.593260 2.022596Isopentane C5H12 72 1.132613 11.277615 4.986461Hexane C6H14 86 0.521980 2.911133 1.624936Benzene C6H6 78 0.001695 0.034895 0.000000Heptane C7H16 100 0.121366 0.693529 0.1420741,2,3-Trimethylbenzene C9H12 120 0.009171 0.135215 0.0000001,2,4-Trimethylbenzene C9H12 120 0.026877 0.138671 0.0000001,3,5-Trimethylbenzene C9H12 120 0.010973 0.074584 0.0000001,3-Butadiene C4H6 54 0.000000 0.000000 0.0000001-Butene C4H8 56 0.000318 0.001147 0.0033281-Hexene C6H12 84 0.000000 0.000000 0.0000001-Hexene, 3,4,5-trimethyl- C9H18 126 0.000000 0.000000 0.0644251-Pentene C5H10 70 0.000000 0.000000 0.0000002,2,4-Trimethylpentane C8H18 114 0.001319 0.000000 0.0000002,2-Dimethylbutane C6H14 86 0.115639 2.131948 0.4859802,3,4-Trimethylpentane C8H18 114 0.040308 0.897368 0.0483572,3-Dimethylbutane C6H14 86 0.282999 5.371759 1.1866162,3-Dimethylpentane C7H16 100 0.262353 5.199640 0.7269132,4-Dimethylpentane C7H16 100 0.000000 0.000000 0.0000002,5-dimethyl Thiophene C6H8S 112 0.000170 0.014202 0.0002592-ethyl Thiophene C6H8S 112 0.000000 0.000000 0.0000002H-Pyran, tetrahydro- C5H10O 86 0.000000 0.000000 0.0201122-methyl Thiophene C5H6S 98 0.000903 0.014379 0.0010842-Methylheptane C8H18 114 0.098141 0.842943 0.0580042-Methylhexane C7H16 100 0.346328 2.164871 0.7915252-Methylpentane C6H14 86 0.904481 7.072435 3.5979782-propyl thiophene C7H10S 126 0.000000 0.000000 0.0000003-butyl thiophene (blank) 140 0.001165 0.016621 0.0000003-methyl Thiophene C5H6S 98 0.001979 0.051466 0.0046763-Methylheptane C8H18 114 0.165120 1.216936 0.0766463-Methylhexane C7H16 100 0.516025 4.530365 1.3059543-Methylpentane C6H14 86 0.712543 6.655954 2.762134Acetylene C2H2 26 0.000000 0.000000 0.000000

Page 61: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

50

Table 20. Summary of emissions factors for mixed solution and casing gas vented, solution gas vented and mixed solution gas and casing gas flared or incinerated from production tanks in the Baytex Reno field.

Casing and Solution Gas Mix Vented

Solution Gas

Vented

Mixed Gas to Flare or Incinerator

Name Compound MW g/dsm3 air free

g/dsm3 air free

g/dsm3 air free

Allyl sulphide C6H10S 114 0.001031 0.017263 0.000615Butane, 2,2,3-trimethyl- C7H16 100 0.000000 0.000000 0.007086Butyl mercaptan C4H10S 98 0.000000 0.000000 0.000000Butyl sulphide C8H18S 146 0.000000 0.000000 0.000000Carbon disulphide CS2 76 0.000003 0.000000 0.000000Carbon monoxide CO 28 0.000000 0.000000 0.000000Carbonyl sulphide COS 60 0.000011 0.000423 0.000000Chlorobenzene-d5 C6D5Cl 112 0.000000 0.000000 0.000000cis-2-Butene C4H8 56 0.000856 0.000000 0.000000cis-2-Pentene C5H10 70 0.000000 0.000000 0.000000Cyclohexane C6H12 84 0.670828 22.887809 3.697437Cyclohexane, 1,1,3-trimethyl- C9H18 126 0.000000 0.000000 0.101080Cyclohexane, 1,1-dimethyl- C8H16 112 0.000000 0.000000 0.089685Cyclohexane, 1,2-dimethyl-, trans- C8H16 112 0.000000 0.000000 0.087698Cyclohexane, 1,3-dimethyl-, cis- C8H16 112 0.000000 0.000000 0.224344Cyclohexane, 1,3-dimethyl-, trans- C8H16 112 0.000000 0.000000 0.043795Cyclohexane, 1,4-dimethyl- C8H16 112 0.000000 0.000000 0.013235Cyclohexane, 1,4-dimethyl-, cis- C8H16 112 0.000000 0.000000 0.021141Cyclohexane, ethyl- C8H16 112 0.000000 0.000000 0.039990Cyclopentane C5H10 70 0.139668 4.122733 0.838776Cyclopentane, 1,1,2-trimethyl- C8H16 112 0.000000 0.000000 0.024680Cyclopentane, 1,1-dimethyl- C7H14 98 0.000000 0.000000 0.305122Cyclopentane, 1,2,3-trimethyl-,(1.alpha

C8H16 1120.000000

0.000000 0.183706

Cyclopentane, 1,2-dimethyl-, cis- C7H14 98 0.000000 0.000000 0.638567Cyclopentane, 1,2-dimethyl-, trans- C7H14 98 0.000000 0.000000 0.527943Cyclopentane, 1,3-dimethyl- C7H14 98 0.000000 0.000000 0.255786Cyclopentane, 1,3-dimethyl-, cis- C7H14 98 0.000000 0.000000 0.243473Cyclopentane, 1,3-dimethyl-, trans- C7H14 98 0.000000 0.000000 0.268879Cyclopentane, 1-ethyl-3-methyl- C8H16 112 0.000000 0.000000 0.029231Cyclopentane, 1-methyl-3-(1-methylethyl)

C9H18 1260.000000

0.000000 0.032393

Cyclopentane, ethyl- C7H14 98 0.000000 0.000000 0.244114Decane C10H22 142 0.000929 0.000000 0.000000Dimethyl disulphide C2H6S2 94 0.000009 0.000155 0.000006

Page 62: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

51

Table 20. Summary of emissions factors for mixed solution and casing gas vented, solution gas vented and mixed solution gas and casing gas flared or incinerated from production tanks in the Baytex Reno field.

Casing and Solution Gas Mix Vented

Solution Gas

Vented

Mixed Gas to Flare or Incinerator

Name Compound MW g/dsm3 air free

g/dsm3 air free

g/dsm3 air free

Dimethyl sulphide C2H6S 62 0.000264 0.000000 0.000000Dimethyl trisulphide C2H6S3 126 0.006521 0.063502 0.000000Dodecane C12H26 170 0.000000 0.000000 0.000000Ethyl benzene C8H10 106 0.030660 0.537503 0.000000Ethyl mercaptan C2H6S 62 0.000023 0.000000 0.000045Ethyl methyl sulphide C3H8S 76 0.000000 0.000000 0.000000Ethyl sulphide C4H10S 90 0.000000 0.000000 0.000000Ethylacetylene C4H6 54 0.000000 0.000000 0.000000Ethylene C2H4 28 0.000000 0.000000 0.000000Heptyl mercaptan C7H16S 132 0.000000 0.000000 0.000000Hexane, 2,3-dimethyl- C8H18 114 0.000000 0.000000 0.041226Hexane, 2,4-dimethyl- C8H18 114 0.000000 0.000000 0.099343Hexane, 2,5-dimethyl- C8H18 114 0.000000 0.000000 0.049928Hexyl mercaptan C6H14S 118 0.000000 0.000000 0.000000Isobutyl mercaptan C4H10S 90 0.000017 0.000145 0.000034Isobutylene C4H8 56 0.000000 0.000000 0.000000Isoprene C5H8 68 0.000000 0.000000 0.000000Isopropyl mercaptan C3H8S 76 0.000110 0.000786 0.000328Isopropylbenzene C9H12 120 0.006778 0.046436 0.000000m,p-Xylene C8H10 106 0.045045 0.346611 0.000000m-Diethylbenzene C10H14 134 0.003159 0.093904 0.000000Methyl mercaptan CH4S 48 0.000008 0.000000 0.000000Methylcyclohexane C7H14 98 1.066730 27.351100 3.147531Methylcyclopentane C6H12 84 0.498134 11.503528 2.215969m-Ethyltoluene C9H12 120 0.023644 0.093937 0.000000Nonane C9H20 128 0.004425 0.125936 0.000000n-Propylbenzene C9H12 120 0.012764 0.160943 0.000000Octane C8H18 114 0.000000 0.000000 0.000000Octyl mercaptan C8H18S 146 0.000000 0.000000 0.000000o-Ethyltoluene C9H12 120 0.012381 0.100617 0.000000o-Xylene C8H10 106 0.018410 0.182171 0.000000p-Diethylbenzene C10H14 134 0.003453 0.095148 0.000000Pentane, 2,2,3,4-tetramethyl- C9H20 128 0.000000 0.000000 0.037608Pentane, 2,4-dimethyl- C7H16 100 0.000000 0.000000 0.039464

Page 63: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

52

Table 20. Summary of emissions factors for mixed solution and casing gas vented, solution gas vented and mixed solution gas and casing gas flared or incinerated from production tanks in the Baytex Reno field.

