26
Bayesian Semiparametric Multi-State Models Thomas Kneib & Andrea Hennerfeind Department of Statistics Ludwig-Maximilians-University Munich 14.10.2006

Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Bayesian Semiparametric Multi-State Models

Thomas Kneib & Andrea Hennerfeind

Department of StatisticsLudwig-Maximilians-University Munich

14.10.2006

Page 2: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Multi-State Models

Multi-State Models

• Multi-state models form a general class for the description of the evolution of discretephenomena in continuous time.

• We observe paths of a process

X = {X(t), t ≥ 0} with X(t) ∈ {1, . . . , q}.

• Yields a similar data structure as for Markov processes.

• Examples:

– Recurrent events:

����3

����

����

1 2........................................................................................................................................................

.......................

........................................................................................................................................................

.......................

........................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

........................................................................................................................

.......................

........................................................................................................................

.......................

Bayesian Semiparametric Multi-State Models 1

Page 3: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Multi-State Models

– Disease progression:

����

q

����

����

����

����

1 2 3 q-1· · ·

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.............................................................................................................

.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................................................................................................................................................................

.......................

................................................................................................................................................................................................................................................................................................

.......

.......................

.......................................................................................................................................................................................................................................................................................................

.......................

– Competing risks:

����

����

����

����

2 3 4 q

����1

· · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................................................................................................................................................

.......................

...................................................................................................................................................................................................................................................................................................

.......................

.........................................................................................................................................................................................................................................................................................

.......................

• (Homogenous) Markov processes can be compactly described in terms of the transitionintensities

λij = lim∆t→0

P (X(t + ∆t) = j|X(t) = i)∆t

Bayesian Semiparametric Multi-State Models 2

Page 4: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Multi-State Models

• Often not flexible enough in practice since

– The transition intensities might vary over time.

– The transition intensities might be related to covariates.

– The Markov model implies independent and exponentially distributed waiting times.

Bayesian Semiparametric Multi-State Models 3

Page 5: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data

Human Sleep Data

• Human sleep can be considered an example of a recurrent event type multi-statemodel.

• State Space:

Awake Phases of wakefulnessREM Rapid eye movement phase (dream phase)

Non-REM Non-REM phases (may be further differentiated)

• Aims of sleep research:

– Describe the dynamics underlying the human sleep process.

– Analyse associations between the sleep process and nocturnal hormonal secretion.

– (Compare the sleep process of healthy and diseased persons.)

Bayesian Semiparametric Multi-State Models 4

Page 6: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data

stat

e

awak

eN

on−

RE

MR

EM

time since sleep onset (in hours)

cort

isol

0 2 4 6 8

050

100

150

Bayesian Semiparametric Multi-State Models 5

Page 7: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data

• Data generation:

– Sleep recording based on electroencephalographic (EEG) measures every 30 seconds(afterwards classified into the three sleep stages).

– Measurement of hormonal secretion based on blood samples taken every 10minutes.

– A training night familiarises the participants of the study with the experimentalenvironment.

⇒ Sleep processes of 70 participants.

• Simple parametric approaches are not appropriate in this application due to

– Changing dynamics of human sleep over night.

– The time-varying influence of the hormonal concentration on the transitionintensities.

– Unobserved heterogeneity.

⇒ Model transition intensities nonparametrically.

Bayesian Semiparametric Multi-State Models 6

Page 8: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Specification of Transition Intensities

Specification of Transition Intensities

• To reduce complexity, we consider a simplified transition space:

Awake

Non-REM REM

Sleep

?

6

-

¾

λRN(t)

λNR(t)

λAS(t) λSA(t)

Bayesian Semiparametric Multi-State Models 7

Page 9: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Specification of Transition Intensities

• Model specification:

λAS,i(t) = exp[γ

(AS)0 (t) + b

(AS)i

]

λSA,i(t) = exp[γ

(SA)0 (t) + b

(SA)i

]

λNR,i(t) = exp[γ

(NR)0 (t) + ci(t)γ

(NR)1 (t) + b

(NR)i

]

λRN,i(t) = exp[γ

(RN)0 (t) + ci(t)γ

(RN)1 (t) + b

(RN)i

]

where

ci(t) =

{1 cortisol > 60 n mol/l at time t

0 cortisol ≤ 60 n mol/l at time t,

b(j)i ∼ N(0, τ2

j ) = transition- and individual-specific frailty terms.

