339
T _ "_ _ _ f _ i\ASA (:otVerence Publication 2_o8 Tether Dynamics Simulation fU/_A https://ntrs.nasa.gov/search.jsp?R=19870009388 2020-04-02T14:41:24+00:00Z

ASA T (:otVerence Publication 2 o8 f Tether …...Washington, D.C. and George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama Proceedings of a workshop held at

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

T _ "_ _ _ f _i\ASA (:otVerence Publication 2_o8

TetherDynamics

Simulation

fU/_A

https://ntrs.nasa.gov/search.jsp?R=19870009388 2020-04-02T14:41:24+00:00Z

NASA Conference Publication 2458

TetherDynamics

Simulation

NASA Office of Space Flight

Washington, D.C.and

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama

Proceedings of a workshop held at

the Hyatt Regency Crystal City Hotel

Arlington, Virginia

September 16, 1986

N/kSANational Aeronautics

and Space Administration

Scientific and TechnicalInformation Branch

1987

FOREWORD

The objective of the Tether Dynamics Simulation Workshop was to

provide a forum for the discussion of the structure and status of

existing computer programs which are used to simulate the dynamics of a

variety of tether applications. A major topic of the workshop concerned

itself with the purpose of having different simulation models and the

process of validating them. Guidance on future work in these areas was

obtained from a panel discussion consisting of resource and technical

managers and dynamic analysts in the tether field. The conclusions of

this panel are presented in Section III, Workshop Summary and Panel

Discussion Results.

NASA Headquarters, Office of Space Flight, Advanced Programs, along

with NASA Marshall Space Flight Center, sponsored the workshop. General

Research Corporation and the American Institute of Aeronautics and Astro-

nautics provided the workshop coordination. General Research Corporation

also prepared the workshop proceedings. The workshop was held at the

Hyatt Regency Crystal City Hotel in Arlington, Virginia in conjunction

with the International Conference on Tethers in Space, which was held

Sept. 17-19, 1986.

iii

WORKSHOPADMINISTRATIVEPERSONNEL

WORKSHOPORGANIZERS

Charles C. Rupp William A. BaracatNASAMarshall Space Flight Center General Research Corporation

Edward J. BrazlllNASAHeadquarters

ADMINISTRATIVECOORDINATORS

Terrence G. ReeseGeneral Research Corporation

EXECUTIVECOMMITTEE

Paul A. PenzoJet Propulsion Laboratory

Charles C. RuppNASAMarshall SpaceFlight Center

Silvio BergamaschiUniversity of Padova, Italy

Peter M. BainumAmerican Astronautical Society/

HowardUniversity

William A. BaracatGeneral Research Corporation

PANELMEMBERS

HowardFlanders Henry WolfMartin Marietta Denver Aerospace Analytical Mechanics Associates

Dave Arnold Silvio BergamaschlSmithsonian Astrophysical Observatory University of Padova, Italy

Joe Carroll Charles C. RuppEnergy Science Laboratories NASAMarshall Space Flight CenterEnrico Lorenzlnl Paul PenzoSmithsonian Astrophysical Observatory Jet Propulsion Laboratory

Peter Bainum Bill DjinisAmerican Astronautical Society/ NASAHeadquarters

HowardUniversity

WORKSHOPCOORDINATION

Pamela EdwardsAmerican Institute of

Aeronautics and Astronautics

Mereille GerardAmerican Institute of

Aeronautics and Astronautics

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

Page

Foreword

Workshop Administrative Personnel

I. WORKSHOP PRESENTATIONS

"Tether Dynamics Simulation," A.K. Misra and V.J. Modi

"Martin Marietta Simulation - HIFITS (Hi-Fidelity-

Tethered-Satellite) Simulation," H. Flanders

"The Tethered Satellite System on the Systems

Engineering Simulator," R. Humble

"GTOSS - Generalized Tethered Object Simulation

System," D. Lang

"Tethered Satellites Simulation," J.R. Glaese

"Skyhook Program," D. Arnold

"Slack3," G. Gullahorn

"Artificial Gravity Laboratory," E. Lorenzini

"Elasticity Effects in Tether Dynamics," S. Bergamaschi

"TSS Subsatellite Attitude Dynamics and Control

Laws Verification Programs," F. Venditti

"Validation of TSS Engineering Simulation," Z. Galaboff

"TSS-I Dynamics Flight Experiments," G. Gullahorn

"Tether Simulation Design for Mission Planning

and Analysis," R. Deppisch and Y. Jani

II. ADDITIONAL PRESENTATIONS

"Preliminary Analysis of DampingEffect on Tethered

Satellite," G. Bianchini

"Rigorous Approaches to Tether Dynamics in Deployment

and Retrieval," E. Antona

III. WORKSHOP SUMMARY AND PANEL DISCUSSION RESULTS

APPENDICES

A. Workshop Agenda

B. Workshop Attendees

vii

PRECEDING PAGE BLANK NOT FILMED

iii

v

25

57

73

95

113

125

141

161

187

219

235

249

277

279

315

331

337

341

I

WORKSHOP PRESENTATIONS

Tether DynamicsSimulation

Arun K. MisraMcGill University

Vinod J. ModiUniversity of British Colombia

TETHERDYNAMICSSIMULATION

A.K.MISRA

McGILLUNIVERSITY

MONTREAL,QUEBEC,CANADA

V,J.MODI

UNIVERSITYOF BRITISHCOLUMBIA

VANCOUVER,B.C.,CANADA

PRECED4NG PAGE BLANK NOT FILMED

PURPOSE OF SIMULATION

I i TO STUDYTHE GENERALDYNAMICSOF THE SHUTTLE-TETHER-SUBSATELLITE

SYSTEMDURING (1)

(II)

(Ill)

STATIONKEEPING,

DEPLOYMENTOF THE SUBSATELLITE,

RETRIEVALOF THE SUBSATELLITE,

II, TO DETERMINEAPPROPRIATECONTROLLAWS AND SIMULATETHE CONTROLLED

DYNAMICS,SPECIFICALLYDURINGTHE RETRIEVALSTAGE, MOST OF OUR

SIMULATIONSHAVEDEALTWITH THIS ASPECT,

orbit.

z D

Te 4_.<

Xo

z C

E

B Xa

line ofnode

, perigee

N

equator ial plane

Figure I. Geometry of motion.