Casing and Solution Gas Mix Vented

Solution Gas

Vented

Mixed Gas to Flare or Incinerator

Name Compound MW g/dsm3 air free

g/dsm3 air free

g/dsm3 air free

Pentyl mercaptan C5H12S 104 0.000000 0.000000 0.000000p-Ethyltoluene C9H12 120 0.011319 0.058127 0.000000Propane, 2,2-dimethyl- C5H12 72 0.000000 0.000000 0.074804Propyl mercaptan C3H8S 76 0.000000 0.000013 0.000000Propylene C3H6 42 0.002381 0.003601 0.001161Propyne C3H4 40 0.027490 2.269390 0.000000sec-Butyl mercaptan C4H10S 90 0.000017 0.000146 0.000035Styrene C8H8 104 0.000000 0.000000 0.000000Sulphur dioxide S02 64 0.000000 0.000000 0.000000tert-Butyl mercaptan C4H10S 90 0.000000 0.000293 0.000055tert-Pentyl mercaptan C5H12S 104 0.000000 0.000342 0.000000Tetrahydro thiophene C4H8S 88 0.000000 0.000000 0.000000Thiophene C4H4S 84 0.003385 0.048129 0.008526Toluene C7H8 92 0.359710 0.696089 0.269892trans-2-Butene C4H8 56 0.006595 0.373075 0.003167trans-2-Pentene C5H10 70 0.000000 0.000000 0.000000Undecane C11H24 156 0.000000 0.000000 0.000000Unknown Sulphur (MW=32) (blank) 32 0.000000 0.000075 0.000015Unknown Sulphurs (MW=32) (blank) 32 0.000000 0.121705 0.002573Unresolved Hydrocarbons (C10+) (blank) 142 0.000000 0.000000 0.0000001-Methylnaphthalene 0.000147 0.000642 0.0006422-Methylnaphthalene 0.000191 0.000802 0.000802Acenaphthene 0.000000 0.000000 0.000000Acenaphthylene 0.000000 0.000000 0.000000Anthracene 0.000000 0.000000 0.000000Benzo(a)anthracene 0.000000 0.000000 0.000000Benzo(a)pyrene 0.000000 0.000000 0.000000Benzo(b,j,k)fluoranthene 0.000000 0.000000 0.000000Benzo(ghi)perylene 0.000000 0.000000 0.000000C1-Chrysene 0.000000 0.000000 0.000000C1-Dibenzothiophene 0.000001 0.000013 0.000013C1-Fluoranthene/pyrene 0.000000 0.000000 0.000000C1-Fluorene 0.000001 0.000009 0.000009C1-Phenanthrene/anthracene 0.000001 0.000006 0.000006

Page 64: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

53

Table 20. Summary of emissions factors for mixed solution and casing gas vented, solution gas vented and mixed solution gas and casing gas flared or incinerated from production tanks in the Baytex Reno field.

Casing and Solution Gas Mix Vented

Solution Gas

Vented

Mixed Gas to Flare or Incinerator

Name Compound MW g/dsm3 air free

g/dsm3 air free

g/dsm3 air free

C2-Chrysene 0.000000 0.000000 0.000000C2-Dibenzothiophene 0.000001 0.000008 0.000008C2-Fluoranthene/pyrene 0.000000 0.000000 0.000000C2-Fluorene 0.000000 0.000004 0.000004C2-Naphthalene 0.000152 0.000784 0.000784C2-Phenanthrene/anthracene 0.000000 0.000002 0.000002C3-Chrysene 0.000000 0.000000 0.000000C3-Dibenzothiophene 0.000000 0.000001 0.000001C3-Fluoranthene/pyrene 0.000000 0.000000 0.000000C3-Fluorene 0.000000 0.000002 0.000002C3-Naphthalene 0.000044 0.000284 0.000284C3-Phenanthrene/anthracene 0.000000 0.000000 0.000000C4-Chrysene 0.000000 0.000000 0.000000C4-Dibenzothiophene 0.000000 0.000000 0.000000C4-Fluoranthene/pyrene 0.000000 0.000000 0.000000C4-Fluorene 0.000000 0.000000 0.000000C4-Naphthalene 0.000003 0.000032 0.000032C4-Phenanthrene/anthracene 0.000000 0.000000 0.000000Chrysene 0.000000 0.000000 0.000000Dibenzo(ah)anthracene 0.000000 0.000000 0.000000Fluoranthene 0.000000 0.000000 0.000000Fluorene 0.000000 0.000000 0.000000Indeno(1,2,3-cd)pyrene 0.000000 0.000000 0.000000Naphthalene 0.000109 0.000463 0.000463Phenanthrene 0.000001 0.000010 0.000010Pyrene 0.000000 0.000000 0.000000

5.3 DEHY REGENERATOR EMISSIONSProcess emissions from the glycol dehydrator located at the 10-22-079-20W5 gas plant were determined by AGAT Laboratories using GRI-GLYCalc Version 4.0. Emissions estimates, assuming 8760 hours per year of operation, are presented in Table 21. Combustion source emissions from the regenerator are addressed in Section 5.1.

Page 65: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

54

Table 21: Glycol Dehydrator Regenerator Emission to Atmosphere at Baytex Reno Field Gas Plant.

10-22-79-20W5 Gas Plant DehyComponent g/sMethane 6.294320Ethane 0.042688Propoane 0.003856Isobutane 0.004574n-Butane 0.003301Isopentane 0.022478n-Pentane 0.005015Cyclopentane 0.009689n-Hexane 0.003919Cyclohexane 0.024280Other Hexanes 0.008732Heptane 0.044427Methylcyclohexane 0.0297732,2,4-trimethylpentane 0.009299Benzene 0.000844Toluene 0.005027Ethylbenzene 0.004070Xylenes 0.011453C8+ Heavies 0.096262Total Emissions 6.624006Summary by component classTotal Hydrocarbon Emissions 6.623993Total VOC Emissions 0.286998Total HAP Emissions 0.034599Total BTEX Emissions 0.021382

5.4 ODOUR SAMPLE RESULTSOdour sample results were provided by RWDI for processing and presentation in odour units per dry standard cubic meter of air free vent gas. This restatement of the odour units was required because the odour panel was exposed to diluted volumes of the sampled gas which contained various amounts of air in addition to the solution gas or mixed casing and solution gas and the estimated emission flow rate for each tank was based on a dry, air free gas to oil ratio.

The odour samples were collected on two types of venting situations. As noted in Table 22,samples collected at pads 08-21 and 13-14S were from tanks with solution gas and those at pads 05-32 and 02-01 were from tanks with mixed casing gas and solution gas. The samples from the two types of vented gas were analyzed separately to determine average and maximum odour strengths.

Expressing odour strength in terms of dry, air free vented gas required corrections for moisture and air in the sampled vapour. All samples were handled at room temperature and not heated prior to exposure to the odour panel. Therefore, the moisture content of the actual sample transferred to the odour panel sample dilution system was estimated to be 2.46%, the saturated

Page 66: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

55

moisture content of air at 20 ºC and 94.8 kPa. The air content of the odour sample was not determined. However, samples were collected from the same tanks on days after the odour samples were collected and the air content was determined. The dates of the subsequent samples are noted in the table. Application of the air faction in samples results to restate the odour results is not without noteworthy uncertainty. Application requires the assumption that operations are relatively consistent and that the cycle of tank filling and product removal tanks was similar on both sample days. Notwithstanding this uncertainty, odour strength was restated based on the air fraction results determined on the days indicated in the table.

Solution gas was determined to have an odour strength ranging from 21,107 to 86,471 OU/dsm3

(air free). The average of 54,176 and maximum of 86,471 OU//dsm3 (air free) were applied to all wells in Table 19 that are noted to be venting solution gas.

Mixed casing and solution gas was determined to have an odour strength ranging from 3,611 to 9,069 OU/dsm3 (air free). The average of 6,247 and maximum of 9,069 OU//dsm3 (air free) were applied to all wells in Table 19 that are noted to be venting mixed casing and solution gas.

Based on the above, odour emissions for each well were estimated by multiplying oil production times the applied GOR times the applicable odour strength.

Page 67: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

56

Tab

le 2

2.O

dour

sam

ple

resu

lts a

nd o

dour

stre

ngth

of s

ampl

es e

xpre

ssed

in te

rms o

f dry

air

free

ven

ted

solu

tion

gas o

r m

ixed

cas

ing

and

solu

tion

gas.

Pad

Wel

lSa

mpl

e ID

DT

1C

omm

ent

Odo

ur

Sam

ple

Dat

e

CE

L

Sam

ple

Dat

e

% H2O @ 20C

Air

Fr

actio

n in

Sam

ple

Cor

rect

ed

OU

/dsm

3

(air

free

)

Ave

rage

O

U/d

sm3

(air

Fr

ee)

Max

O

U/d

sm3

(Air

Fre

e)A

pplic

atio

n

08-2

110

0/09

-15-

79-2

0W5

9-15

-79-

20-1

A26

99

Sam

ple

is

solu

tion

gas.

