41
Asymptotic behavior of singularly perturbed control system: non-periodic setting Thuong Nguyen (Joint work with A. Siconolfi) SADCO Internal Review Metting Rome, Nov 10-12, 2014 Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 1 / 26

Asymptotic behavior of singularly perturbed control …€¦ · Asymptotic behavior of singularly perturbed control ... [Lions, Papanicolau, Varadhan 1986]; ... Asymptotic behavior

  • Upload
    lamque

  • View
    247

  • Download
    0

Embed Size (px)

Citation preview

Asymptotic behavior of singularly perturbed controlsystem: non-periodic setting

Thuong Nguyen

(Joint work with A. Siconolfi)

SADCO Internal Review MettingRome, Nov 10-12, 2014

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 1 / 26

Overview

1 Introduction

2 Periodic setting: Results of Alvarez & Bardi 2003, 2010

3 Non-periodic setting: Some new results

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 2 / 26

1. Introduction

Singularly perturbed control system:X ′(s) = f

(X (s),Y (s), α(s)

), s > 0

Y ′(s) =1

εg(X (s),Y (s), α(s)

), s > 0

X (0) = x , Y (0) = y .

(Sε)

α : [0,+∞)→ A measurable function (control),

A ⊂ Rd be a compact subset;

f : Rn × Rm × A→ Rn and g : Rn × Rm × A→ Rm

are the dynamics;

(x , y) ∈ Rn × Rm initial position, ε > 0 smallparameter;

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 3 / 26

1. Introduction

Singularly perturbed control system:X ′(s) = f

(X (s),Y (s), α(s)

), s > 0

Y ′(s) =1

εg(X (s),Y (s), α(s)

), s > 0

X (0) = x , Y (0) = y .

(Sε)

α : [0,+∞)→ A measurable function (control),

A ⊂ Rd be a compact subset;

f : Rn × Rm × A→ Rn and g : Rn × Rm × A→ Rm

are the dynamics;

(x , y) ∈ Rn × Rm initial position, ε > 0 smallparameter;

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 3 / 26

trajectory:(X ε(s),X ε(s)

)≡(X ε(s; x , y , α),X ε(s; x , y , α)

),

X ε(·) is slow trajectory, Y ε(·) is fast trajectory.

Value function: for (x , y) ∈ Rn × Rm, t > 0

v ε(x , y , t) := infα

{∫ t

0

`(X ε(s),Y ε(s), α(s)

)ds+h

(X ε(t)

)}` : Rn × Rm × A→ R is running cost;

h : Rn → R is final cost (or terminal cost).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 4 / 26

trajectory:(X ε(s),X ε(s)

)≡(X ε(s; x , y , α),X ε(s; x , y , α)

),

X ε(·) is slow trajectory, Y ε(·) is fast trajectory.

Value function: for (x , y) ∈ Rn × Rm, t > 0

v ε(x , y , t) := infα

{∫ t

0

`(X ε(s),Y ε(s), α(s)

)ds+h

(X ε(t)

)}` : Rn × Rm × A→ R is running cost;

h : Rn → R is final cost (or terminal cost).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 4 / 26

Approaches for singular perturbation problem

Goal. Asymptotic analysis when ε goes to zero ?

Dynamical system approach:

Asymptotic behavior of trajectory(X ε(·),Y ε(·)

), as

ε→ 0.

Order reduction method:I for ODE [Levinson & Tichonov];I for control system [Kokotov́ıc, Khalil, O’Reilly, Bensoussan, Dontchev,

Zolezzi, Veliov, ...];

Averaging method (limit occupational measures):I Artstein, Gaitsgory, Leizarowitz and orthers.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 5 / 26

Approaches for singular perturbation problem

Goal. Asymptotic analysis when ε goes to zero ?

Dynamical system approach:

Asymptotic behavior of trajectory(X ε(·),Y ε(·)

), as

ε→ 0.

Order reduction method:I for ODE [Levinson & Tichonov];I for control system [Kokotov́ıc, Khalil, O’Reilly, Bensoussan, Dontchev,

Zolezzi, Veliov, ...];

Averaging method (limit occupational measures):I Artstein, Gaitsgory, Leizarowitz and orthers.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 5 / 26

PDE approach: [Alvarez & Bardi, 2001, 2003, 2010]

Asymptotic behavior of value function v ε, as ε→ 0 ?