7

SIMULATION PROCEDURE

EQUATIONSOF MOTIONARE OBTAINEDUSINGHAMILTON'S

PRINCIPLE,VIBRATIONALEQUATIONSARE DISCRETIZEDUSINGRITZ-

GALERKINMETHOD, THESEDISCRETIZEDEQUATIONSALONGWITH THE

ROTATIONALEQUATIONSARE CONVERTEDTO A SET OF FIRSTORDER

EQUATIONSOF THE FORM x = F(_,e)WHERE e IS A DIMENSIONLESS

TIME (TRUEANOMALY)AND x IS THE VECTOROF STATEVARIABLES,

THE SYSTEMOF DIFFERENTIALEQUATIONSIS INTEGRATEDUSING

GEAR'S METHOD,

POSSIBLE DISCRETIZATIONSCHEMES

PHYSICALDISCRETIZATION:(1) LUMPEDMASSES(OR POINTELEMENTS)

CONNECTEDBY SPRINGSAND DASHPOTS-

KALAGHANET AL, AT SMITHSONIAN

(Ii) FINITE ELEMENTS- KOHLERET AL,

(FORESA)

MATHEMATICALDISCRETIZATION:(1) FINITEDIFFERENCE- KOHLERET AL,

(FORESA)

- KULLA

(x_)RITZ-GALERKINMETHOD- BUCKENS

- BANERJEE& KANE

- BAINUMET AL,

- GLAESE& PASTRICK

- MISRA& MODI

SEMI-ANALYTICALPROCEDURES- BERGAMASCHIET AL,

DEGREESOF FREEDOM

TETHERROTATIONS: INPLANE (PITCH)

OUT-OF-PLANE(ROLL) Y

TRANSVERSEVIBRATIONS : INPLANE

OUT-OF-PLANE

N

W = L 7--- B (T)¢ I(Y)l=l I

N

U = L ._ A I(T)(hI(Y)

I=l

LONGITUDINALVIBRATIONS : V = L 7__ C I(T)_ I(Y)I=1

THUS THE GENERALIZEDCO-ORDINATESARE

% Y, AI, BI, C I

¢ (Y) = 2 SIN (_Y/L)I

(Y) = (Y/L) II

iO

ENVIRONMENTALFORCES

GRAVITATIONALPERTURBATIONS

DUE TO THE ASPHERICITY OF THE EARTH - J2 PERTURBATIONS,

PERTURBATIONS DUE TO THE ATTRACTION OF THE SUN AND THE MOON,

THESE EFFECTS ARE SMALL,

SOLARRADIATIONPRESSURE

CAN BE IMPORTANT AT HIGH ALTITUDES,

EVEN AT LOWER ALTITUDESj HEATING EFFECT MAY BE SIGNIFICANT,

ELECTRODYNAMIC F0RCE

FORCE ON A CONDUCTING TETHER MOVING IN THE EARTHIS

GEOMAGNETIC FIELD,

AERODYNAMICDRAG

THIS IS THE MOST IMPORTANT ENVIRONMENTAL FORCE AT THE LOW

ALTITUDES (I,E,_ FOR TSS-I AND TSS-2 MISSIONS),

II

AT = _ _iCD p _A CvI_I2

WHERE AF IS THE AERODYNAMIC FORCE ON AN ELEMENT HAVING PROJECTED

AREA AA

CD IS THE DRAG COEFFICIENT

P IS THE DENSITY OF AIR AT THE ALTITUDE OF THE ELEMENT

UNDER CONSIDERATION

V VELOCITY OF THE ELEMENT RELATIVE TO THE ATMOSPHERE,

CD IS ASSUMED CONSTANT IN OUR SIMULATION

p = pREF

-(H - HREF)/H 0 -H/H 0

E --Po E

WHERE H = ALTITUDE ABOVE THE SURFACE OF THE EARTH

OBLATENESS OF THE EARTH IS TAKEN INTO ACCOUNT (AFFECTS H)

ROTATION OF THE ATMOSPHERE IS TAKEN INTO ACCOUNT (AFFECTS _)

THE EXPONENTIAL RELATION ABOVE IS AN APPROXIMATE ONE,

PO AND H0 ARE DETERMINED FROM THE EXPERIMENTAL DATA SO

AS TO FIT THE LOWER END OF THE TETHER WELL,

12

PROGRAM

WRITTENIN FORTRANIV TO RUN ON A_AHL OR IBM MAINFRAME,

CORE MEMORYREQUIRED- 512K

SOFTWARENEEDED- IMSL

INPUTS ORBITALELEMENTS,

SEMI-MAJORAND SEMI-MINORAXES OF THE EARTH

AIR DENSITYPARAMETERSAND DRAG COEFFICIENTS

TETHERPARAMETERS(DENSITY,DIAMETER,YOUNG'SMODULUS,

DAMPINGCOEFFICIENT),

SUBSATELLITEPARAMETERS(MASS,AREA OF CROSS_SECTION)

INITIALSTATEVECTORS x(O)

DEPLOYMENT(RETRIEVAL)PARAMETERS

CONTROLGAINSFOR ROTATIONSAND VIBRATIONS

OUTPUTS- STATEVECTOR _(e)

LENGTH,LENGTHRATE

13

I.I-0

\\

\\

0 0

..J

i 1 i

0 0 0

14

c9._

t_

0

tD

t23

C_ c_

O4

e-

t--

t--

0 _¢-0

°p-

0

"E.2.t-- .+._

_0

_oo _.}

o

&iZ

(:3C_

:%O0I I I I

O. 30 O. 60 O. 90 1.20

ORBITS

(RlVRRIRTION OF LENGTH RND VELOCITY

\!

l. SO

FIGI R-F) DTNRMICRL RESPONSE DURING RETRIEVRL

FROM IOO KM USING THRUSTERS FOLLOWED

BY LENGTH CHRNGE CONTROL LRH

15

jI I I ! !

O0 O. 30 O. 60 O. 90 - I. 20 I. 50

ORBITS

(B)VRRIRTION OF THE ROTRTIONRL MOTION

16

00

'TQ

!

00

i'!

C1(0) = 0.47x10 "2

C2(0)=-0.19 ,,10 -3

Y_

O0I I I I

O. 30 O. 60 O. 90 1.20ORBITS

(C]BEHRVIOUR OF LONGITUOINRL

GENERRLIZED C0-OROINRTES

17

1.50

oc)

eq

oIf)

(5-

?o

4

cE

(3l.tl

I

0

o

I

c)(:3

o_

o111

(5-

o

A 1 (0)=0.5x10 -4

c-ONT R,OLLIE b IKET{_IEV_L

A2(0)=- 0.5x10-4

lI I

.O0 O. 30 0.60 0.90ORBITS

! I

1.20 1.50

(D)BEHAVISUR OF OUT-(}F-PLANE

TRANSVERSE MODAL CO-ORDINATES18

C3

q.o5

0

I

oo

o.

I

c)

i.lii

BI(O) =-1.6,10 -3

B2(O)= 0.48,,10 -3

I I I

O. 30 O. 60 O. 90

ORBITS

I !

1.20 1.5O

[E]BEHRVIOUR OF ]NPLRNE TRRNSVERSE

ROORL CO-OROINRTES

19

i KO-O.O FOB L>SKM

0LO

(:3!

C)C)

.-;.'0. O0

I I ! ! I

O. 30 O. 60 O. 90 1.20 1.50

ORBITS "

2O

00

u-;"

0IS)

IJr)

I

0C_

'0'.I

O0 O. 30I I I

O. 60 O. 90 l. 20

ORBITS

I

1.50

(F)VRRIRT]ON OF THRUSTS

21

[ Mb= 170kg ; Li = lOOkm: Lhn=O 25kin

PC=0 658kg/km e ==O" i =90o:_"=-2._0"4s "1dc=O 325mm; A_(O)=A,_) = 8_(0)=8._(C):H =220kin: C1(0)=C2¢J)=0: T/_0)_'_/_ = C

10

80

L

(kin) 60

40

20

'7(clegreel

2C

(,-1800

(degree) C

2

-c=(.i0.4) 1

0

-I

C 1

(=10 -3 )

7C0)= 1 o

t)=195 °

0 4 0.8 1,2 1.6 2.0 2.4 2.8

C.2(0} =-0.19.10 "3 (..6)

C1(0) =0.4 7=10 "2

2

1

O-- , , ,0 0.4 08. 1.2

orbits

i i1.6 2.0 2.4 2.8

F£g. _4_ _ecrleval dynam£cs us£n8 solely

t.ru..r o. rolCX (a) Variac£on of length and rotations.