27-F

eb-1

31-

Mar

-13

2.46

%0.

968

8647

154

176

8647

1A

pply

to a

ll w

ells

in

Tabl

e 19

with

a N

in

Col

umn

4.

08-2

110

0/09

-15-

79-2

0W5

9-15

-79-

20-1

B24

7527

-Feb

-13

1-M

ar-1

32.

46%

0.96

879

295

13-1

4S10

0/14

-21-

79-2

0W5

100-

14-

21-1

A41

6127

-Feb

-13

4-M

ar-1

32.

46%

0.85

729

831

13-1

4S10

0/14

-21-

79-2

0W5

100-

14-

21-1

B29

4427

-Feb

-13

4-M

ar-1

32.

46%

0.85

721

107

05-3

210

0/04

-06-

80-2

0W5

100-

04-

06-8

0-1A

3209

Sam

ple

incl

udes

ca

sing

and

so

lutio

n ga

s.

27-F

eb-1

328

-Feb

-13

2.46

%0.

089

3611

6247

9069

App

ly to

all

wel

ls in

Ta

ble

19w

ith a

Y in

C

olum

n 4.

05-3

210

0/04

-06-

80-2

0W5

100-

04-

06-8

0-1B

4161

27-F

eb-1

328

-Feb

-13

2.46

%0.

089

4683

02-0

110

2/07

-31-

79-2

0W5

102-

7-31

-2A

4538

27-F

eb-1

35-

Mar

-13

2.46

%0.

487

9069

02-0

110

2/07

-31-

79-2

0W5

102-

7-31

-1B

3815

27-F

eb-1

35-

Mar

-13

2.46

%0.

487

7625

1.D

etec

tion

thre

shol

d (D

T) e

xpre

ssed

in o

dour

uni

ts (O

U/s

m3 ) o

f sam

ple

expo

sed

to o

dour

pan

el a

s rep

orte

d by

RW

DI.

Page 68: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

57

5.5 EMISSION INVENTORY DATA FILEGas composition and combustion equipment performance measurements specific to the Baytex Reno Field were used to develop applicable emission factors for all emission sources. The development of these emission factors is discussed in Section 4.4. The developed emission factors were used to create an emissions data file that is source specific and suitable for air quality assessments. The data file is referenced as Baytex Reno Field Emission Inventory February 2013_June 252013.xlsx. (Baytex Data 2013)

Page 69: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

58

6 CONCLUSIONS

An emissions inventory of the Baytex Reno Field was completed based on field measurements to assess and characterize combustion source and production tank emissions. The inventory included all 23 production pads with 41 production wells, the water injection or disposal well and the gas plant. Two pads including four well are noted to be shut in and zero emissions were assigned to these pads.

Field measurements included sampling and analyzing casing and solution gas and mixtures of the two as released from tank vents. Measurements were conducted at ten different pads in 2013. In 2012, two pads were sampled and analyzed using the same methodology and these results are used in the development of the inventory. Tank vent gas flow rates were measure and corrected to dry, air-free flow rates for purposes of calculating vent gas to oil ratios and field emissions.

Lift pump and compressor engines and tank heaters were tested for combustion efficiency and residual emissions. These assessments included fuel and flue gas sampling and analyses and the completion of multi-component material balances to determine site specific combustion efficiencies, air to fuel ratios and emission factors. Over 160 compounds were identified, quantified and included in this assessment. The applicable calculated emission factors were applied to all combustion sources. Published emission factors for NOx, CO and PM2.5, were applied to all engine, heater, flare and incinerator emission sources.

In addition, semi-volatile compound sampling was completed for compressor engines and for tank vents. The analytical protocol included the quantification of 40 different compounds in this category. Results were converted to appropriate emissions factors for engine and tank emissions sources and applied in the development of the inventory.

Samples of vent gases were collected for odour determination by RWDI. The raw data was provided to Clearstone and the results were processed to express the odour strength of each sample on a dry air-free basis.

The Reno Field emission inventory developed for air quality modeling by RWDI was based on the flue and vent gas emission profiles determined by Clearstone, calculated fuel consumption for each combustion device using February 2013 average daily production data provided by Baytex and an average GOR of 51 dm3 air-free vent gas per m3 of oil production specified by Baytex. This GOR compares favourably with the average GOR of the production locations tested by Clearstone where the vent gas included casing and solution gas. The value would be considered high for those locations where solution gas only was vented form the production tanks.

The developed emission factors were expressed as mass emission per cubic meter of fuel consumed for combustion devices and mass emission per cubic meter of dry air-free vented gas.The complete emission inventory includes source specific emissions for each point source type at each location. All emissions were expressed in grams per second. Supporting tables relevant to

Page 70: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

59

the development of the emissions inventory are included in this report and the inventory is compiled in a data file (Baytex Reno 2013) for application in air dispersion modeling.

Page 71: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

60

7 REFERENCES

USEPA, AP-42 AP 42, Fifth Edition, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources http://www.epa.gov/ttn/chief/ap42/.

Baytex Reno 2013, Emission inventory data file for the Baytex Reno Field developed by Clearstone Engineering Ltd., Baytex Reno Field Emission Inventory February 2013_June252013.xlsx, June 25, 2013.

Page 72: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

61

8A

PP

EN

DIX

A-

DE

TA

ILE

D S

AM

PL

E R

ESU

LT

S

Tab

le 2

3. S

umm

ary

of th

e ai

r in

ven

t gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posit

ion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in th

e B

ayte

x R

eno

Fiel

dw

hen

casi

ng g

as a

nd s

olut

ion

gas

are

hand

led

in p

rodu

ctio

n ta

nks

base

d on

sam

ples

in F

ebru

ary

2013

and

Ju

ly 2

012.

Nam

eC

ompo

und

Pad

10-1

2Pa

d 2-

1Pa

d 9-

15E

Pad

15-3

6Pa

d 5-

32Pa

d 8-

29Pa

d 9-

21N

Pad

10-1

2Pa

d 8-

31W

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

July

201

2Ju

ly 2

012

Air

in S

ampl

e11

.1%

48.7

%1.

5%34

.7%

8.9%

0.8%

1.4%

6.1%

24.8

%N

itrog

enN

20.

0000

000.

0000

000.

1099

310.

0154

810.

0063

650.

0045

590.

0102

760.

0105

130.

0294

31H

ydro

gen

Sulp

hide

H2S

0.00

0000

0.00

0003

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Car

bon

Dio

xide

CO

20.

0240

870.

0429

000.

0549

490.

0333

280.

0339

260.

0387

080.

0415

660.

0327

280.

0208

97M

etha

neC

H4

0.96

7815

0.94

9652

0.83

2467

0.94

7227

0.95

1436

0.95

0527

0.94

4006

0.94

4299

0.94

0367

Etha

neC

2H6

0.00

2864

0.00

2418

0.00

1366

0.00

1740

0.00

2012

0.00

3791

0.00

2923

0.00

2510

0.00

1799

Prop

ane

C3H

80.

0026

370.

0005

540.

0001

860.

0003

320.

0004

150.

0002

910.

0002

050.

0002

190.

0002

99B

utan

eC

4H10

0.00

0099

0.00

0315

0.00

0080

0.00

0132

0.00

0240

0.00

0149

0.00

0055

0.00

0167

0.00

0154

Isob

utan

eC

4H10

0.00

0175

0.00

0491

0.00

0072

0.00

0205

0.00

0279

0.00

0184

0.00

0071

0.00

0233

0.00

0339

Pent

ane

C5H

120.

0000

970.

0002

630.

0000

320.

0000

620.

0002

880.

0001

210.

0000

480.

0002

740.

0002

47

Isop

enta

neC

5H12

0.00

0349

0.00

0934

0.00

0110

0.00

0241

0.00

0616

0.00

0239

0.00

0114

0.00

0645

0.00

0805

Hex

ane

C6H

140.

0001

040.

0002

420.

0000

160.

0000

550.

0004

790.

0000

880.

0000

210.

0005

950.

0004

55B

enze

neC

6H6

0.00

0001

0.00

0000

0.00

0001

0.00

0001

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Hep

tane

C7H

160.

0000

310.

0000

280.

0000

040.

0000

090.

0001

070.

0000

210.

0000

020.

0002

650.

0000

791,

2,3-

Trim

ethy

lben

zene

C9H

120.

0000

020.

0000

000.

0000

050.

0000

010.

0000

020.

0000

030.

0000

010.

0000

140.

0000

09

1,2,

4-Tr

imet

hylb

enze

neC

9H12

0.00

0003

0.00

0001

0.00

0023

0.00

0002

0.00

0003

0.00

0004

0.00

0001

0.00

0022

0.00

0016

1,3,

5-Tr

imet

hylb

enze

neC

9H12

0.00

0002

0.00

0000

0.00

0009

0.00

0001

0.00

0002

0.00

0002

0.00

0000

0.00

0010

0.00

0007

1,3-

But

adie

neC

4H6

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

1-Bu

tene

C4H

80.