Bayesian Semiparametric Multi-State Models 8

Page 10: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Specification of Transition Intensities

• Penalised splines for the baselines and time-varying effects:

– Approximate γ(t) by a weighted sum of B-spline basis functions

γ(t) =∑

j ξjBj(t).

– Employ a large number of basis functions to enable flexibility.

– Penalise k-th order differences between parameters of adjacent basis functions toensure smoothness:

Pen(ξ|τ2) =1

2τ2

∑j(∆kξj)2.

– Bayesian interpretation: Assume a k-th order random walk prior for ξj, e.g.

ξj = 2ξj−1 − ξj−2 + uj, uj ∼ N(0, τ2) (RW2).

– This yields the prior distribution:

p(ξ|τ2) ∝ exp(− 1

2τ2ξ′Kξ

).

Bayesian Semiparametric Multi-State Models 9

Page 11: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Counting Process Representation

Counting Process Representation

• A multi-state model with k different types of transitions can be equivalently expressedin terms of k counting processes Nh(t), h = 1, . . . , k counting these transitions.

awak

eN

on−

RE

MR

EM

700 720 740 760 780 800

awake => sleep

700 720 740 760 780 800

2122

2324

Non−REM => REM

700 720 740 760 780 800

67

89

sleep => awake

700 720 740 760 780 800

2223

2425

REM => Non−REM

700 720 740 760 780 800

45

67

Bayesian Semiparametric Multi-State Models 10

Page 12: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Counting Process Representation

• From the counting process representation we can derive the likelihood contributionsfor individual i:

li =k∑

h=1

[∫ Ti

0

log(λhi(t))dNhi(t)−∫ Ti

0

λhi(t)Yhi(t)dt

]

=ni∑

j=1

k∑

h=1

[δhi(tij) log(λhi(tij))− Yhi(tij)

∫ tij

ti,j−1

λhi(t)dt

].

k number of possible transitions.

Nhi(t) counting process for type h event and individual i.

Yhi(t) at risk indicator for type h event and individual i.

tij event times of individual i.

ni number of events for individual i.

δhi(tij) transition indicator for type h transition.

Bayesian Semiparametric Multi-State Models 11

Page 13: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Counting Process Representation

• The counting process representation also provides a possibility for model validationbased on martingale residuals.

• Every counting process is a submartingale and can therefore (Doob-Meyer-)decomposed as

Nhi(t) = Ahi(t) + Mhi(t)

=∫ t

0

λhi(t)Yhi(t)du + Mhi(t),

where Mhi(t) is a martingale and Ahi(t) is the (predictable) compensator process ofNhi(t).

• The martingales Mhi(t) can be interpreted as continuous-time residuals.

• Plots of Mhi(t) against t can be used to compare models, evaluate the model fit, etc.

Bayesian Semiparametric Multi-State Models 12

Page 14: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Bayesian Inference

Bayesian Inference

• In principle, a multi-state model consists of several duration time models

⇒ Adopt methodology developed for nonparametric hazard regression.

• Fully Bayesian inference based on Markov Chain Monte Carlo simulation techniques(Hennerfeind, Brezger & Fahrmeir, 2006):

– Assign inverse gamma priors to the variance and smoothing parameters.

– Metropolis-Hastings update for the regression coefficients (based on IWLS-proposals).

– Gibbs sampler for the variances (inverse gamma with updated parameters).

– Efficient algorithms make use of the sparse matrix structure of the matricesinvolved.

Bayesian Semiparametric Multi-State Models 13

Page 15: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Bayesian Inference

• Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006):

– Consider the variances and smoothing parameters as unknown constants to beestimated by mixed model methodology.