(_) Behaviour of longitudinal general£zed¢o-ordtnates.

i

1 J B2(0_: 0.48.10- 3I

_ ._ ,.,,h','dL*m'"hlF,,,a,_,('10 -_ )

--1/

(:-)

81{G)=-1.6=10 -3

1

Bl

(._o-2) o

-11

AZ A2 (0}:0"5"10.4

(.I0 "2) 0-.._,_ .......... ='-'

-1I

A I ._1 (0)='0"5"10-4(.10-2) 0

-1 ' i I I 1 I I0 0.4 0.8 1.2 1.6 2.0 2..4 2.8

-5

1 _,_ %=-2(l'"/2)YV:27'-10(Al'- ZA2"

T._ 0.5

(N.)

T. [IIV il_lll'llllJl_(N.) 0

0.4 0.8 1.2 1.6 2.0 2.4 2.80

G

(,20N)

t_ihut tle enC_

_iv. = ._o N

' ' ' 2'.00 0.4 08 1.2 1.6

orbits

(C) Behaviour of transverse modal

¢o-ord£n_es.

(d) Variation of thrustS.

(e) Varia_io_ o_ tension.

2.4 28

22

(52)

STRENGTHSAND LIMITATIONS

STRENGTHS

°SIMULATIONOF GENERALDYNAMICSINCLUDINGTRANSVERSE

AND LONGITUDINALVIBRATIONSOF THE TETHERTREATEDAS

A CONTINUUM,

°CANHANDLEDYNAMICSDURINGCHANGEOF LENGTHQUITE

RIGOROUSLY,PROVISIONSFOR CONTROLOF RETRIEVALDYNAMICS,

LIMITATIONS

°ROTATIONSOF THE SUBSATELLITEARE NOT INCLUDED,

°SOMEENVIRONMENTALFORCESARE NOT INCLUDED,

23

FUTURE PLANS

° EXTENSIONTO SPACESTATIONAPPLICATIONS

° SIMULATIONONMICROCOMPUTERS

° SIMULATIONOF VIBRATIONCONTROLLAWS

° MULTIPLETETHERSIMULATION

24

Martin Marietta SimulationHIFITS (Hi-Fidelity-Tethered-Satellite) Simulation

HowardFlandersMartin Marietta Denver Aerospace

25

Z0

._J

LU

,_ _j _

I-.- _._ LJ.

I"-

¢'_ w Z

'r _ I'--

v

I.--

-r

PRECEDING PAGE BLANK NOT FILMED

27

0

w

r,."I.m_

m,0

m,m

I..61,.-.,

Z Z0 _I--I _J

_ ,,,._ s'- r'.,_..I ,,m 0

I-"I.m- m.m Z0 _ '"

Z ZI--I 0

0 _r, I_ I--Ir,? 0"-_ 0 Z

_ m,,

m.m

r,_-.

XIJJ

ILl

k--_'- CtJLJJ

>- -_C(--%

0 0 0 0 0

28

cozOHI--

.._1

H00

Z

(.D0

_-

(/'3

(,0

.._

I--.I---

Z

I--

ooO _ _o

...4 I--.(__ ,,, r_0 I,_ H_ 00 '_-- r-_ ,, (.._O 00 H O H h0- I-- 00 '_- -r t.,J

0 0 0 0 0 0

I--"H

H

,,O

O0,-

.--_0-

t'---H--IILl

I,--I

I-l-

-r"

(.DZH

I--I

On.-

>-.

(.OOn,*O..

>-O..JO_

oo

I--- Ol--

l,J.l-I- Z_-- O

HI--- I-.-

O .--_

(/'3 0'3

O

I I I

0 0

29

i\ I

30

NOII33BIO IIB_O

\

31

l__- _CD

c_

_J

_J

o

32

mJ

tY

DII_ z

rl_J l_J O_I_j

iRi

33

Z

I--Il--

c_

I.L=C_Z

Z

CS_>-

WI=-

ZI--I

00

l.ul

l.lIJ

Zll_

-I-

'cOL.ul

rml.lJ

Cr_CS_

I--

i-7

I--

l,l

34

I..l.J

ZI,-II-.-z0

¢ozC_I.-II--

C_C_i,

Z

I.--

C_Z

GO

i,iF--

>...oO

ILlI--

I-.-IC_C_0C_

I.-.-

! !

I'," I'_ 1-_I !

A

0 ¢:,

I

v

I.-- I-.-I,.-- q:_ o ¢>

-_ (._ (./')t I

,T'-rj

t-- I-.-.•' Q ._- -e-l..-.-

0F--

I._ I..-

!

I. !

I I

i._ i._ i-__I I

35

z0

I---

I--I

._J

I.L0

I

0

I--40o

InI--.4

-T-"

X_J

÷

i ,4-

I II

ix_mx ,-- ÷

_ ix'-

IIII

I_ IxI,.-

36

r,,."

-I-Z3:

37

A

,,1:DzI--II-..2:O(.3

LIJ,"%O'w"

>...I--I--I.-ILi.IC_I--4I..i_

3=(.9I...-43=

OI--II-.-O=E

1.1_O

COZOI-.-4I.--

:::D(3LIJ

._1

.,_I--4I.--ZLIJ

IaJLI_I.i_I.-4¢3

l--(J¢l:eep-O_

-I-

LIJ

p,.-LI_

i,imE

'" _ <mE ee._ e_ I.i- iJe_ I, ¢z:

._j e_- I--I ¢_ l.JJ

Pi ¢_ _ _" l.iJ L.IJI-- "¢_ LLJ I--I (J (J

l.aJ • I-'4 (:3 --J -J_: }-- ¢_ ¢_

P'4 p- -- (.9 I--4 (.._ I-4 (._ct_ Z ¢._ .-J Z r_ Z c'_ z

I--.4 I.iJ ev* -- _ I--I I.-I I--II-- I-- I.tJ (tJ'...J ¢._ Q::: ;= I,I _= LI.J Z: LIJ_ e_' <1{ I--- 1.1.1 I,I LI.I I--I _ I--I _ I--I _Z LLJ Z Z .__1 r_" -.J LIJ LI_ I---I LI- I--I LI.. I"11"-4 I"-- 1--1 1.1.1 Q (.D (::3 LIJ I-- 1.1.1 I'-" I.IJ I'--e-_ z e._ (j z i,i_e l.l.j ¢Y <l: r'._o (-.) o ¢._o oct') eel--(.3(,'9 (..3.,:I: kl.l _..I