0000

000.

0000

010.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

001-

Hex

ene

C6H

120.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

1-H

exen

e, 3

,4,5

-trim

ethy

l-C

9H18

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

1-Pe

nten

eC

5H10

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

2,2,

4-Tr

imet

hylp

enta

neC

8H18

0.00

0000

0.00

0000

0.00

0000

0.00

0002

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

2,2-

Dim

ethy

lbut

ane

C6H

140.

0000

190.

0000

590.

0000

260.

0000

260.

0000

480.

0000

330.

0000

120.

0000

650.

0000

51

Page 73: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

62

Tab

le 2

3. S

umm

ary

of th

e ai

r in

ven

t gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posit

ion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in th

e B

ayte

x R

eno

Fiel

dw

hen

casi

ng g

as a

nd s

olut

ion

gas

are

hand

led

in p

rodu

ctio

n ta

nks

base

d on

sam

ples

in F

ebru

ary

2013

and

Ju

ly 2

012.

Nam

eC

ompo

und

Pad

10-1

2Pa

d 2-

1Pa

d 9-

15E

Pad

15-3

6Pa

d 5-

32Pa

d 8-

29Pa

d 9-

21N

Pad

10-1

2Pa

d 8-

31W

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

July

201

2Ju

ly 2

012

2,3,

4-Tr

imet

hylp

enta

neC

8H18

0.00

0007

0.00

0009

0.00

0005

0.00

0008

0.00

0018

0.00

0009

0.00

0003

0.00

0026

0.00

0021

2,3-

Dim

ethy

lbut

ane

C6H

140.

0000

680.

0001

280.

0000

330.

0000

350.

0001

720.

0000

780.

0000

300.

0002

130.

0001

61

2,3-

Dim

ethy

lpen

tane

C7H

160.

0000

670.

0000

720.

0000

250.

0000

270.

0001

590.

0000

640.

0000

190.

0002

390.

0001

512,

4-D

imet

hylp

enta

neC

7H16

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

2,5-

dim

ethy

l Thi

ophe

neC

6H8S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

2-et

hyl T

hiop

hene

C6H

8S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

002H

-Pyr

an, t

etra

hydr

o-C

5H10

O0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

2-m

ethy

l Thi

ophe

neC

5H6S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0001

0.00

0000

0.00

0000

0.00

0000

0.00

0001

2-M

ethy

lhep

tane

C8H

180.

0000

180.

0000

200.

0000

000.

0000

080.

0000

770.

0000

170.

0000

030.

0000

950.

0000

74

2-M

ethy

lhex

ane

C7H

160.

0000

710.

0001

080.

0000

130.

0000

310.

0002

880.

0000

530.

0000

100.

0002

830.

0002

992-

Met

hylp

enta

neC

6H14

0.00

0255

0.00

0458

0.00

0049

0.00

0105

0.00

0687

0.00

0140

0.00

0047

0.00

0877

0.00

0825

2-pr

opyl

thio

phen

eC

7H10

S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

003-

buty

l thi

ophe

ne(b

lank

)0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

010.

0000

000.

0000

000.

0000

000.

0000

003-

met

hyl T

hiop

hene

C5H

6S0.

0000

000.

0000

010.

0000

000.

0000

000.

0000

020.

0000

010.

0000

000.

0000

010.

0000

01

3-M

ethy

lhep

tane

C8H

180.

0000

280.

0000

300.

0000

070.

0000

130.

0001

310.

0000

270.

0000

040.

0001

120.

0001

523-

Met

hylh

exan

eC

7H16

0.00

0136

0.00

0164

0.00

0029

0.00

0050

0.00

0391

0.00

0068

0.00

0017

0.00

0447

0.00

0415

3-M

ethy

lpen

tane

C6H

140.

0001

910.

0003

390.

0000

420.

0000

850.

0005

470.

0001

260.

0000

410.

0006

670.

0005

54A

cety

lene

C2H

20.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00A

llyl s

ulph

ide

C6H

10S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0001

0.00

0000

0.00

0000

0.00

0001

0.00

0000

But

ane,

2,2

,3-tr

imet

hyl-

C7H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00B

utyl

mer

capt

anC

4H10

S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

But

yl su

lphi

deC

8H18

S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00C

arbo

n di

sulp

hide

CS2

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Car

bon

mon

oxid

eC

O0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00C

arbo

nyl s

ulph

ide

CO

S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00C

hlor

oben

zene

-d5

C6D

5Cl

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

cis-

2-B

uten

eC

4H8

0.00

0000

0.00

0001

0.00

0000

0.00

0000

0.00

0001

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Page 74: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

63

Tab

le 2

3. S

umm

ary

of th

e ai

r in

ven

t gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posit

ion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in th

e B

ayte

x R

eno

Fiel

dw

hen

casi

ng g

as a

nd s

olut

ion

gas

are

hand

led

in p

rodu

ctio

n ta

nks

base

d on

sam

ples

in F

ebru

ary

2013

and

Ju

ly 2

012.

Nam

eC

ompo

und

Pad

10-1

2Pa

d 2-

1Pa

d 9-

15E

Pad

15-3

6Pa

d 5-

32Pa

d 8-

29Pa

d 9-

21N

Pad

10-1

2Pa

d 8-

31W

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

July

201

2Ju

ly 2

012

cis-

2-Pe

nten

eC

5H10

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Cyc

lohe

xane

C6H

120.

0002

100.

0002

300.

0001

210.

0000

940.

0003

230.

0002

030.

0001

400.

0008

260.

0003

50

Cyc

lohe

xane

, 1,1

,3-tr

imet

hyl-

C9H

180.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0001

02C

yclo

hexa

ne, 1

,1-d

imet

hyl-

C8H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

19

Cyc

lohe

xane

, 1,2

-dim

ethy

l-, tr

ans-

C8H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

770.

0000

49C

yclo

hexa

ne, 1

,3-d

imet

hyl-,

cis

-C

8H16

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0107

0.00

0084

Cyc

lohe

xane

, 1,3

-dim

ethy

l-, tr

ans-

C8H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Cyc

lohe

xane

, 1,4

-dim

ethy

l-C

8H16

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0019

Cyc

lohe

xane

, 1,4

-dim

ethy

l-, c

is-

C8H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

230.

0000

00

Cyc

lohe

xane

, eth

yl-

C8H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

940.

0000

80C

yclo

pent

ane

C5H

100.

0000

450.

0000

540.

0000

320.

0000

210.

0000

510.

0000

910.

0000

360.

0001

350.

0000

53

Cyc

lope

ntan

e, 1

,1,2

-trim

ethy

l-C

8H16

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, 1

,1-d

imet

hyl-

C7H

140.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00C

yclo

pent

ane,

1,2

,3-tr

imet

hyl-,

(1.a

lpha

C8H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Cyc

lope

ntan

e, 1

,2-d

imet

hyl-,

cis

-C

7H14

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0091

0.00

0060

Cyc

lope

ntan

e, 1

,2-d

imet

hyl-,

tran

s-C

7H14

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, 1

,3-d

imet

hyl-

C7H

140.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

800.

0000

53C

yclo

pent

ane,

1,3

-dim

ethy

l-, c

is-

C7H

140.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00C

yclo

pent

ane,

1,3

-dim

ethy

l-, tr

ans-

C7H

140.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Cyc

lope

ntan

e, 1

-eth

yl-3

-met

hyl-

C8H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00C

yclo

pent

ane,

1-m

ethy

l-3-(1

-met

hyle

thyl

)C

9H18

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, e

thyl

-C

7H14

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0065

0.00

0045

Dec

ane

C10

H22

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0001

0.00

0000

0.00

0004

0.00

0000

Dim

ethy

l dis

ulph

ide

C2H

6S2

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Dim

ethy

l sul

phid

eC

2H6S

0.00

0000

0.00

0000

0.00

0000

0.00

0001

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Dim

ethy

l tris

ulph

ide

C2H

6S3

0.00

0002

0.00

0001

0.00

0000

0.00

0000

0.00

0003

0.00

0001

0.00

0000

0.00

0000

0.00

0000

Dod

ecan

eC

12H

260.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Page 75: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

64

Tab

le 2

3. S

umm

ary

of th

e ai

r in

ven

t gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posit

ion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in th

e B

ayte

x R

eno

Fiel

dw

hen

casi

ng g

as a

nd s

olut

ion

gas

are

hand

led

in p

rodu

ctio

n ta

nks

base

d on

sam

ples

in F

ebru

ary

2013

and

Ju

ly 2

012.

Nam

eC

ompo

und

Pad

10-1

2Pa

d 2-

1Pa

d 9-

15E

Pad

15-3

6Pa

d 5-

32Pa

d 8-

29Pa

d 9-

21N

Pad

10-1

2Pa

d 8-

31W

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

July

201

2Ju

ly 2

012

Ethy

l ben

zene

C8H

100.

0000

120.

0000

050.

0000

040.

0000

040.

0000

090.

0000

120.

0000

020.