Under suitable assumptions, v ε is the unique viscositysolution of HJB equation{v εt + H

(x , y ,Dxv

ε,Dyv

ε

ε

)= 0 in Rn × Rm ×(0,+∞),

v ε(x , y , 0) = h(x) in Rn × Rm,

where

H(x , y , p, q) = maxa∈A

{−p·f (x , y , a)−q·g(x , y , a)−`(x , y , a)

}.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 6 / 26

PDE approach aims at characterizing limit of v ε asviscosity (sub-super) solutions of appropriate effectiveHJB equation{

vt + H(x ,Dv) = 0 in Rn × (0,+∞),

v(x , 0) = h(x) in Rn.(1)

→ In this talk, we will follow the PDE approach.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 7 / 26

2. Periodic setting: [Alvarez & Bardi 2003, 2010]

Standing assumptions:

Standard assumptions on datum: f , g , `, h boundeduniformly continuous; f , g Lipschitz continuous instate variables, uniformly in control variable;

Periodicity: f , g , ` are Zm-periodic in the fast variable;

Bounded time controllability on the fast system{Y ′(τ) = g

(x ,Y (τ), α(τ)

), τ > 0

Y (0) = y , x is fixed in Rn.(FS)

for fixed x ∈ Rn, for any y , z ∈ Rm, there exist T > 0and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 8 / 26

2. Periodic setting: [Alvarez & Bardi 2003, 2010]

Standing assumptions:

Standard assumptions on datum: f , g , `, h boundeduniformly continuous; f , g Lipschitz continuous instate variables, uniformly in control variable;

Periodicity: f , g , ` are Zm-periodic in the fast variable;

Bounded time controllability on the fast system{Y ′(τ) = g

(x ,Y (τ), α(τ)

), τ > 0

Y (0) = y , x is fixed in Rn.(FS)

for fixed x ∈ Rn, for any y , z ∈ Rm, there exist T > 0and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 8 / 26

2. Periodic setting: [Alvarez & Bardi 2003, 2010]

Standing assumptions:

Standard assumptions on datum: f , g , `, h boundeduniformly continuous; f , g Lipschitz continuous instate variables, uniformly in control variable;

Periodicity: f , g , ` are Zm-periodic in the fast variable;

Bounded time controllability on the fast system{Y ′(τ) = g

(x ,Y (τ), α(τ)

), τ > 0

Y (0) = y , x is fixed in Rn.(FS)

for fixed x ∈ Rn, for any y , z ∈ Rm, there exist T > 0and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 8 / 26

Main results: periodic setting

Cell problem: For each (x0, p0) ∈ Rn × Rn, consider thefamily of equations, for a constant λ ∈ R,

H(x0, y , p0,Du(y)

)= λ in Rm. (CP)

Find λ ∈ R such that (CP) has periodic sub- andsupersolutions.

Theorem 1 [Alvarez & Bardi 2010]

For each (x0, p0) ∈ Rn × Rn, there exists a unique realvalue c0 = c0(x0, p0) such that the cell problem (CP),with λ = c0, admits a periodic subsolution and a periodicsupersolution. The effective Hamiltonian H is thendefined by setting

H(x0, p0) = c0.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 9 / 26

Main results: periodic setting

Cell problem: For each (x0, p0) ∈ Rn × Rn, consider thefamily of equations, for a constant λ ∈ R,

H(x0, y , p0,Du(y)

)= λ in Rm. (CP)

Find λ ∈ R such that (CP) has periodic sub- andsupersolutions.

Theorem 1 [Alvarez & Bardi 2010]

For each (x0, p0) ∈ Rn × Rn, there exists a unique realvalue c0 = c0(x0, p0) such that the cell problem (CP),with λ = c0, admits a periodic subsolution and a periodicsupersolution. The effective Hamiltonian H is thendefined by setting

H(x0, p0) = c0.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 9 / 26

Remark 1. (Correctors)

Periodic subsolution and periodic supersolution of cellproblem play the roles of correctors allowing to adaptEvans’s perturbed test function method.