O9 "=" mE -J i--l <CO J _ I--

:E: I-.4 LLJe_- I--- ¢'v" p--

<C l--- I--- --J -J .-JI....t (,._ ¢,_ I.LJ (_ I.rJ r.._ L.i.J

e_ i..- Z LIj cY I,i e_" I,I CEt.LJ I_ UJ i--- I-- t--

I,i ,,={: i,i W i,i ev- i--_ p._ p-_¢-_ I--- L_J _ I--- C3 I--- C3 I_

_- <C ,Y F-4 ._E p-_ Lm :::_,Y --_ ::_ I--4-,- ,Y Z _X: Z ,',"Z0 _J ,,, C_ _J _J C:_ .,_ uJ I-- ._: --J I--- 0 Lm 0 UJ 0 UJP-I 0 p- 0 0 _J _ _-- I-- _--_>- .J UJ 0 Z 0 Z 0 Z i--l-- _. h-_ _. _. ',' I-- _-_ I-- UJ I-- (J 0 (J 0 (J 0 Z

I E I I <:E I---- J E <:E ._J <:E I.I-- Q %-" (::_ _" {::_ _'- E0 0 rJ9 I-- J 0 _.I o9 ,, L_I 0 l._J 0 l._J0 I-I-I{:_. J I.JJ J .,c_ O I.._l O O N (J N (..._ N (.-_ U

•,_: (..9 I--- ._ (.D _Z: UJ !-- P," '"' _,! _'-I _--I I--4_:_ (J z t-_ (J Z _ n-_ _M n_ _J X -J >- -J NI._1 lil I--I _J I--I I--I LtJ - I---I -.J - I---I I._ <:E <I: _=E 13-

p-I i._i .,_ uJ ,,, ._I: i--I(.) 0 uJ 0 0 0 uJ ._E l._J <C '" "_E '--*,.,._ -T- (__ i.-- --r- (.3 ,,m p- oo i-- I-- GO 0 z (.3 z 0 Z (.3 i_:_,-_ ,-, 0 ._: __ 0 m,- i-..i l.,j .,_ lil ud _.. L_J 0 U.I 0 Lm 00 ¢_ ..j _0 C/'_._i 0 Q.. r'_ _ _.. E:_ 09 (.9 ._J (.0 -.I (.9 -J

,, ]

II

38

_Ji,iC_O

ry*L_"l-k--L_k--

A

C_

rw

o0

_Jtw

k-4rv*

¢O

',' u_

o_ rv*co ,,,

-J Z

,.,'" X

O _.

0

C_

"I"

O

Z

k--h--HCX:ZZ

GO

O

O

_J_Ck--zL_

ZO

I--4

Z

C_Z

Z

F-z

F-

ZM

O

Z0I-=II--

L.IJ

I-4

ZI--I

cO

GOZO!--IF--(3z

1.1.

i,ia_

-r-

I.iJZH

00

0I--

0

o

>= o" I=-o _ ,,,

i_" I-- _ l*-c_J

• '_ _

>" _ " _ ,-_: _'- . _ I_" I_

X e-

_ _ "7,

_ M7Ee,-

II

U

I.--

_ E

39

._.JLM

O

I---Z

Z0Q::I.--I

Zi,i

I,OQO0"_

Z

cO

O_JGO

,.,¢:

Z

,._1I.i,JI-4LI.

I--4

Z

_E:O

cOC_

¢D

v

._.JI_l.J

O

I.i.J

w-r-Q_

O"s-l-,--

Z

O_

!

QO

I.i..

L_":-

GO0

h_O0!

ICOqD

(.JGO

A

Odho

m_

A

_0

40

GO-.JW

0

LU

>-GO

ILl' _ O..

0

U.; H

_'-- 0

O0

o

o

o_

d

==

0

0

Z0(_)

Z0

I--

0 0 0 0

41

A

O

zOI-4

_=1

I,-I

Goi,..=I,-4

-I'-

I=1=

i,i

I-I

O

i,i-I-I--L.I.II'--

t--I

i,I--t

-r

I'--I.,i.I

t--"00

I--II"--

I'---

I

O

I.ulI..i.J

1.1_

I"--I=1.1

I'--OO

I=-IIn

--.II=1.1

I--4

Z>-

i,iZO

O

OOi,ir_O

Z0I,-I

i,i

I,-I

-r-

i,i

ZI=-I

I..I.IGO

i,i

OOZ

I-=

CO

Z

-,J

I-4

I-=I--I

ZO,-.I

00

OI--

a.-=_

-=1i.

I--I.-=iI--I--

1.1.1

I-4

O

O-.,.II,.1_I,-I

ZOI--4I'-.O

ZOI--II--

I--I,_J

0I--

I.t.I%.00

I--I--4

I..i.II--

0

0

1.1.1i,i

i,

1.1.1

I--I,-I

I--

F.-I--I

O

,,,w--I

A

,._1LI_

I--II---I,--.

i-=I--I

._,1I.LI

OO_=_

._,1i,I-4

zOI--II--O

ZOI-.4I--

1,-I

OI'--

OO_,J

i,i

I-.4

I--

1.1.1I,.-I-.I_=1=_1I.UIn

O

w1.1.1

i,i

I--I---4I,--In

1.1.1I--I--I..J._1i,iI.--

cO

/,2

>-

I--

.=_I

l=iJI--I

I--

.=_I

ZI,-I'r0Z

i=-

l,--f./*j

i==I

z>,=

v

0

II

Q=I--I

.--II=i=I--I

z0I-*I

I,-I_J

0l--

l=iJ

0

i,I

.-_I---I-.II--

,,C

l,,iJi.-=I--I

r_*0v

0

II

0._JI.i=I--I

I.i.Ii,i

I=I=

l=iJtm

I--I--II--I-=

w

I--I._I_=Il=iJ

v

II

.-II.I.I--I

43

_J0

)-

I.i.

Z0I--II--I--IzI--I1.1_

C_

ILl.--J(.DZ

L._

,_1--J0

I--I

-.J

I---

-r-Q-

W(,.DZ

--J

¢XJ-'r-

L._0

¢.DZ

"1-(_)

I..i_C)

1.1.1I--

Q::

Lid

I-4

"-I-

ILlI--

n_

I,.tJ¢DZ

.--J

ILlI--H

r_0

0

--.JCOz

n

l_ul=_I(.DZ

Z(:3I--II--.

12DI--I...J

I.i=IZ

._IQ.zI--I

-r-l-'-

CoQ-

LI-0

(.DZ

-r-(.3

I.L0

l=l,Jl--

l=l.J

I--I

0'3a=

l,.ull--

l.ul._I(.DZ,_

ZOI--I

r,.-

I--I

1,4JZ

.=JO,=ZI--I

I--

LI.I--J(.DZ.,_

).-

1.1.1I---1'--4--J-.I

I--

Q.

W.--ICOZ

Z0I--II---

I--I.-I

ILlZ

.--Ia.,

II=1-0

I

-'10

'-i-a..

('%1CO

I.i..0

ILl(.'.Oz

"1-(.3

i,0

I.iJI.--_Cn_

1.1.1

I--II---

Or)

1.1.1I--

he"

W-J(.DZ

ZOI--II,.--

I.-I__I

z

_.IQ_I

I=i.0I

I.--

0

Q_

l--

Z0I--Io')z

l--

-r

I--.

(_)I--I

I---

I--O_L.I.

l=iJ

(.DZ

1.4.1._I

Lld

-'t-OI.--I.--IO..

I.i.I

I--I

0

-1'-I---

l.a.lI-.-I--I_Q

0

-1-I.--

i,0

L.I.I(.DZ

-r-(.)