0000

530.

0000

20Et

hyl m

erca

ptan

C2H

6S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Ethy

l met

hyl s

ulph

ide

C3H

8S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00Et

hyl s

ulph

ide

C4H

10S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Ethy

lace

tyle

neC

4H6

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Ethy

lene

C2H

40.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00H

epty

l mer

capt

anC

7H16

S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Hex

ane,

2,3

-dim

ethy

l-C

8H18

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Hex

ane,

2,4

-dim

ethy

l-C

8H18

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0030

0.00

0023

Hex

ane,

2,5

-dim

ethy

l-C

8H18

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Hex

yl m

erca

ptan

C6H

14S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Isob

utyl

mer

capt

anC

4H10

S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00Is

obut

ylen

eC

4H8

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Isop

rene

C5H

80.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Isop

ropy

l mer

capt

anC

3H8S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Isop

ropy

lben

zene

C9H

120.

0000

020.

0000

000.

0000

020.

0000

010.

0000

000.

0000

030.

0000

000.

0000

110.

0000

06

m,p

-Xyl

ene

C8H

100.

0000

200.

0000

060.

0000

060.

0000

060.

0000

170.

0000

150.

0000

010.

0001

010.

0000

39m

-Die

thyl

benz

ene

C10

H14

0.00

0000

0.00

0000

0.00

0001

0.00

0001

0.00

0000

0.00

0001

0.00

0000

0.00

0003

0.00

0002

Met

hyl m

erca

ptan

CH

4S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Met

hylc

yclo

hexa

neC

7H14

0.00

0328

0.00

0291

0.00

0147

0.00

0142

0.00

0557

0.00

0204

0.00

0134

0.00

1443

0.00

0800

Met

hylc

yclo

pent

ane

C6H

120.

0001

510.

0002

010.

0000

580.

0000

640.

0002

990.

0001

310.

0000

780.

0005

760.

0002

90

m-E

thyl

tolu

ene

C9H

120.

0000

030.

0000

000.

0000

200.

0000

010.

0000

040.

0000

040.

0000

000.

0000

200.

0000

15N

onan

eC

9H20

0.00

0000

0.00

0000

0.00

0000

0.00

0001

0.00

0003

0.00

0002

0.00

0000

0.00

0009

0.00

0000

n-Pr

opyl

benz

ene

C9H

120.

0000

020.

0000

000.

0000

070.

0000

010.

0000

030.

0000

040.

0000

010.

0000

140.

0000

08O

ctan

eC

8H18

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Oct

yl m

erca

ptan

C8H

18S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

o-Et

hylto

luen

eC

9H12

0.00

0002

0.00

0000

0.00

0007

0.00

0001

0.00

0003

0.00

0003

0.00

0000

0.00

0015

0.00

0011

Page 76: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

65

Tab

le 2

3. S

umm

ary

of th

e ai

r in

ven

t gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posit

ion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in th

e B

ayte

x R

eno

Fiel

dw

hen

casi

ng g

as a

nd s

olut

ion

gas

are

hand

led

in p

rodu

ctio

n ta

nks

base

d on

sam

ples

in F

ebru

ary

2013

and

Ju

ly 2

012.

Nam

eC

ompo

und

Pad

10-1

2Pa

d 2-

1Pa

d 9-

15E

Pad

15-3

6Pa

d 5-

32Pa

d 8-

29Pa

d 9-

21N

Pad

10-1

2Pa

d 8-

31W

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

Feb

2013

July

201

2Ju

ly 2

012

o-X

ylen

eC

8H10

0.00

0006

0.00

0002

0.00

0004

0.00

0003

0.00

0006

0.00

0006

0.00

0001

0.00

0035

0.00

0015

p-D

ieth

ylbe

nzen

eC

10H

140.

0000

000.

0000

000.

0000

020.

0000

010.

0000

000.

0000

010.

0000

000.

0000

080.

0000

00

Pent

ane,

2,2

,3,4

-tetra

met

hyl-

C9H

200.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00Pe

ntan

e, 2

,4-d

imet

hyl-

C7H

160.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Pent

yl m

erca

ptan

C5H

12S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

p-Et

hylto

luen

eC

9H12

0.00

0002

0.00

0000

0.00

0009

0.00

0001

0.00

0002

0.00

0002

0.00

0000

0.00

0010

0.00

0005

Prop

ane,

2,2

-dim

ethy

l-C

5H12

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Prop

yl m

erca

ptan

C3H

8S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00Pr

opyl

ene

C3H

60.

0000

000.

0000

040.

0000

010.

0000

020.

0000

010.

0000

000.

0000

000.

0000

000.

0000

00

Prop

yne

C3H

40.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0001

140.

0000

000.

0000

00se

c-B

utyl

mer

capt

anC

4H10

S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Styr

ene

C8H

80.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00Su

lphu

r dio

xide

S02

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

tert-

But

yl m

erca

ptan

C4H

10S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

tert-

Pent

yl m

erca

ptan

C5H

12S

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Tetra

hydr

o th

ioph

ene

C4H

8S0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Thio

phen

eC

4H4S

0.00

0000

0.00

0002

0.00

0000

0.00

0000

0.00

0003

0.00

0001

0.00

0000

0.00

0002

0.00

0002

Tolu

ene

C7H

80.

0000

820.

0000

060.

0000

930.

0004

440.

0000

090.

0000

090.

0000

030.

0005

420.

0001

10tra

ns-2

-But

ene

C4H

80.

0000

000.

0000

020.

0000

010.

0000

010.

0000

040.

0000

000.

0000

120.

0000

000.

0000

00

trans

-2-P

ente

neC

5H10

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Und

ecan

eC

11H

240.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

00

Unk

now

n Su

lphu

r (M

W=3

2)(b

lank

)0.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

000.

0000

010.

0000

00U

nkno

wn

Sulp

hurs

(MW

=32)

(bla

nk)

0.00

0006

0.00

0003

0.00

0003

0.00

0002

0.00

0009

0.00

0005

0.00

0002

0.00

0104

0.00

0130

Unr

esol

ved

Hyd

roca

rbon

s (C1

0+)

(bla

nk)

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

0.00

0000

Tota

l1.

0000

001.

0000

001.

0000

001.

0000

001.

0000

001.

0000

001.

0000

001.

0000

001.

0000

00

Page 77: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

66

Tab

le 2

4.

Sum

mar

y of

the

air

in

vent

gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posi

tion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in t

he B

ayte

x R

eno

Fiel

d w

hen

solu

tion

gas

only

is h

andl

ed in

pro

duct

ion

tank

s ba

sed

on sa

mpl

es in

Feb

ruar

y 20

13.

Nam

eC

ompo

und

Pad

13-1

4Pa

d 8-

21Pa

d 8-

31E

Air

in S

ampl

e85

.7%

96.8

%69

.0%

Nitr

ogen

N2

0.32

2631

0.00

0000

0.00

0000

Hyd

roge

n Su

lphi

deH

2S0.

0000

000.

0000

000.

0000

00C

arbo

n D

ioxi

deC

O2

0.13

8700

0.15

1104

0.05

0302

Met

hane

CH

40.

4800

050.

7966

720.

9360

78

Etha

neC

2H6

0.00

2658

0.00

4280

0.00

2722

Prop

ane

C3H

80.

0008

570.

0014

220.

0007

43

But

ane

C4H

100.

0017

210.

0013

500.

0004

48Is

obut

ane

C4H

100.

0015

690.

0008

580.

0006

71Pe

ntan

eC

5H12

0.00

2179

0.00

0915

0.00

0446

Isop

enta

neC

5H12

0.00

7625

0.00

2397

0.00

1089

Hex

ane

C6H

140.

0014

310.

0004

580.

0005

13

Ben

zene

C6H

60.

0000

320.

0000

000.

0000

00H

epta

neC

7H16

0.00

0285

0.00

0132

0.00

0075

1,2,

3-Tr

imet

hylb

enze

neC

9H12

0.00

0007

0.00

0068

0.00

0005

1,2,

4-Tr

imet

hylb

enze

neC

9H12

0.00

0010

0.00

0060

0.00

0012

1,3,

5-Tr

imet

hylb

enze

neC

9H12

0.00

0007

0.00

0032

0.00

0005

1,3-

But

adie

neC

4H6

0.00

0000

0.00

0000

0.00

0000

1-Bu

tene

C4H

80.

0000

010.

0000

000.

0000

00

1-H

exen

eC

6H12

0.00

0000

0.00

0000

0.00

0000

1-H

exen

e, 3

,4,5

-trim

ethy

l-C

9H18

0.00

0000

0.00

0000

0.00

0000

1-Pe

nten

eC

5H10

0.00

0000

0.00

0000

0.00

0000

2,2,

4-Tr

imet

hylp

enta

neC

8H18

0.00

0000

0.00

0000

0.00

0000

2,2-

Dim

ethy

lbut

ane

C6H

140.

0008

860.

0008

030.

0000

69

2,3,

4-Tr

imet

hylp

enta

neC

8H18

0.00

0220

0.00

0311

0.00

0027

2,3-

Dim

ethy

lbut

ane

C6H

140.