Remark 2. (Connection to ergodic control problem)

limδ→0

δuδ(y ; x0, p0) = limt→+∞

w(y , t; x0, p0)

t= −H(x0, p0)

uniformly in y ∈ Rm.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 10 / 26

Remark 1. (Correctors)

Periodic subsolution and periodic supersolution of cellproblem play the roles of correctors allowing to adaptEvans’s perturbed test function method.

Remark 2. (Connection to ergodic control problem)

limδ→0

δuδ(y ; x0, p0) = limt→+∞

w(y , t; x0, p0)

t= −H(x0, p0)

uniformly in y ∈ Rm.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 10 / 26

where

uδ(y ; x0, p0) is the unique solution to the equation

δuδ + H(x0, y , p0,Duδ(y)

)= 0 in Rm, uδ periodic,

w(y , t; x0, p0) is the unique solution to the problem{wt + H(x0, y , p0,Dyw) = 0, (y , t) ∈ Rm × (0,+∞),

w(y , 0) = 0, w periodic in y , y ∈ Rm.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 11 / 26

Weak semilimits

Under standing assumptions,{v ε}

, ε > 0, is equiboundedin Rn × Rm × [0,+∞), hence we can defineupper semilimit and lower semilimit of v ε, as ε→ 0,respectively, by

v ∗(x , t) := lim supε→0, (x ′,t ′)→(x ,t)

supy∈Rm

v ε(x ′, y , t ′),

v∗(x , t) := lim infε→0, (x ′,t ′)→(x ,t)

infy∈Rm

v ε(x ′, y , t ′).

Note that, v ∗(x , t) and v∗(x , t) are, respectively, boundedupper semicontinuous and bounded lower semicontinuousin Rn × [0,+∞).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 12 / 26

Convergence result

Theorem 2 [Alvarez & Bardi 2010]

The weak semilimits v ∗ and v∗ are, respectively,subsolution and supersolution of the effective problem{

vt + H(x ,Dv) = 0 in Rn × (0,+∞)

v(x , 0) = h(x) in Rn.(HJ)

In addition, if (HJ) satisfies comparison principle, then v ε

locally uniformly converges on Rn × Rm × [0,+∞), asε→ 0, to the unique solution v = v ∗ = v∗ of (HJ).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 13 / 26

Convergence result

Theorem 2 [Alvarez & Bardi 2010]

The weak semilimits v ∗ and v∗ are, respectively,subsolution and supersolution of the effective problem{

vt + H(x ,Dv) = 0 in Rn × (0,+∞)

v(x , 0) = h(x) in Rn.(HJ)

In addition, if (HJ) satisfies comparison principle, then v ε

locally uniformly converges on Rn × Rm × [0,+∞), asε→ 0, to the unique solution v = v ∗ = v∗ of (HJ).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 13 / 26

Key ideas and methods (periodic case)

Viscosity solution theory;

Periodic homogenization[Lions, Papanicolau, Varadhan 1986];

Perturbed test function method[Evans 1989, 1992].

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 14 / 26

3. Non-periodic setting

Standard assumptions on datum: f , g , h boundeduniformly continuous; f , g Lipschitz continuous instate variables, uniformly in control variable; ` isuniformly continuous;

Coercivity: ` is coercive in the fast variable, i.e.,

mina∈A

`(x , y , a)→ +∞, as |y | → +∞, uniformly in x ;

Local bounded time controllability on the fast system:Given compact subsets C ⊂ Rn, D ⊂ Rm. For fixedx ∈ C , for any y , z ∈ D, there existT = T (C ,D) > 0 and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 15 / 26

3. Non-periodic setting

Standard assumptions on datum: f , g , h boundeduniformly continuous; f , g Lipschitz continuous instate variables, uniformly in control variable; ` isuniformly continuous;

Coercivity: ` is coercive in the fast variable, i.e.,

mina∈A

`(x , y , a)→ +∞, as |y | → +∞, uniformly in x ;

Local bounded time controllability on the fast system:Given compact subsets C ⊂ Rn, D ⊂ Rm. For fixedx ∈ C , for any y , z ∈ D, there existT = T (C ,D) > 0 and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 15 / 26

