5
Solution of 8.β of Bartle, The Elements of Real Analysis, 2/e Written by Men-Gen Tsai email: b8990208 [email protected] du.tw 8.β . In this project, let {a 1 , a 2 ,...,a n }, and so forth, be sets of n positive real num bers. (a) In can be proved (for example, by using the Mean Value Theorem) that if a and b are positive and 0 < α < 1, then a α b 1α αa + (1 α)b and that the equality holds if and only if a = b. Assume this, let r > 1 and let s satisfy 1 r + 1 s = 1, (so that s > 1 and r + s = rs). Show that if A and B are positive, then AB A r r + B s s , and that the equality holds if and only if A r = B s . (b) Let {a 1 ,...,a n } and {b 1 ,...,b n } be posi tiv e real numbers. If r,s > 1 and (1/r) + (1/s) = 1, establish H¨ older’s Inequality n  j =1 a  j b  j n  j=1 a r  j 1/r n  j =1 b r  j 1/r (Hint: Let A = ( a r  j ) 1/r and B = ( b r  j ) 1/r and apply part (a) to a  j /A and b  j /B.) (c) Using H¨ older’s Inequality, establish Minkowski Inequality n  j=1 (a  j + b  j ) r 1/r n  j =1 a r  j 1/r + n  j =1 b r  j 1/r 1

Bartle 8 Beta

Embed Size (px)

Citation preview

Page 1: Bartle 8 Beta

8/8/2019 Bartle 8 Beta

http://slidepdf.com/reader/full/bartle-8-beta 1/5

Solution of 8.β  of Bartle, TheElements of Real Analysis, 2/eWritten by Men-Gen Tsai 

email: [email protected] 

8.β . In this project, let {a1, a2,...,an}, and so forth, be sets of  n positive

real numbers.

(a) In can be proved (for example, by using the Mean Value Theorem)

that if  a and b are positive and 0 < α < 1, then

aαb1−α ≤ αa + (1 − α)b

and that the equality holds if and only if  a = b. Assume this, let r > 1 and

let s satisfy1

r+

1

s= 1,

(so that s > 1 and r + s = rs). Show that if  A and B are positive, then

AB ≤Ar

r

+Bs

s

,

and that the equality holds if and only if  Ar = Bs.

(b) Let {a1,...,an} and {b1,...,bn} be positive real numbers. If  r, s > 1

and (1/r) + (1/s) = 1, establish Holder’s Inequality

n j=1

a jb j ≤ n

 j=1

ar j

1/r n j=1

br j

1/r

(Hint: Let A = (

ar j)1/r and B = (

br j)1/r and apply part (a) to a j/A and

b j/B.)

(c) Using Holder’s Inequality, establish Minkowski Inequality n

 j=1

(a j + b j)r1/r

≤ n j=1

ar j

1/r+ n j=1

br j

1/r

1

Page 2: Bartle 8 Beta

8/8/2019 Bartle 8 Beta

http://slidepdf.com/reader/full/bartle-8-beta 2/5

(Hint: (a + b)r = (a + b)(a + b)r/s = a(a + b)r/s + b(a + b)r/s.)

(d) Using Holder’s Inequality, prove that

1

n

n j=1

a j ≤

1

n

n j=1

ar j

1/r

(e) If  a1 ≤ a2 and b1 ≤ b2, then (a1 − a2)(b1 − b2) ≥ 0 and hence

a1b1 + a2b2 ≥ a1b2 + a2b1.

Show that if  a1 ≤ a2 ≤ ... ≤ an and b1 ≤ b2 ≤ ... ≤ bn, then

nn

 j=1

a jb j ≥ n

 j=1

a j

n j=1

b j

(f) Suppose that 0 ≤ a1 ≤ a2 ≤ ... ≤ an and 0 ≤ b1 ≤ b2 ≤ ... ≤ bn and

r ≥ 1. Establish the Chebyshev Inequality1

n

n j=1

ar j

1/r1

n

n j=1

br j

1/r≤

1

n

n j=1

(a jb j)r1/r

Show that this inequality must be reversed of  {a j} is increasing and {b j} is

decreasing.