1.4.0

1.1.1

I,I

I'--II'--

*el

I---

z

_.-

O(.3

ZOI--IODz

I--

(,.)

=_It..Dz

1.4J_.I

w

(.3l--HQ.

WI--I--4

._IW

0'3

I-*

Z0I.-I

z1,4JI--"

1,a--

Od"-i-I---

i,0

I.iJ(.OZ

-r-(.)

I=1.0

1.1.1I--

i,i'rI--I

rm

-r-I.--

I'-,...0

L_

Z0;-4COZbd

I--*I,-Ito

O

L._O

I=i.I_J(.DZ,_

1,4.1__I,-_

._I

.=JO

-rQ_

,=l-_=

L,_O

I._(..DZ

-I-

O

I---

I,--Ii=-

-I-

44

i

i

\__ _I_

Jv

_f

(

45

n IP

_p,r

/

/(\

v

_q

J

46

f

_ Z_q_•

cr_ _A

m v

_ Z_ _

iIIIIl

47

!

\\\

\\

\\

\

48

\\\

\

\

F---

49

C"

5O

_'777 ;I

_ _ a a, _n _$

C--

|,

51

I

_ L,-mmmm if,-- _Ik

-i

Z _

i

0.

52

r-

| |

J

f

I--

53

F--

b"

J

f_

Zr-%,

54

ff

\ I,Jo. o. o. o. o. o.0 0 0 0 0 O

! I

q

q0

I wO_ o

q

, >

o.!

Q

_ C7 -r"!

r7cl

o. o. o. o. o. o.0 0 O 0 o 0

I

qL_

oL_

I w

O

>

oL_

0

_ Nn-!

Q

55

t_Z0I-th-

l--

Q..00._1

I

ZIZT" I---I-4 It--- Z

)--4I.,.I s

,cC-,- _.-

0 0

r-_0

_--

Z0

.-J

0 0

0

._.1

z0I--I

0 O0

56

The Tethered Satellite System on the Systems Engineering Simulator

Ron Humble

Lockheed Engineering and

Management Services Company, Inc.

57

Lockheed_Engineering and Management _

Services Company, Inc.

The Tethered Satellite Systemon the

Systems Engineerincj Simulator

by

Ron Humble

PRECEDI_ pAGE BLANKNOT FEdBED

59

SYSTEMS ENGINEERING SIMULATOR

TETHERED SATELLITE SYSTEM

INTRODUCTION

The purpose of this presentation is to discuss the tethered satellite

system (TSS) portion of the Systems Engineering Simulator (SES). The SES

is a real time simulator, used at the Johnson Space Center (JSC), to

evaluate space shuttle operations when there is a man in the control loop.

The "on-orbit" portion of the SES consists mainly of a mock up of the

shuttle aft cockpit, complete with functional controls. The operator can

"fly" the orbiter using the cockpit controls and can respond to simulated

external scenes and cockpit displays. Other portions of the SES include a

front cockpit mock up for ascent/descent simulations and a manned

manoeuvering unit (MMU) for extravehicular activity (EVA) simulations.

DESCRIPTION

The on-orbit SES simulates the dynamical interactions between the

shuttle orbiter, the MMU, and one other payload. (This capability will be

increased to 4-6 individual payloads in the near future.) All of the TSS

simulation is controlled from a mock up of the shuttle orbiter aft cockpit.

This cockpit is complete with hand translational and rotational

controllers, digital autopilot (DAP) console, radar console, remote

manipulator system (RMS) console, and the generic CRT

6o

consoles/keyboards(MCDS).Statusofthetetheredsatellitecanbe

monitoredin fourways:

1.)withsimulatedvisualscenesoutof theport rearand both

overheadwindows;

2.) withsimulatedcamerascenesgeneratedon television

monitors;

3.) withsimulatednumericaldatafromthemultifunctionCRT

displaysystem(MCDS)display;and

4.) withsimulatedshuttleradardata.

Manipulationof thesatellitecontrolsystemisdonevia the MCDS

keyboard.

Certainparametersandvariablescanbeoutput,duringa simulation

run, to both a magnetic tape and an hardcopy printer. The tape may then be

post processed to generate digital tables or plots.

During a simulation run, system faults (ie. an RCS jet failure) can be

generated via an operator's console. This console will allow faults to be

input to either the orbiter, the satellite, or the winch system.

51

ORBITER DYNAMICS

OU _ SY_I_k5 oi

i

, ,i !i ii i

L. 1 O

.... . o .._ ...........

[_ .,

o

_ ''

..... . .... ...........

b k

I

I

f

r- ........ - .............. o

i ATrrrt_ _LA._ AND CON_ SY_ a

o a

i [ '_wnil4 A'IN3 JNI 1, .

', ], _a._._,,_ .... , r-t,_'_._ ',

-" I'I-;__-I_:I_T - ' Io a I _11."_ I t

l', '- .... -"------' '--------' ', I

L,SATELLITE DYNAMICS I

TETHERED SATELLITE SYSTEM ON SES

62

SYSTEM MODELS

The TSS system is modeled as two free flying vehicles each with six

degrees of freedom, constrained by an extensible tether with an

additional degree of freedom. The vehicle translational equations

include three second order differential equations containing the M50

spherical coordinates.

force = mass X translational acceleration (F=mA) - 3 dof

The vehicle rotational equations include three first order differential

equations containing the body Euler angle rates and four first order

differential equations containing inertial quaternions. The Euler angle

accelerations are integrated to give Euler rates,

moment = inertia X rotational acceleration (M = Io_)- 3 dof

the Euler rates are then transformed into quaternion rates. The quaternion

rates are integrated to give inertial quaternions which are then

transformed back to Euler angles for output.

Shuttle equations of motion •

Ashuttle = (l/mshuttle)(Fgravity+ Faero+ FRCS+ Ftether+Fpayload+FRCSplume)

i-1_shuttle = (Mgravitygrad.+Maero+ MRCS+ Mtether+ Mpayload+MRCS plume)

63

Satelliteequationsof motion •

Asat = (1/msat) (Fgravity + Faero + FAPS + Ftether + Fshuttle + FRCS plume)

= 1-10r'sat (Mgravity grad. + Maero + MRCS + Mtether + Mshuttle + MRCS plume)

The tether, as modeled in the SES, is massless but does include stretch.

The necessity to keep track of both the stretched and unstretched length

of the tether introduces one extra degree of freedom. The tether tension

calculated during the previous time step is input to the natural length

differential equation. This equation is then integrated twice to get the

new natural length. The tether stretch (AI) is calculated by subtracting

the natural tether length from the difference between the positions of the

orbiter and satellite. The tension is then calculated, by using the stretch

value, for use on the next time step. In all, there are 13 dof.

Tether equations of motion :

- massless, 1/2 of the tether mass is placed at the orbiter CG and

the other half at the satellite CG

- the tether mass lumped at the two body CGs is assumed constant

- the length (AI) acceleration is integrated :

A I = (RR/JT)(-T D + R R FT)

FT=kAI + 13km*VAI

where :

R R - radius of tether reel

JT" moment of inertia of tether reel

TD - deployer motor torque

64

k - spring constant (AE/I)

13- material viscous damping term

m* - generalized system mass

VAI - time rate of change of stretch

A - tether material cross sectional area

E - Young's modulous of the tether material

Orbiter systems :

The shut'tie orbiter systems are an integral part of SES. These include

systems such as the digital autopilot, star tracker, navigation, etc. All of

these systems have been verified by other simulations and experimental

data. Details of these systems are best found in the shuttle data manuals.

