37
Assesment of muscle function in chronic lung disease Deniz İNAL İNCE, PhD, PT Associated Professor Hacettepe University Faculty of Health Sciences Department of Physical Therapy & Rehabilitation

Assesment of muscle function in chronic lung disease - Toraksfile.toraks.org.tr/TORAKSFD23NJKL4NJ4H3BG3JH/kongre2009_kurs/...Assesment of muscle function in chronic lung disease Deniz

Embed Size (px)

Citation preview

Assesment of musclefunction in chronic lung

disease

Deniz İNAL İNCE, PhD, PTAssociated Professor

Hacettepe UniversityFaculty of Health Sciences

Department of Physical Therapy & Rehabilitation

MuscleHeart

Circulation Lungs

QCO2

OxygenOxygen transporttransport

PATOLOPATOLOGYGY // IINFLAMNFLAMMATIONMATION / H/ HIIPOPOXEMIAXEMIADRUGSDRUGS

IINANACCTTIIVVIITTYY / / DECONDITIONINGDECONDITIONING

Wasserman K et al. Principles of Exercise Testing & Interpretation, 2005

VO2

VCO2

QO2

Skeletal musclesFiberFiber DefinitionDefinition MMetabolietabolismsm FFunctionunction

I Slow, resistant to

fatigue

Oxidative Standing, quiet

breathing

IIa Fast, resistant to

fatigue

Oxidative/glycolotic

Walking,Hipervent

IIb/x FastNot

resistant tofatigue

Glycolotic JumpingCough

DeconditioningMuscle mass ↓AtrophyFiber typeMuscle metabolism

MalnutritionMalnutritionInactivityInactivity

DrugsDrugs

AcidosisAcidosis

SYSTEMIC INFLAMMATION

ChronicChronic LungLung DiseaseDisease

↓ Anabolism↓ Anabolism

Exercise capacity ↓Health status ↓QOL ↓Mortality ↑

Hypoxia

HHyypopoxxiiaa ((oxidativeoxidative stressstress) )

Muscle oksidative stress

Mitokondria Myofilament

↓ ATP level

↓ Oksidative capacity

Muscle disfunction

↓ Stimulus transmission↓ Ca sensitivity

Contractile fatigue

Inactivity

Fatigue

Inactivity

Dyspnea

↓↓ Physical activity

↓ Lower leg activity

↓ Motor neuron activity

Antioxidant effect ↓

Fiber type

Energy metabolism

Muscle mass ↓

Muscle oxidative stress

↓ Anabolic factors

Myoflament contractility ↓

↓ FFM↓ Oxidatif capacity

Skeletal muscle dysfunction

Systemic inflammationDisease severity

Malnutrition

Muscle enzyme activity ↓Metabolic fuel storage ↓↓ protein & caloric intakeProtein katabolism ↑Muscle mass ↓

↓ Caloric intakeWeight loss

CorticosteroidsConractile proteins ↓Glycolitic activity ↓Growth factors ↓Protein catabolism ↑Tip 2 fiber atrophy

Changes in muscle structure & metabolism

Tip 1 muscle fiber ↓Oksidative enzymes ↓CSA ↓Aerobic capasity ↓Earlier anaerobic metabolismMuscle mass ↓Muscle strength ↓Muscle endurance ↓Muscle fatigue ↓

LactateBlood ammoniaPiEarlier muscle acidosis

MuscleMuscle functionfunction

ENDURANCEENDURANCE

Practice sessionSpecific protocol

STRENGTHSTRENGTH

FATIGUEFATIGUE

Muscle group

Contraction type

Movement velocity

Equipment

ROM

Evaluation of skeletal musclestrength

Volitional Nonvolitional

Manual muscle testing1 RMDinamometer

Electrical stimulationMagnetic stimulation

Muscle mass

FFM

Manual muscle testing5-pointMRC

Percentages of normal values ∅

Ambulated patients ∅

ICU: 12 muscles

Dinamometer

Back liftdinamometer

Isometric dinamometer

Isometric

Hand grip

IsotonicIsotonic evaluationevaluation1 1 repetitionrepetition mamaxximumimum (1 RM)(1 RM)

Free weightsDumbbellsExercise machines

Dynamic contractions against hydraulic resistance

Evaluation of skeletal musclestrength

Volitional Nonvolitional

Manual muscle testing1 RMDinamometer

Electrical stimulationMagnetic stimulation

Magnetic stimulation

Action potential

Depolarization

At rest

Maximal voluntaryventilation

Quadriceps muscle strength ↓

YoungNormal

ErderlyNormal

ICU patient

Age(years)

30 77 46

TwAP (N) 6.9 7.1 4.6*

Mean ICU stay 18.5 days

*p=0.01, ICU patients were weaker

☐ Stength■ Endurance

COPDCOPD

Endurance

Capacity of muscle to maintain a given level of force orwork for a period of time

AssessmentAssessment↓ strength below targetNumber of repetitions% of ↓ force

Equipments: Same as strength evaluation

Endurance Fatigue

Reversible reduction in the forcegenerated by the muscle itself for a given neural input

Symptoms at peak exercise

26%

31%43%

Dyspnea

Leg fatigue Dyspnea & Leg fatigue

Killian et al. Exercise capacity and ventilatory, circulatory, and symptom limitation in patients with chronicairflow limitation. Am Rev Respir Dis 1992;146:935-940.

Mechanisms of fatigueMotor neuronNeuromuscular junctionConractile mechanism (Ca)Early anaerobic metabolismLactic acid accumulationBlood ammonia ↑ATP-PC depletionMuscle glycogen depletion

Evaluation of fatigue

Metabolic

Volitional Nonvolitional

Strength before & after a given task

Lactic acidBlood ammonia

Subjective

Borg scaleVASFatigue scales

Motivational factors ∅

Functional

Magnetic stimulation

0 10 20 30 40 502030405060708090

100

COPD

Controls

p<0.0017

p<0.006

p<0.0002

p<0.0002

Number of trains

% o

f bas

elin

e fo

rce

Quadriceps fatigue

Metabolic fatigueLactic acid level

Metabolic fatigueBlood ammonia level

Subjective fatigue

0 100

Relationship between Disease severity & Periferal MuscleEndurance & Fatigue in Patients with Chronic Obstructive

Pulmonary Disease

22 COPD (62.5 years)FEV1: 50±29%GOLD Stage IV n=7 (31.8% )

Stage III n=6 (27.3% )Stage II n=4 (18.2% )Stage I n=5 (22.7% )

6MWT: 507±128 mSAFE: 3.7±2.5Fatigue Impact: 32.9±31.3Fatigue Severity: 40.6±17.0

0 25 50 75 100 1250.0

2.5

5.0

7.5

10.0

Yorgunluk Etki ÖlçeğiSA

FE in

deks

Melda Sağlam, Ebru Çalık, Naciye Vardar-Yağlı, Sema Savcı, Deniz İnal-İnce, Hülya Arıkan, Meral Boşnak-Güçlü, Lütfi Çöplü

r= 0.67, p<0.05

Toraks 2009

Thank you