– Problem: The P-spline priors are partially improper.

– Mixed model representation: Decompose the vector of regression coefficients as

ξ = Xβ + Zb,

wherep(β) ∝ const and b ∼ N(0, τ2I).

⇒ β is a fixed effect and b is an i.i.d. random effect.

– Penalised likelihood estimation of the regression coefficients in the mixed model(posterior modes).

– Marginal likelihood estimation of the variance and smoothing parameters (Laplaceapproximation).

Bayesian Semiparametric Multi-State Models 14

Page 16: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Software

Software

• Implemented in BayesX.

• Public domain software package for Bayesian inference in geoadditive and relatedmodels.

• Available from

http://www.stat.uni-muenchen.de/~bayesx

Bayesian Semiparametric Multi-State Models 15

Page 17: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

Human Sleep Data II

• Baseline effects I:

0 2 4 6 8

−2.

5−

2.0

−1.

5−

1.0

awake −> sleep (mixed model)

0 2 4 6 8

−2.

5−

2.0

−1.

5−

1.0

awake −> sleep (MCMC)

0 2 4 6 8

−4.

5−

4.0

−3.

5−

3.0

−2.

5−

2.0

−1.

5

sleep −> awake (mixed model)

0 2 4 6 8

−4.

5−

4.0

−3.

5−

3.0

−2.

5−

2.0

−1.

5

sleep −> awake (MCMC)

Bayesian Semiparametric Multi-State Models 16

Page 18: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

• Baseline effects II:

0 2 4 6 8

−14

−12

−10

−8

−6

−4

−2

Non−REM −> REM (mixed model)

0 2 4 6 8

−14

−12

−10

−8

−6

−4

−2

Non−REM −> REM (MCMC)

0 2 4 6 8

−4.

5−

4.0

−3.

5−

3.0

−2.

5

REM −> Non−REM (mixed model)

0 2 4 6 8

−4.

5−

4.0

−3.

5−

3.0

−2.

5

REM −> Non−REM (MCMC)

Bayesian Semiparametric Multi-State Models 17

Page 19: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

• Time-varying effects for a high level of cortisol:

0 2 4 6 8

−4

−3

−2

−1

01

2

Non−REM −> REM (mixed model)

0 2 4 6 8

−4

−3

−2

−1

01

2

Non−REM −> REM (MCMC)

0 2 4 6 8

−2

−1

01

REM −> Non−REM (mixed model)

0 2 4 6 8

−2

−1

01

REM −> Non−REM (MCMC)

Bayesian Semiparametric Multi-State Models 18

Page 20: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

• The fully Bayesian approach detects individual-specific variation for all transitions.

• The empirical Bayes approach only detects individual-specific variation for thetransition between REM and Non-REM.