Rendezvous Radar :

The SES has a model of the orbiter's Hughes rendezvous radar. This

model takes the satellite and orbiter state data and produces output

similar to what is available on the orbiter :

1.) range / range rate

2.) inplane / outplane libration angles and rates

3.) line of sight angles and rates

4.) etc.

These data have bias, drift, and random errors introduced to them similar

to those which occur on the on-board Hughes radar system.

65

Atpresent,the TSSsatelliteis modeledas a pointsourcewithperfect

reflectanceetc. Somepreliminarytestsshowthatthis maynotbe a good

approximationandso somefuturemodificationsto the modelmaybe

required.

Tetheredsatellite systems:

The satellite, on the end of the tether, has three major dynamical

components as far as the SES is concerned :

1 .) mass properties - as previously discussed, the satellite is

modeled as a free flying rigid body;

2.) attitude measurement - the attitude measurements, used for

control purposes, are assumed to be perfect (ie. no errors are

introduced); and

3.) auxilliary propulsion system - the APS is modeled as perfectly

aligned cold (N2) reaction jets with step force pulses and perfect

duration. The libration control jets are controlled by the orbiter

pilot via the MCDS keyboard while the satellite yaw is controled

by an onboard control system. The APS fuel usage is monitored

during usage.

66

ENVIRONMENTAL MODELS

Gravity model :

The Earth's gravitational field may be modeled, in the SES, in two

different ways, depending on the setting of a digital switch :

1.) spherical Earth (Newtonian gravitation); or

2.) oblate spheroid including the first three zonal harmonics (J2, J3,

J4) and the main Tesseral harmonic (C22, $22)

Gravity gradient model :

When an assymetrical body, having one moment of inertia less than the

other two, is placed in a non-uniform (non-constant) gravitational field, it

experiences a torque tending to align the axis of least inertia with the

direction of the gravity gradient. SES is capable of determining gravity

gradient torques on the orbiter and any free flying payloads. These torques

may be "turned on" or "turned off" via a digital switch. The TSS satellite

has essentially symmetrical mass properties and thus, gravity gradient

torques are negligible.

Earth atmospheric density model :

The atmospheric density model used on the SES is the "Bab-Mueller"

model. This is an approximation to the high fidelity Jacchia atmospheric

density standard. (See ref. - Jacchia, L.G., "New Static Models of the

67

Thermosphereand ExospherewithEmpiricalTemperatureProfiles",

SmithsonianAstro-PhysicalObservatorySpecialReport313,May6, 1970).

TheBab-Muellermodelwas chosen because the calculated densities are

very close to the densities given by the Jacchia model but the calculation

response is much quicker than for the Jacchia model. The quick response

time is a fundamental requirement of real time simulations. The

Bab-Mueller model is described in ref. - (Mueller, A.C., "Atmospheric

Density Models", Analytical and Computational Mathematics Inc. Technical

Report ACM-TR-106, June 1977). The classical Bab-Mueller coefficients,

as given in the referenced report, are run through a Jacchia calibration

algorithm in the initialization to improve fidelity. Basically the density

(p) is calculated by :

P =Po e(A ÷ B+ C)

where :

Po reference density

A - night time vertical profile exponent

B - diurnal effect

C - seasonal lattitude coefficient

As in the Jacchia model, the sun's orbital position and the effect of the

solar cycle are considered. In addition daytime/nightime effects are

considered.

68

Aerodynamic drag :

The orbiter drag model is a high fidelity model including the orbiter

attitude effects on drag coefficient and reference area. The drag, pitching

, and yawing coefficients are obtained by a table look up and linear

interpolation routine. The roll moment coefficient for the orbiter is very

small and is considered negligible.

The tethered satellite is modeled with a constant drag coefficient and

reference area. This is because the tethered satellite has a very

symmetric surface profile and the atmospheric drag is independant of

attitude. (ie. a constant coefficient and reference area). Satellite attitude

torques caused by drag are not modeled.

Tether drag is not modeled.

The atmospheric drag may be "turned on or off" with a digital switch.

RCS plume impingement :

During reaction control system operation, the RCS plume may impinge

upon the surfaces of both the orbiter and the satellite. This can cause

significant attitude and translational perturbations during proximity

operations.

69

The plume impingement effects on the orbiter are modeled by curve

fitting empirical data derived from test firings on an orbiter (ie. curve fit

constants were developed empirically). These data consider stationary

orbiter surfaces as well as moving aerosurfaces.

Ttle satellite plume impingement model can be made up of several

elements. These elements may be flat, cylindrical, or spherical. If the

target is more than 5000 ft. from the orbiter CG, no plume impingement

effects are calculated. The plume flow is modeled as emanating radially

from a point source, in a direction normal to the nozzle exit plane. The

plume force/moment is calculated as a function of the jet type, distance

from the source, magnitude of the thrust pulse, and the impingement

surface geometry. Details of the jet selection geometry and layout are

contained in the Shuttle Operational Data Book. Details of the plume

impingement model are contained in the SES definition document.

The TSS satellite is modeled as a single spherical plate element.

70

The TSS simulation has the following limitations :

the tether is assumed massless

the maximum tether length is 1200 meters

the reel motor is not modeled

ie. Reel torque = commanded reel torque

external forces do not act on the tether directly

ie. there is no tether drag

- a collision between the satellite and the docking ring freezes the

sim ie. collision dynamics are not modeled

VALII_ATIQN

The TSS simulation on the SES was validated by comparing run data

with data generated by STOCS. STOCS is a non-real time simulation, using

the TOSS software developed at JSC, with an orbiter digital auto pilot

(DAP) modeled.

All of the shuttle systems were validated and are kept valid as an

ongoing task on the SES. This is done by comparing run data with other

"off line" simulation data and flight results.

71

FUTURE ENHANCEMENTS

The following enhancements are being planned :

1 .) upgrading the present reel controller to present MMC standard

2.) modifying the MCDS CRT display to enhance useability

3.) implementing a tether cutting device model

The following are being considered as possible enhancements :

1.) modeling collision dynamics between the satellite and

the docking ring

2.) modeling the reel dynamics with higher fidelity

72

S87- 18822 .!

GTOSS

Generalized Tethered Object Simulation System

David D. Lang

David D. Lang Associates

73

GTOSSGENERALIZED TETHERED OBJECT SIMULRTION SYSTEM

if. PunPosEoE dliLRIL

The GTOSS software system consists of approximately 410 subroutines representing40,000 lines contained in 120 files. Code is constrained to a highly portable subset ofFortran 77, with over 700 pages of documentation describing user operation,equation derivation, and system software design. GTOSS runs on most computers(including: the Macintosh and PC's), GTOSS has been developed under the direction

of the Avionics Systems Division, Johnson Space Center, NASA,

GTOSS represents a tether analysls-complex best described by addressing Its family

of module_ designed to be more or less tightlyassociated as a cooperative whole.