0024

040.

0018

140.

0002

13

2,3-

Dim

ethy

lpen

tane

C7H

160.

0019

530.

0015

640.

0001

71

Page 78: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

67

Tab

le 2

4.

Sum

mar

y of

the

air

in

vent

gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posi

tion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in t

he B

ayte

x R

eno

Fiel

d w

hen

solu

tion

gas

only

is h

andl

ed in

pro

duct

ion

tank

s ba

sed

on sa

mpl

es in

Feb

ruar

y 20

13.

Nam

eC

ompo

und

Pad

13-1

4Pa

d 8-

21Pa

d 8-

31E

2,4-

Dim

ethy

lpen

tane

C7H

160.

0000

000.

0000

000.

0000

002,

5-di

met

hyl T

hiop

hene

C6H

8S0.

0000

030.

0000

060.

0000

00

2-et

hyl T

hiop

hene

C6H

8S0.

0000

000.

0000

000.

0000

002H

-Pyr

an, t

etra

hydr

o-C

5H10

O0.

0000

000.

0000

000.

0000

002-

met

hyl T

hiop

hene

C5H

6S0.

0000

040.

0000

040.

0000

02

2-M

ethy

lhep

tane

C8H

180.

0002

640.

0001

950.

0000

652-

Met

hylh

exan

eC

7H16

0.00

0864

0.00

0398

0.00

0273

2-M

ethy

lpen

tane

C6H

140.

0036

670.

0013

140.

0008

532-

prop

yl th

ioph

ene

C7H

10S

0.00

0000

0.00

0000

0.00

0000

3-bu

tyl t

hiop

hene

(bla

nk)

0.00

0001

0.00

0006

0.00

0001

3-m

ethy

l Thi

ophe

neC

5H6S

0.00

0014

0.00

0020

0.00

0003

3-M

ethy

lhep

tane

C8H

180.

0003

170.

0003

170.

0001

23

3-M

ethy

lhex

ane

C7H

160.

0018

590.

0009

420.

0004

133-

Met

hylp

enta

neC

6H14

0.00

3435

0.00

1416

0.00

0640

Ace

tyle

neC

2H2

0.00

0000

0.00

0000

0.00

0000

Ally

l sul

phid

eC

6H10

S0.

0000

030.

0000

060.

0000

02B

utan

e, 2

,2,3

-trim

ethy

l-C

7H16

0.00

0000

0.00

0000

0.00

0000

But

yl m

erca

ptan

C4H

10S

0.00

0000

0.00

0000

0.00

0000

But

yl su

lphi

deC

8H18

S0.

0000

000.

0000

000.

0000

00

Car

bon

disu

lphi

deC

S20.

0000

000.

0000

000.

0000

00C

arbo

n m

onox

ide

CO

0.00

0000

0.00

0000

0.00

0000

Car

bony

l sul

phid

eC

OS

0.00

0000

0.00

0000

0.00

0000

Chl

orob

enze

ne-d

5C

6D5C

l0.

0000

000.

0000

000.

0000

00ci

s-2-

But

ene

C4H

80.

0000

000.

0000

000.

0000

00

cis-

2-Pe

nten

eC

5H10

0.00

0000

0.00

0000

0.00

0000

Cyc

lohe

xane

C6H

120.

0079

150.

0109

300.

0004

83

Cyc

lohe

xane

, 1,1

,3-tr

imet

hyl-

C9H

180.

0000

000.

0000

000.

0000

00

Page 79: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

68

Tab

le 2

4.

Sum

mar

y of

the

air

in

vent

gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posi

tion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in t

he B

ayte

x R

eno

Fiel

d w

hen

solu

tion

gas

only

is h

andl

ed in

pro

duct

ion

tank

s ba

sed

on sa

mpl

es in

Feb

ruar

y 20

13.

Nam

eC

ompo

und

Pad

13-1

4Pa

d 8-

21Pa

d 8-

31E

Cyc

lohe

xane

, 1,1

-dim

ethy

l-C

8H16

0.00

0000

0.00

0000

0.00

0000

Cyc

lohe

xane

, 1,2

-dim

ethy

l-, tr

ans-

C8H

160.

0000

000.

0000

000.

0000

00

Cyc

lohe

xane

, 1,3

-dim

ethy

l-, c

is-

C8H

160.

0000

000.

0000

000.

0000

00C

yclo

hexa

ne, 1

,3-d

imet

hyl-,

tran

s-C

8H16

0.00

0000

0.00

0000

0.00

0000

Cyc

lohe

xane

, 1,4

-dim

ethy

l-C

8H16

0.00

0000

0.00

0000

0.00

0000

Cyc

lohe

xane

, 1,4

-dim

ethy

l-, c

is-

C8H

160.

0000

000.

0000

000.

0000

00C

yclo

hexa

ne, e

thyl

-C

8H16

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

eC

5H10

0.00

2004

0.00

2077

0.00

0096

Cyc

lope

ntan

e, 1

,1,2

-trim

ethy

l-C

8H16

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, 1

,1-d

imet

hyl-

C7H

140.

0000

000.

0000

000.

0000

00

Cyc

lope

ntan

e, 1

,2,3

-trim

ethy

l-, (1

.alp

haC

8H16

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, 1

,2-d

imet

hyl-,

cis

-C

7H14

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, 1

,2-d

imet

hyl-,

tran

s-C

7H14

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, 1

,3-d

imet

hyl-

C7H

140.

0000

000.

0000

000.

0000

00

Cyc

lope

ntan

e, 1

,3-d

imet

hyl-,

cis-

C7H

140.

0000

000.

0000

000.

0000

00C

yclo

pent

ane,

1,3

-dim

ethy

l-, tr

ans-

C7H

140.

0000

000.

0000

000.

0000

00C

yclo

pent

ane,

1-e

thyl

-3-m

ethy

l-C

8H16

0.00

0000

0.00

0000

0.00

0000

Cyc

lope

ntan

e, 1

-met

hyl-3

-(1-m

ethy

leth

yl)

C9H

180.

0000

000.

0000

000.

0000

00C

yclo

pent

ane,

eth

yl-

C7H

140.

0000

000.

0000

000.

0000

00

Dec

ane

C10

H22

0.00

0000

0.00

0000

0.00

0000

Dim

ethy

l dis

ulph

ide

C2H

6S2

0.00

0000

0.00

0000

0.00

0000

Dim

ethy

l sul

phid

eC

2H6S

0.00

0000

0.00

0000

0.00

0000

Dim

ethy

l tris

ulph

ide

C2H

6S3

0.00

0010

0.00

0020

0.00

0005

Dod

ecan

eC

12H

260.

0000

000.

0000

000.

0000

00

Ethy

l ben

zene

C8H

100.

0001

230.

0002

190.

0000

18Et

hyl m

erca

ptan

C2H

6S0.

0000

000.

0000

000.

0000

00

Ethy

l met

hyl s

ulph

ide

C3H

8S0.

0000

000.

0000

000.

0000

00

Page 80: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

69

Tab

le 2

4.

Sum

mar

y of

the

air

in

vent

gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posi

tion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in t

he B

ayte

x R

eno

Fiel

d w

hen

solu

tion

gas

only

is h

andl

ed in

pro

duct

ion

tank

s ba

sed

on sa

mpl

es in

Feb

ruar

y 20

13.

Nam

eC

ompo

und

Pad

13-1

4Pa

d 8-

21Pa

d 8-

31E

Ethy

l sul

phid

eC

4H10

S0.

0000

000.

0000

000.

0000

00Et

hyla

cety

lene

C4H

60.

0000

000.

0000

000.

0000

00

Ethy

lene

C2H

40.

0000

000.

0000

000.

0000

00H

epty

l mer

capt

anC

7H16

S0.

0000

000.

0000

000.

0000

00H

exan

e, 2

,3-d

imet

hyl-

C8H

180.

0000

000.

0000

000.

0000

00

Hex

ane,

2,4

-dim

ethy

l-C

8H18

0.00

0000

0.00

0000

0.00

0000

Hex

ane,

2,5

-dim

ethy

l-C

8H18

0.00

0000

0.00

0000

0.00

0000

Hex

yl m

erca

ptan

C6H

14S

0.00

0000

0.00

0000

0.00

0000

Isob

utyl

mer

capt

anC

4H10

S0.

0000

000.

0000

000.

0000

00Is

obut

ylen

eC

4H8

0.00

0000

0.00

0000

0.00

0000

Isop

rene

C5H

80.

0000

000.

0000

000.

0000

00Is

opro

pyl m

erca

ptan

C3H

8S0.

0000

010.

0000

000.

0000

00

Isop

ropy

lben

zene

C9H

120.

0000

270.

0000

000.

0000

00m

,p-X

ylen

eC

8H10

0.00

0088

0.00

0117

0.00

0027

m-D

ieth

ylbe

nzen

eC

10H

140.

0000

000.

0000

500.