3. Non-periodic setting

Standard assumptions on datum: f , g , h boundeduniformly continuous; f , g Lipschitz continuous instate variables, uniformly in control variable; ` isuniformly continuous;

Coercivity: ` is coercive in the fast variable, i.e.,

mina∈A

`(x , y , a)→ +∞, as |y | → +∞, uniformly in x ;

Local bounded time controllability on the fast system:Given compact subsets C ⊂ Rn, D ⊂ Rm. For fixedx ∈ C , for any y , z ∈ D, there existT = T (C ,D) > 0 and α ∈ A such that

Yy(τ ;α, x) = z for some τ ≤ T .

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 15 / 26

Critical value

For each (x0, p0) ∈ Rn × Rn, consider the family ofequations, for a constant λ ∈ R,

H(x0, y , p0,Du(y)

)= λ in Rm. (2)

Remark. There is no hope to have periodic or evenbounded sub- and supersolutions to (2) for somedistinguished value λ.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 16 / 26

Theorem 1

For each (x0, p0) ∈ Rn × Rm, there exits a unique realvalue c0 = c0(x0, p0) such that the equation

H(x0, y , p0,Du(y)

)= c0 in Rm,

admits a bounded subsolution and a locally boundedcoercive supersolution.

Key ideas and methods (non-periodic case)

Approximation by coercive, convex Hamiltonians;

Some tools from Weak KAM theory[Fathi & Siconolfi 2005].

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 17 / 26

Theorem 1

For each (x0, p0) ∈ Rn × Rm, there exits a unique realvalue c0 = c0(x0, p0) such that the equation

H(x0, y , p0,Du(y)

)= c0 in Rm,

admits a bounded subsolution and a locally boundedcoercive supersolution.

Key ideas and methods (non-periodic case)

Approximation by coercive, convex Hamiltonians;

Some tools from Weak KAM theory[Fathi & Siconolfi 2005].

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 17 / 26

For each (x0, p0) ∈ Rn × Rn, define

H(x0, p0) := inf{λ ∈ R : (2) has a bounded subsolution

}We let

H0(y , q) := H(x0, y , p0, q).

To approximate H0 by a sequence of coercive, convexHamiltonians Hk , k ∈ N∗, and consider a sequence ofequations

Hk(y ,Du) = λ in Rm. (3)

Define the critical value for Hk

ck := inf{λ ∈ R : (3) has a subsolution

}.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 18 / 26

Claim 1. The ck is finite for any k , and make up anon-increasing bounded sequence, and hence has a limit

c0 := limk→+∞

ck .

Consider the critical equation

Hk(y ,Du) = ck in Rm. (HJk)

Claim 2. There exist a sequence of equiboundedsubsolutions uk and a sequence of locally equibounded,equicoercive solutions wk to (HJk).

(Using semidistances Sk and Aubry set Ak for Hk)

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 19 / 26

Claim 1. The ck is finite for any k , and make up anon-increasing bounded sequence, and hence has a limit

c0 := limk→+∞

ck .

Consider the critical equation

Hk(y ,Du) = ck in Rm. (HJk)

Claim 2. There exist a sequence of equiboundedsubsolutions uk and a sequence of locally equibounded,equicoercive solutions wk to (HJk).

(Using semidistances Sk and Aubry set Ak for Hk)

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 19 / 26

Claim 3. We set

u(y) = lim sup#uk(y) := sup{

lim supk→+∞

uk(yk) : yk → y},

w(y) = lim inf# wk(y) := inf{

lim infk→+∞

wk(yk) : yk → y},

then u and w are, respectively, bounded subsolution andlocally bounded coercive supersolution to the equation

H0(y ,Du) = c0 in Rm. (HJ0)

(Using stability property of viscosity solution)

Claim 4. c0 = H(x0, p0).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 20 / 26

Claim 3. We set

u(y) = lim sup#uk(y) := sup{

lim supk→+∞

uk(yk) : yk → y},

w(y) = lim inf# wk(y) := inf{

lim infk→+∞

wk(yk) : yk → y},

then u and w are, respectively, bounded subsolution andlocally bounded coercive supersolution to the equation

H0(y ,Du) = c0 in Rm. (HJ0)

(Using stability property of viscosity solution)

Claim 4. c0 = H(x0, p0).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 20 / 26

Weak semilimits

The value functions v ε, ε > 0, is locally equibounded,therefore we can define the weak sup-semilimit andweak inf-semilimit of v ε, respectively, by

lim sup#v ε(x , y , t)

= sup{

lim supε→0

v ε(xε, yε, tε) : (xε, yε, tε)→ (x , y , t)}

lim inf# v ε(x , y , t)

= inf{

lim infε→0

v ε(xε, yε, tε) : (xε, yε, tε)→ (x , y , t)}.