Proof of (a): Let f (x) = αx + (1 − α) − xα, where x = a/b. Thus

(x) = α − αxα−1

= α(1 − xα−1

).

Hence f (x) attains its minimum at x = 1 (, a = b,) and f (1) = 0. Hence

f (x) = αx + (1 − α)− xα ≥ 0. Put x = a/b I have

α(a

b) − (1 − α)− (

a

b)α ≥ 0

2

Page 3: Bartle 8 Beta

8/8/2019 Bartle 8 Beta

http://slidepdf.com/reader/full/bartle-8-beta 3/5

or

aαb1−α ≤ αa + (1 − α)b.

Next, let α = 1/r, a = A1/α, and b = B1/(1−α). Hence

AB ≤Ar

r+

Bs

s.

Proof of (b): Let A = (

ar j)1/r, B = (

br j)1/r and apply part (a) to

a j/A and b j/B:a jA

b jB≤

1r

a jA

r

+1s

b jB

s

for all 1 ≤  j ≤ n. Sum them up:

n j=1

a jA

b jB≤

1

r

n j=1

a jA

r

+1

s

n j=1

b jB

s

1

AB

n j=1

a jb j ≤ 1.

Thus,n

 j=1

a jb j ≤

n j=1

ar j

1/r

n j=1

br j

1/r

Proof of (c): By using Holder’s Inequality:

a j

a j + b j

r/s

ar j

1/r(a j + b j)r

1/s

b j

a j + b j

r/s

br j

1/r

(a j + b j)r1/s

.

Thus

a j + b j

r

(a j + b j)r1/s

ar j

1/r+

br j

1/r

(a j + b j)r

1/r≤

ar j

1/r+

br j

1/r.

3

Page 4: Bartle 8 Beta

8/8/2019 Bartle 8 Beta

http://slidepdf.com/reader/full/bartle-8-beta 4/5

Proof of (d): Let b j = 1/n for all j between 1 and n. Thus

n j=1

a j1

n≤ n j=1

ar j

1/r n j=1

(1

n)r1/s

.

Hence1

n

n j=1

a j ≤

1

n

n j=1

ar j

1/r

Proof of (e): Note that

(ai − a j)(bi − b j) ≥ 0

for all i and j. Hence

aibi + a jb j ≥ aib j + a jbi

for all i and j. Sum them up as following:

n

 j=1

n

i=1

aibi + a jb j ≥n

 j=1

n

i=1

aib j + a jbi

n j=1

(na jb j +n

i=1

aibi) ≥n

 j=1

(b jn

i=1

ai + a jn

i=1

bi)

nn

 j=1

(a jb j + nn

i=1

aibi) ≥ n

i=1

ai

n j=1

b j

+ n j=1

a j

ni=1

bi

Hence

nn

 j=1

a jb j ≥ n

 j=1

a j

n j=1

b j

Note: If  a1 ≤ a2 ≤ ... ≤ an and b1 ≥ b2 ≥ ... ≥ bn (or a1 ≥ a2 ≥ ... ≥ an

and b1 ≤ b2 ≤ ... ≤ bn), then

nn

 j=1

a jb j ≤ n

 j=1

a j

n j=1

b j

4

Page 5: Bartle 8 Beta

8/8/2019 Bartle 8 Beta

http://slidepdf.com/reader/full/bartle-8-beta 5/5

It will be used in part (f).

Proof of (f ): Note that 0 ≤ ar1 ≤ ar

2 ≤ ... ≤ arn and 0 ≤ br1 ≤ br2 ≤ ... ≤ brn

if  r ≥ 1. Hence by part (e) I have

n j=1

ar j

n j=1

br j

≤ n

n j=1

(ar jbr j).

Hence 1

n

n j=1

ar j

1/r1

n

n j=1

br j

1/r≤

1

n

n j=1

(a jb j)r1/r

Also, by the note of part (e), this inequality must be reversed of  {a j} is

increasing and {b j} is decreasing.

5