0000

00M

ethy

l mer

capt

anC

H4S

0.00

0000

0.00

0000

0.00

0000

Met

hylc

yclo

hexa

neC

7H14

0.00

8787

0.01

0271

0.00

0740

Met

hylc

yclo

pent

ane

C6H

120.

0048

800.

0044

110.

0004

23m

-Eth

ylto

luen

eC

9H12

0.00

0009

0.00

0034

0.00

0012

Non

ane

C9H

200.

0000

000.

0000

700.

0000

00n-

Prop

ylbe

nzen

eC

9H12

0.00

0018

0.00

0069

0.00

0008

Oct

ane

C8H

180.

0000

000.

0000

000.

0000

00

Oct

yl m

erca

ptan

C8H

18S

0.00

0000

0.00

0000

0.00

0000

o-Et

hylto

luen

eC

9H12

0.00

0009

0.00

0043

0.00

0007

o-X

ylen

eC

8H10

0.00

0041

0.00

0070

0.00

0011

p-D

ieth

ylbe

nzen

eC

10H

140.

0000

000.

0000

500.

0000

00

Pent

ane,

2,2

,3,4

-tetra

met

hyl-

C9H

200.

0000

000.

0000

000.

0000

00

Page 81: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

70

Tab

le 2

4.

Sum

mar

y of

the

air

in

vent

gas

and

air

-fre

e dr

y m

ole

frac

tion

com

posi

tion

prof

iles

of g

as v

ente

d fr

om p

rodu

ctio

n ta

nks

in t

he B

ayte

x R

eno

Fiel

d w

hen

solu

tion

gas

only

is h

andl

ed in

pro

duct

ion

tank

s ba

sed

on sa

mpl

es in

Feb

ruar

y 20

13.

Nam

eC

ompo

und

Pad

13-1

4Pa

d 8-

21Pa

d 8-

31E

Pent

ane,

2,4

-dim

ethy

l-C

7H16

0.00

0000

0.00

0000

0.00

0000

Pent

yl m

erca

ptan

C5H

12S

0.00

0000

0.00

0000

0.00

0000

p-Et

hylto

luen

eC

9H12

0.00

0005

0.00

0022

0.00

0006

Prop

ane,

2,2

-dim

ethy

l-C

5H12

0.00

0000

0.00

0000

0.00

0000

Prop

yl m

erca

ptan

C3H

8S0.

0000

000.

0000

000.

0000

00

Prop

ylen

eC

3H6

0.00

0005

0.00

0000

0.00

0001

Prop

yne

C3H

40.

0000

000.

0019

290.

0020

95

sec-

But

yl m

erca

ptan

C4H

10S

0.00

0000

0.00

0000

0.00

0000

Styr

ene

C8H

80.

0000

000.

0000

000.

0000

00Su

lphu

r dio

xide

S02

0.00

0000

0.00

0000

0.00

0000

tert-

But

yl m

erca

ptan

C4H

10S

0.00

0000

0.00

0000

0.00

0000

tert-

Pent

yl m

erca

ptan

C5H

12S

0.00

0000

0.00

0000

0.00

0000

Tetra

hydr

o th

ioph

ene

C4H

8S0.

0000

000.

0000

000.

0000

00Th

ioph

ene

C4H

4S0.

0000

140.

0000

190.

0000

07

Tolu

ene

C7H

80.

0003

990.

0000

740.

0000

64tra

ns-2

-But

ene

C4H

80.

0000

060.

0004

590.

0000

07tra

ns-2

-Pen

tene

C5H

100.

0000

000.

0000

000.

0000

00

Und

ecan

eC

11H

240.

0000

000.

0000

000.

0000

00U

nkno

wn

Sulp

hur (

MW

=32)

(bla

nk)

0.00

0000

0.00

0000

0.00

0000

Unk

now

n Su

lphu

rs (M

W=3

2)(b

lank

)0.

0000

460.

0002

020.

0000

22U

nres

olve

d H

ydro

carb

ons (

C10

+)(b

lank

)0.

0000

000.

0000

000.

0000

00To

tal

01.

0000

001.

0000

001.

0000

00

Page 82: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

71

Tab

le 2

5.Su

mm

ary

of t

he a

ir in

sam

ple

and

air-

free

dry

mol

e fr

actio

n co

mpo

sitio

n pr

ofile

s of

gas

flar

ed fr

om p

rodu

ctio

n ta

nks

in t

he

Bay

tex

Ren

o Fi

eld.

Nam

eC

ompo

und

Pad

4-23

Pad

9-21

SEA

ir in

Sam

ple

0.6%

0.4%

Nitr

ogen

N2

0.00

4092

0.00

4690

Hyd

roge

n Su

lphi

deH

2S0.

0000

000.

0000

01

Car

bon

Dio

xide

CO

20.

0514

900.

0884

75M

etha

neC

H4

0.92

8667

0.88

9683

Etha

neC

2H6

0.00

4465

0.00

6063

Prop

ane

C3H

80.

0003

860.

0008

69B

utan

eC

4H10

0.00

0453

0.00

0677

Isob

utan

eC

4H10

0.00

0575

0.00

0681

Pent

ane

C5H

120.

0007

480.

0005

81

Isop

enta

neC

5H12

0.00

1675

0.00

1600

Hex

ane

C6H

140.

0006

750.

0002

18

Ben

zene

C6H

60.

0000

000.

0000

00H

epta

neC

7H16

0.00

0048

0.00

0019

1,2,

3-Tr

imet

hylb

enze

neC

9H12

0.00

0000

0.00

0000

1,2,

4-Tr

imet

hylb

enze

neC

9H12

0.00

0000

0.00

0000

1,3,

5-Tr

imet

hylb

enze

neC

9H12

0.00

0000

0.00

0000

1,3-

But

adie

neC

4H6

0.00

0000

0.00

0000

1-Bu

tene

C4H

80.

0000

010.

0000

011-

Hex

ene

C6H

120.

0000

000.

0000

00

1-H

exen

e, 3

,4,5

-trim

ethy

l-C

9H18

0.00

0008

0.00

0017

1-Pe

nten

eC

5H10

0.00

0000

0.00

0000

2,2,

4-Tr

imet

hylp

enta

neC

8H18

0.00

0000

0.00

0000

2,2-

Dim

ethy

lbut

ane

C6H

140.

0000

780.

0001

90

2,3,

4-Tr

imet

hylp

enta

neC

8H18

0.00

0008

0.00

0012

2,3-

Dim

ethy

lbut

ane

C6H

140.

0002

890.

0003

632,

3-D

imet

hylp

enta

neC

7H16

0.00

0181

0.00

0163

2,4-

Dim

ethy

lpen

tane

C7H

160.

0000

000.

0000

00

Page 83: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

72

Tab

le 2

5.Su

mm

ary

of t

he a

ir in

sam

ple

and

air-

free

dry

mol

e fr

actio

n co

mpo

sitio

n pr

ofile

s of

gas

flar

ed fr

om p

rodu

ctio

n ta

nks

in t

he

Bay

tex

Ren

o Fi

eld.

Nam

eC

ompo

und

Pad

4-23

Pad

9-21

SE2,

5-di

met

hyl T

hiop

hene

C6H

8S0.

0000

000.

0000

002-

ethy

l Thi

ophe

neC

6H8S

0.00

0000

0.00

0000

2H-P

yran

, tet

rahy

dro-

C5H

10O

0.00

0000

0.00

0011

2-m

ethy

l Thi

ophe

neC

5H6S

0.00

0000

0.00

0000

2-M

ethy

lhep

tane

C8H

180.

0000

140.

0000

10

2-M

ethy

lhex

ane

C7H

160.

0002

680.

0001

072-

Met

hylp

enta

neC

6H14

0.00

1287

0.00

0691

2-pr

opyl

thio

phen

eC

7H10

S0.

0000

000.

0000

00

3-bu

tyl t

hiop

hene

(bla

nk)

0.00

0000

0.00

0000

3-m

ethy

l Thi

ophe

neC

5H6S

0.00

0001

0.00

0002

3-M

ethy

lhep

tane

C8H

180.

0000

180.

0000

143-

Met

hylh

exan

eC

7H16

0.00

0426

0.00

0192

3-M

ethy

lpen

tane

C6H

140.

0009

490.

0005

70A

cety

lene

C2H

20.

0000

000.

0000

00A

llyl s

ulph

ide

C6H

10S

0.00

0000

0.00

0000

But

ane,

2,2

,3-tr

imet

hyl-

C7H

160.

0000

030.

0000

00B

utyl

mer

capt

anC

4H10

S0.

0000

000.

0000

00

But

yl su

lphi

deC

8H18

S0.

0000

000.

0000

00C

arbo

n di

sulp

hide

CS2

0.00

0000

0.00

0000

Car

bon

mon

oxid

eC

O0.

0000

000.

0000

00

Car

bony

l sul

phid

eC

OS

0.00

0000

0.00

0000

Chl

orob

enze

ne-d

5C

6D5C

l0.

0000

000.