Claim. v := lim sup#v ε and v := lim inf# v ε are,respectively, u.s.c and l.s.c, and moreover they areindependent of the fast variable y .

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 21 / 26

Weak semilimits

The value functions v ε, ε > 0, is locally equibounded,therefore we can define the weak sup-semilimit andweak inf-semilimit of v ε, respectively, by

lim sup#v ε(x , y , t)

= sup{

lim supε→0

v ε(xε, yε, tε) : (xε, yε, tε)→ (x , y , t)}

lim inf# v ε(x , y , t)

= inf{

lim infε→0

v ε(xε, yε, tε) : (xε, yε, tε)→ (x , y , t)}.

Claim. v := lim sup#v ε and v := lim inf# v ε are,respectively, u.s.c and l.s.c, and moreover they areindependent of the fast variable y .Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 21 / 26

Convergence result

Theorem 2

The weak sup-semilimit v and weak inf-semilimit v are,respectively, subsolution and supersolution of the effectiveCauchy problem{

vt + H(x ,Dv) = 0 in Rn × (0,+∞)

v(x , 0) = h(x) in Rn.(4)

In addition, if (4) satisfies comparison principle, v ε locallyuniformly converges on Rn × Rm × [0,+∞), as ε→ 0, tothe solution v = v = v of (4).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 22 / 26

Convergence result

Theorem 2

The weak sup-semilimit v and weak inf-semilimit v are,respectively, subsolution and supersolution of the effectiveCauchy problem{

vt + H(x ,Dv) = 0 in Rn × (0,+∞)

v(x , 0) = h(x) in Rn.(4)

In addition, if (4) satisfies comparison principle, v ε locallyuniformly converges on Rn × Rm × [0,+∞), as ε→ 0, tothe solution v = v = v of (4).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 22 / 26

Work is in progress ...

Existence of continuous viscosity solution to thecritical equation

H(x0, y , p0,Du(y)

)= H(x0, p0) in Rm.

Connection to ergodic control problem.

Representation formula for H and the explicit form oflimit optimal control problem via limit occupationalmeasures.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 23 / 26

References

O. Alvarez, M. Bardi, Viscosity solutions methods forsingular perturbations in deterministic and stochasticcontrol. SIAM J. Control Optim. 40 (2001),1159-1188.

O. Alvarez, M. Bardi, Singular perturbations ofnonlinear degenerate parabolic PDEs: a generalconvergence result. Arch. Ration. Mech. Anal. 170(2003), 17-61.

O. Alvarez, M. Bardi, Ergodicity, stabilization, andsingular perturbations for Bellman-Isaacs equations.Mem. Amer. Math. Soc. 204, no. 960 (2010).

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 24 / 26

L. C. Evans, The perturbed test function method forviscosity solutions of nonlinear PDE, Proc. Roy. Soc.Edinburgh Sect. A 111 (1989), no. 3-4, 359-375.

L. C. Evans, Periodic homogenisation of certain fullynonlinear partial differential equations, Proc. Roy. Soc.Edinburgh Sect. A 120 (1992), no. 3-4, 245-265.

A. Fathi, A. Siconolfi, PDE aspects of Aubry-Mathertheory for quasiconvex Hamiltonian, Calc. Var. 22(2005), 185-228.

P. L. Lions, G. Papanicolau and S. R. S. Varadhan,Homogeneization of Hamilton-Jacobi equations,Unpublished, 1986.

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 25 / 26

Thank you for your attention !

Thuong Nguyen (Roma Sapienza) Asymptotic of SPCS: non-periodic setting November 10-12, 2014 26 / 26