Bayesian Semiparametric Multi-State Models 19

Page 21: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

0 200 400 600 800

−5

05

10

Martingale residuals REM => Non−REMM

arko

v M

odel

0 200 400 600 800

−5

05

10

Mix

ed M

odel

0 200 400 600 800

−5

05

10

MC

MC

Bayesian Semiparametric Multi-State Models 20

Page 22: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

0 200 400 600 800

05

1015

2025

3035

Standardised martingale residuals REM => Non−REMM

arko

v M

odel

0 200 400 600 800

05

1015

2025

3035

Mix

ed M

odel

0 200 400 600 800

05

1015

2025

3035

MC

MC

Bayesian Semiparametric Multi-State Models 21

Page 23: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

Mar

kov

Mix

ed M

odel

MC

MC

−15 −10 −5 0 5 10

0.0

0.2

0.4

awake => sleep

t = 100−20 −10 0 10

0.00

0.10

awake => sleep

t = 300−20 −10 0 10 20

0.00

0.06

awake => sleep

t = 500−40 −30 −20 −10 0 10 20 30

0.00

0.04

0.08

awake => sleep

t = 700

−5 0 5 10

0.00

0.10

sleep => awake

t = 100−10 0 10 20 30

0.00

0.10

sleep => awake

t = 300−20 −10 0 10 20 30

0.00

0.06

0.12

sleep => awake

t = 500−20 −10 0 10 20 30 40

0.00

0.10

sleep => awake

t = 700

−4 −2 0 2 4 6

0.0

0.2

0.4

Non−REM => REM

t = 200−5 0 5

0.00

0.10

0.20

Non−REM => REM

t = 400−10 −5 0 5 10

0.00

0.10

0.20

Non−REM => REM

t = 600−10 −5 0 5 10 15 20

0.00

0.10

0.20

Non−REM => REM

t = 800

−2 0 2 4

0.0

0.2

0.4

0.6

REM => Non−REM

t = 200−4 −2 0 2 4 6

0.0

0.2

REM => Non−REM

t = 400−5 0 5

0.00

0.10

0.20

REM => Non−REM

t = 600−5 0 5 10

0.00

0.10

0.20

REM => Non−REM

t = 800

Bayesian Semiparametric Multi-State Models 22

Page 24: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Human Sleep Data II

Mar

kov

Mix

ed M

odel

MC

MC

−4 −2 0 2 4 6 8

0.0

0.2

0.4

awake => sleep

t = 100−2 0 2 4 6 8

0.0

0.2

0.4

0.6

awake => sleep

t = 300−2 0 2 4 6

0.0

0.4

0.8

awake => sleep

t = 500−2 0 2 4 6

0.0

0.6

1.2

awake => sleep

t = 700

0 5 10 15

0.0

0.2

0.4

sleep => awake

t = 1000 2 4 6 8

0.0

0.4

0.8

sleep => awake

t = 300−1 0 1 2 3 4 5

0.0

0.4

0.8

1.2

sleep => awake

t = 500−1 0 1 2 3 4

0.0

1.0

2.0

sleep => awake

t = 700

0 5 10 15

0.0

0.4

0.8

1.2

Non−REM => REM

t = 200−2 −1 0 1 2 3 4

0.0

0.4

0.8

1.2

Non−REM => REM

t = 400−1 0 1 2

0.0

0.4

0.8

1.2

Non−REM => REM

t = 600−1 0 1 2

0.0

0.5

1.0

1.5

Non−REM => REM

t = 800

0 5 10

0.00

0.15

0.30

REM => Non−REM

t = 2000 5 10

0.0

0.2

0.4

REM => Non−REM

t = 400−2 0 2 4 6

0.0

0.4

0.8

REM => Non−REM

t = 600−1 0 1 2

0.0

0.4

0.8

REM => Non−REM

t = 800

Bayesian Semiparametric Multi-State Models 23

Page 25: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib Things to remember. . .

Things to remember. . .

• Computationally feasible semiparametric approach for the analysis of multi-statemodels.

• Fully Bayesian and empirical Bayes inference.

• Model validation based on martingale residuals.

• Directly extendable to more complicated models including

– Nonparametric effects of continuous covariates.

– Spatial effects.

– Interaction surfaces and varying coefficients.

• Future work:

– Application to larger data sets and different types of multi-state models.

– Consider coarsened observations, i.e. interval censored multi-state data.

Bayesian Semiparametric Multi-State Models 24

Page 26: Bayesian Semiparametric Multi-State Models...Thomas Kneib Bayesian Inference † Mixed model based empirical Bayes inference (Kneib & Fahrmeir, 2006): { Consider the variances and

Thomas Kneib References

References

• Brezger, Kneib & Lang (2005): BayesX: Analyzing Bayesian structured additiveregression models. Journal of Statistical Software, 14 (11).

• Hennerfeind, Brezger, and Fahrmeir (2006): Geoadditive survival models.Journal of the American Statistical Association, 101, 1065-1075.

• Kneib & Fahrmeir (2006): A mixed model approach for geoadditive hazardregression. Scandinavian Journal of Statistics, to appear.

• A place called home:

http://www.stat.uni-muenchen.de/~kneib

Bayesian Semiparametric Multi-State Models 25