Tether dynamics: TOSS

TOSS isa portable software sub-system specificallydesigned to be introduced intothe envlronment of any existing vehicle dynamics simulation to add the capability

of simulating multiple interacting objects (via multiple tethers). These objects mayinteract with each other as well as with the vehicle into whose environment TOSS

has been introduced. TOSS is incorporated by adherence to a straightforward setof interface rules set forth in the TOSS Interface Control Document, Without small

motion assumption, and _'th complete generality,TOSS solves the tether dynamicsproblem relative to a reference point state defined for itby the host simulation,

Input is designed for easy data identificationand entry, as well as to expediteparametric studies. Extensive initialization options (such as stabilized gravitygradient start-u_ EuLer angle type selectio_ etc,) allow user-friendly run setup.

General tethered system analysis: 6TOSS

GTOSS is a st.nd-.Iona tethered system analysis program, representing anexample of TOSS ha_'ng been married to a host simulation, In order to verify the

TOSS design concept and exercise the TOSS ICD ground rules, it was necessary tocreate a fully representative, yet easily managed simulation into whose

environment TOSS could be incorporated. The resulting union was called GTOSSand has the properties of, and can be viewed as, a system tailored to the

purpose of examining dynamic behavior of general tethered objectconfigurations (space stations, constellations,etc), By contrast, TOSS has alsobeen integrated into a Shuttle simulation (to study TSS), with the resulting

association exhibiting (and rightfully so) the complexity and specificity of an

Orbiter vehicle. The GTOSS host simulation represents a 6 DOF object with 8tether attachment points, GTOSS has an executable code size of about 350k Bytes.

75

FRECEDING PAGE BLANK NOT FILMED

Input and initializationfor GTOSS (as an entity separate from TOSS) is similar to

that of TOSS. GTOSS provides output for itself as well as TOSS by invokingRTOSS (see below) to generate a Results Data Base to archive solution results for

display post processing.

Solution-result archlvlng: RTOSS

RTOSS is the Results Data Base (RDB) Sub-system designed to archive TOSS

simulation results for future display processing. While RTOSS was designedprimarily to capture TOSS data, itoffers a W:'Id-Cardfilewhich can be used by any

users to capture data of their choice. For instance, GTOSS takes advantage of thisfeature to capture its host simulation data to an RDB for display post processing.The modular design of RTOSS requires minimal calls (from the host simulation) to

invoke the creation and population of an RDB (for instance in GTOSS, this act istransparent to the user). At the end of a run, a set of fileswith unique names willhave been created containing all pertinent time history data.

Also inherent in RTOSS are the routines which will extract data from the RDB and

present it in a form most natural for display post-processing. These extractionroutines insulate the user from structural knowledge of the RDB, thus rendering

the user's display software invariant to future changes in RDB design. The RDB canbe post-processed in a miriad of ways for engineering interpretation, as describedbelow.

Simulation result displau: OTOSS

DTOSS is the f:rst of a growing family of display post processors designed toeffectively utilize the RDB. DTOSS extracts data from the RDB for extensive

multi-page printed time history displays. There are currently over 50 differentdisplay formats to choose from, each of which aggregates data selected to meet

various display needs. Users are also invited to add new page formats to createoutput for specificneeds.

Simulation result displau: CTOSS

cross is similar to DTOSS, but is designed to create ASCII plot files(as headers anddata columns separated by delimiters). The same time history data formats

provided by DTOSS (for printing) are available via CTOSS for plotting.In addition totime histories,repetitive tether shape snapshots can be taken in CROSS. While the

plot filesare optimally configured for existing interactive graphics programs on theMacintosh computer, their plot format can be used on other PC's. Since crossgenerates ASCII plot files (which are easily transported between different

computers), it can be run on any mainframe to generate plot files for a PC orMacintosh.

76

Simulation result display: ITOSS

ITOSS differs from DTOSS and cross in two ways. First, it generates outputdlsplay data designed for 3-D animated graphics display of simulation results.

Second, itsoutput is targetted specificallyfor the IMI graphics device (a large, highresolution, fast display device).

Simulation result display: 6ENERAL

The above RDB post-processors not only represent a significant existing display

capability for GTOSS, but also function as convenient templates to spawn specializeddisplay processors. For instance, hooks are clearly defined, and steps aredocumented to modify the existing DTOS8 or CTOSS to add new formats. These

programs can also serve as a functional boilerplate structure for extracting RDBdata to be post processed in any fashion you wish.

B. COORDINATE SYSTEMS and OE6REESof FREEDOM

Coordinate Systems

The following coordinate systems are used in TOSS:

A. TOSS Inertial Frame The user is allowed to arbitrarily define this frame,however, its relationship to the planet-fixedframe must be exolicitlvstated in

the standard TOSS routine invoked to transform inertial frame vector

components to the planet-fixedframe. This routine (and its inverse-routine) can

describe an arbitrarily complex relationship between inertial and planet-flxedframes. As deli_er_ the TOSS inertialframe is defined as one which is alignedwith the planet-fixedframe at zero simulation time.

B.

C.

m.

Planet-fiXed Frame, This is typically an earth-fixed frame, and also the one inwhich all planetary environment calculationsare defined. The user is allowed to

arbitrarilF define, this fram_ however, its relationship to the inertial framemust be explicitlystated in the TOSS routine which transforms planet framevector components to the inertialframe, and environment calculations must be

consistent with its definition.As de//ver_ GTOSS environment routines assume

an earth-fixed frame, the +X axis of which is presumed to pass through theGreenwich meridian, +Z axis through the geocentric North pole.

To_ntrlc Frame. This is a frame aligned along local spherical longitude,latitude,and radius vector to the planet center Itis used for state initialization

options and result interpretation.

Orbital Frame. This frame is defined by the kinematic state of a point, and issimilar to the topocentric frame except the local longitude/latitudevectors arealigned to the current plane of Keplerian motion. Any TOSS entity can have an

associated orbitalframe, which is used for state initializationoptions and resultinterpretation.

77

E.

F.

Body Axis Frame. A body-fixed frame (and a body station reference point) isassociated with each 6 DOF object. The frame and body station are arbitrary,but must be consistently used for defining all body attributes (CG location;

tether attach-points; aerodynamic reference point; etc). This frame is the

reference for body attitude interpretation.

Tether Frame. Each finite tether has its own tether frame. The X axis of this

frame isaligned along the line of sight between the tether's attach points. The Zaxis is orthogonal to the first, but lies sn the orbital plane (of a preferred

kinematic point).The Y axis is defined to complete the triad. This frame hoststhe tether dynamics coordinate solution, and is used for both initialization

options and result interpretation.

Degrees of Freedom (DOF)

Many of the DOF are modifiable via procedures included in the manuals Thenominally delivered GTOS$ configuration provides:

1. Up to 9 bodies (each with up to 6 rigid-body DOF's).

2. A 3 DOF particle dynamics option to eliminate rotational dynamics overhead(for efficientstudy of overall topologicalbehavior).

3. Concurrent simulation of up to 25 different tethers.

4. Tether inter-connection in any conceivable fashion at up to 8 attach-pointsper body. Each attach point is specified by its coordinates in an arbitrary

body axis frame.

5. No practical constraints on tether/attach point connectivity.

6 Tether dynamics simulation as your mixed choice of:

• Massless models (ie.linear springs and dash pots)

•Modal Synthesis finitemodels (on a tether-by-tether, and axis-by-axisbasis, up to 15 modal coordinates per each of 3 axes, with the

evaluative resolution of each generalized force type specifiableat up to amaximum of 30 uniform spatial intervals). Tension is optionallyevaluated either in terms of material strain, or Lagrangian multipliers.