0000

00

cis-

2-B

uten

eC

4H8

0.00

0000

0.00

0000

cis-

2-Pe

nten

eC

5H10

0.00

0000

0.00

0000

Cyc

lohe

xane

C6H

120.

0007

980.

0012

84C

yclo

hexa

ne, 1

,1,3

-trim

ethy

l-C

9H18

0.00

0015

0.00

0023

Cyc

lohe

xane

, 1,1

-dim

ethy

l-C

8H16

0.00

0010

0.00

0028

Cyc

lohe

xane

, 1,2

-dim

ethy

l-, tr

ans-

C8H

160.

0000

000.

0000

37

Page 84: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

73

Tab

le 2

5.Su

mm

ary

of t

he a

ir in

sam

ple

and

air-

free

dry

mol

e fr

actio

n co

mpo

sitio

n pr

ofile

s of

gas

flar

ed fr

om p

rodu

ctio

n ta

nks

in t

he

Bay

tex

Ren

o Fi

eld.

Nam

eC

ompo

und

Pad

4-23

Pad

9-21

SEC

yclo

hexa

ne, 1

,3-d

imet

hyl-,

cis

-C

8H16

0.00

0042

0.00

0053

Cyc

lohe

xane

, 1,3

-dim

ethy

l-, tr

ans-

C8H

160.

0000

180.

0000

00C

yclo

hexa

ne, 1

,4-d

imet

hyl-

C8H

160.

0000

060.

0000

00

Cyc

lohe

xane

, 1,4

-dim

ethy

l-, c

is-

C8H

160.

0000

000.

0000

09C

yclo

hexa

ne, e

thyl

-C

8H16

0.00

0000

0.00

0017

Cyc

lope

ntan

eC

5H10

0.00

0232

0.00

0335

Cyc

lope

ntan

e, 1

,1,2

-trim

ethy

l-C

8H16

0.00

0010

0.00

0000

Cyc

lope

ntan

e, 1

,1-d

imet

hyl-

C7H

140.

0000

450.

0001

03

Cyc

lope

ntan

e, 1

,2,3

-trim

ethy

l-, (1

.alp

haC

8H16

0.00

0034

0.00

0044

Cyc

lope

ntan

e, 1

,2-d

imet

hyl-,

cis

-C

7H14

0.00

0179

0.00

0129

Cyc

lope

ntan

e, 1

,2-d

imet

hyl-,

tran

s-C

7H14

0.00

0000

0.00

0255

Cyc

lope

ntan

e, 1

,3-d

imet

hyl-

C7H

140.

0000

000.

0001

23

Cyc

lope

ntan

e, 1

,3-d

imet

hyl-,

cis

-C

7H14

0.00

0117

0.00

0000

Cyc

lope

ntan

e, 1

,3-d

imet

hyl-,

tran

s-C

7H14

0.00

0130

0.00

0000

Cyc

lope

ntan

e, 1

-eth

yl-3

-met

hyl-

C8H

160.

0000

060.

0000

06

Cyc

lope

ntan

e, 1

-met

hyl-3

-(1-m

ethy

leth

yl)

C9H

180.

0000

120.

0000

00C

yclo

pent

ane,

eth

yl-

C7H

140.

0000

650.

0000

53

Dec

ane

C10

H22

0.00

0000

0.00

0000

Dim

ethy

l dis

ulph

ide

C2H

6S2

0.00

0000

0.00

0000

Dim

ethy

l sul

phid

eC

2H6S

0.00

0000

0.00

0000

Dim

ethy

l tris

ulph

ide

C2H

6S3

0.00

0000

0.00

0000

Dod

ecan

eC

12H

260.

0000

000.

0000

00

Ethy

l ben

zene

C8H

100.

0000

000.

0000

00Et

hyl m

erca

ptan

C2H

6S0.

0000

000.

0000

00

Ethy

l met

hyl s

ulph

ide

C3H

8S0.

0000

000.

0000

00Et

hyl s

ulph

ide

C4H

10S

0.00

0000

0.00

0000

Ethy

lace

tyle

neC

4H6

0.00

0000

0.00

0000

Ethy

lene

C2H

40.

0000

000.

0000

00

Page 85: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

74

Tab

le 2

5.Su

mm

ary

of t

he a

ir in

sam

ple

and

air-

free

dry

mol

e fr

actio

n co

mpo

sitio

n pr

ofile

s of

gas

flar

ed fr

om p

rodu

ctio

n ta

nks

in t

he

Bay

tex

Ren

o Fi

eld.

Nam

eC

ompo

und

Pad

4-23

Pad

9-21

SEH

epty

l mer

capt

anC

7H16

S0.

0000

000.

0000

00H

exan

e, 2

,3-d

imet

hyl-

C8H

180.

0000

080.

0000

09H

exan

e, 2

,4-d

imet

hyl-

C8H

180.

0000

220.

0000

20

Hex

ane,

2,5

-dim

ethy

l-C

8H18

0.00

0014

0.00

0006

Hex

yl m

erca

ptan

C6H

14S

0.00

0000

0.00

0000

Isob

utyl

mer

capt

anC

4H10

S0.

0000

000.

0000

00Is

obut

ylen

eC

4H8

0.00

0000

0.00

0000

Isop

rene

C5H

80.

0000

000.

0000

00

Isop

ropy

l mer

capt

anC

3H8S

0.00

0000

0.00

0000

Isop

ropy

lben

zene

C9H

120.

0000

000.

0000

00

m,p

-Xyl

ene

C8H

100.

0000

000.

0000

00m

-Die

thyl

benz

ene

C10

H14

0.00

0000

0.00

0000

Met

hyl m

erca

ptan

CH

4S0.

0000

000.

0000

00M

ethy

lcyc

lohe

xane

C7H

140.

0006

540.

0008

65M

ethy

lcyc

lope

ntan

eC

6H12

0.00

0661

0.00

0587

m-E

thyl

tolu

ene

C9H

120.

0000

000.

0000

00N

onan

eC

9H20

0.00

0000

0.00

0000

n-Pr

opyl

benz

ene

C9H

120.

0000

000.

0000

00O

ctan

eC

8H18

0.00

0000

0.00

0000

Oct

yl m

erca

ptan

C8H

18S

0.00

0000

0.00

0000

o-Et

hylto

luen

eC

9H12

0.00

0000

0.00

0000

o-X

ylen

eC

8H10

0.00

0000

0.00

0000

p-D

ieth

ylbe

nzen

eC

10H

140.

0000

000.

0000

00Pe

ntan

e, 2

,2,3

,4-te

tram

ethy

l-C

9H20

0.00

0014

0.00

0000

Pent

ane,

2,4

-dim

ethy

l-C

7H16

0.00

0000

0.00

0019

Pent

yl m

erca

ptan

C5H

12S

0.00

0000

0.00

0000

p-Et

hylto

luen

eC

9H12

0.00

0000

0.00

0000

Prop

ane,

2,2

-dim

ethy

l-C

5H12

0.00

0011

0.00

0039

Page 86: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

75

Tab

le 2

5.Su

mm

ary

of t

he a

ir in

sam

ple

and

air-

free

dry

mol

e fr

actio

n co

mpo

sitio

n pr

ofile

s of

gas

flar

ed fr

om p

rodu

ctio

n ta

nks

in t

he

Bay

tex

Ren

o Fi

eld.

Nam

eC

ompo

und

Pad

4-23

Pad

9-21

SEPr

opyl

mer

capt

anC

3H8S

0.00

0000

0.00

0000

Prop

ylen

eC

3H6

0.00

0001

0.00

0001

Prop

yne

C3H

40.

0000

000.

0000

00

sec-

But

yl m

erca

ptan

C4H

10S

0.00

0000

0.00

0000

Styr

ene

C8H

80.

0000

000.

0000

00

Sulp

hur d

ioxi

deS0

20.

0000

000.

0000

00te

rt-B

utyl

mer

capt

anC

4H10

S0.

0000

000.

0000

00te

rt-Pe

ntyl

mer

capt

anC

5H12

S0.

0000

000.

0000

00

Tetra

hydr

o th

ioph

ene

C4H

8S0.

0000

000.

0000

00Th

ioph

ene

C4H

4S0.

0000

020.

0000

03

Tolu

ene

C7H

80.

0000

850.

0000

53tra

ns-2

-But

ene

C4H

80.

0000

010.

0000

01

trans

-2-P

ente

neC

5H10

0.00

0000

0.00

0000

Und

ecan

eC

11H

240.

0000

000.

0000

00U

nkno

wn

Sulp

hur (

MW

=32)

(bla

nk)

0.00

0000

0.00

0000

Unk

now

n Su

lphu

rs (M

W=3

2)(b

lank

)0.

0000

020.

0000

02U

nres

olve

d H

ydro

carb

ons (

C10

+)(b

lank

)0.

0000

000.

0000

00

Tota

l1.

0000

001.

0000

00

Page 87: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the
Page 88: BaytexRenoAirStudy Clearstone Engineering Ltd. …...Tank emissions were determined through the measurement of vent gases from 10 production facilities. The vent gas flow rate of the

Printed in Canada13-25343-0