•Point Synthesis (ie. Bead) type finite models (on a tether-by-tetherbasis, up to 48 collocation points per tether; with 3 DOF per point).

Tether can break on tension limits,or be severed at multiple points.

7. Five /ength-rat_ and five tension-profile,data-driven deployment scenarios:

8. Five po_r-profile (amp-1/m/ted) data-driven, power generation scenarios:

• All deployment and power scenarios can be arbitrarily assigned to anyone or more tethers (a tether also has itsown scenario sca/in8factors).

78

C. ENVIRONMENTAL MODELS

Planetary Environment

Subroutine calls to the planetary environment models are standardized within TOSS

so that any levelof environmental sophistication(you have available) can be easilyincorporated into TOSS. Calling arguments to an environment model are: a

sophistication-levelflag; and, a position state in the planet-fixed (earth) frame.Vector results are returned in the planet-fixed frame. Currently delivered wlthGTOSS are the following:

o Gravitational Field Model: Earth; Inverse square central force field_also anOblateness model with 2 anomaly terms.

o Globe Shape Geometry Model: Earth_ Spherical globe.

o Atmospheric State Model: Earth; 1976 Standard earth density, speed ofsound, and temperature model (Sg accuracy to 1000 KM).

o Atmospheric Kinematics Model: Earth; Rotating atmosphere (with localwindperturbations currently zero)+

o Magnetic Field Model: Earth; Tilted,shifted,vector dipole.

o Inertial Frame Model: Planet centered inertial point, with inertial framealigned to planet-fixed frame at zero time.

Entity Attribute Environment

As delivered, all TOSS objects can experience simple aerodynamic drag. Tethers

experience distributed aerodynamic liftand drag. Tethers carrying electriccurrentexperience electromagnetic forces.

TOSS is designed to facilitateincorporation of any degree of entity attributesimulation.

The design philosophy of TOSS has been to provide a useful array of built-in systemsimulation features such as data driven scenarios for: control forces and moments,tether deployment, and electromagnetic power generation; as well as default

aerodynamics options; etc. In addition, TOSS supports arbitrarily complex

simulation of mass properties, control systems, aerodynamics, tether deployment,and power generation, etc. through its documented user-interface data structures,modularized code, and logicalhooks which invite and assist in user modification.

Of course, when TOSS isincorporated into a host simulation, all the system models

present in the host then function in the tether environment provided by TOSS.

79

E. LIMITATIONS

The following summarizes the currently known limitations to the use ofGTOSS/TOSS (also see section below entitled: What should be done next ).

a. Tether Frame Definition:The orientation of the Tether Frame is undefined if

attach point line-of-sightbecomes exactly perpendicular to an associated orbital

plane. Near this state, frame orientation rates can become large, inducinglarge apparent rates of change of finitetether coordinates. This can be avoidedin the Point synthesis model by integrating coordinates in the inertial frame

(thus using the tether frame for interpretation only ). To date, this has notbeen a practical restriction (due to the nature of engineering applications); If

required, this restrictioncan be removed.

b. Modal Synthesis Finite Tether Model: This model is only valid during motionsfor which the distance between attach points is greater than the deployed

tether length (a state of intrinsic tension). Furthermore, cases in whichcyclic slack/taut states are a significant element of behavior may not be

simulated well. In short, while the Modal synthesis model has someadvantages, the Point synthesis (bead) model is significantly more robust andshould be used to establish truth datum.

C. StabilizedGravity Gradient Initialization:Currently this feature applies only tos_mMe cham_ limited to 3 objects and 2 tethers (as a mixture of massless and

Point synthesis models). Multiple disconnected chains are allowed.

d. Certain Environmental Effects (for example, solar pressure effects) are not

incorporated into TOSS.

r. M RS

Validation of TOSS/GTOSS involves three distinct areas: Classical techniques (for

those cases which are simple enough to be described by classical closed formsolution); Comparative techniques (for those cases which defy classicalsubstantiation); and Official techniques (to verify site installation and validate

evolutionary changes to GTOSS).

Classical Vodfication

Officalsolution verificationof TOSS has been accomplished from many directions.First, the simulation of the rigid body TOSS objects are verified via classicallyknown solutions to Euler's rotational equations and Newton's law. Overall

translational dynamics is further verified against classical Keplerian motion.

Massless tether dynamics are verified against known gravity gradient as well asbolo type motions. Finite tether wave propagation and shape verification has also

been accomplished against classicalstring theory.

80

Comparative Uerlflcatlon

Finite tether dynamics have been verified by comparing both the TOSS ModalSynthesis (MS) and Point Synthesis (PS, ie. bead model) against each other and

against a bead model independently develoged by NASA JSC. These comparisons haveaddressed aerodynamic response, wave propagation, and slack/taut behavior.

Electrodynamic finitetether response has been officiallycompared only internallyto TOSS (between the MS and PS models).

There are at least 5 known, actively used, installationsof GTOSS. When GTOSS is

installed, users invariably compare its results to independent tether solutions

previously verified by the installation. To date, there are no unexplained anomaliesin result comparisons of this type.

Installation Verification

Delivered with GTOSS are 18 different input run decks (along with corresponding

officialresults) which test allaspects of GTOSS. A user site compares the output ofthe newly installedGTOSS to these officialresults to verify siteinstallation.

6. ImMI ssomu _ 0Jl_ S0iI

The following features are either planned, or recommended for future GTOSS/TOSSdevelopment:

I. Non-uniform point spacing for the Point Synthesis (PS) finite tether model:

This will allow more efficienctuse of degrees of freedom for solving certaintype finitetether problems.

Non-uniform material properties for the PS finitetether model: This will allow

simulation of tethers which are purposely constructed of different materials asa function of length.

. Auto-transition (on user defined criteria) from finite to massless to finite

tether models: This will allow full mission simulation continuity without thelarge computation overhead associatedwith very short tethers.

4. Improved aero force model for finite tethers: The current model does not

represent the consensus standard for distributedair loads on tethers

Flexible boom attachment simulation: This will allow a certain amount of

attach structure flexibilitywithout full involvement in simulating bodyflexibilityof a TOSS object.

6. While the latest version of TOSS reflects an emission-end-sensitive pLungLngaspect of tether deployment (under small strain), the author does not admit to

knowledge of an ultimate expression for deployment kinematics or dynamics.

TOSS will be continually improved in this area as understanding is gained.

81

H.CASE STUDY5 aMP_l

Examples of Host/TOSS Integration

There are two different instances of TOSS having been successfully introduced intoa host simulation environment: the first of these is GTOSS (described above>; thesecond is called STOCS (Shuffle Tethered Object Control Simulation). The host

simulation for STOCS is a full engineering fidelityflightcontrol simulation of theOrbiter. STOCS is being used to perform mission verification tasks for the TSSexperiment (under the responsibilityof NASA JSC). STOCS is an excellent example

of complex control systems (TSS on-board control) becoming associated with a TOSSobject (which represents the TSS), as well as the introduction of specializedtetherdeployment systems (TSS deployer) into TOSS.

Examples of TOSS/GTOSS Application

TOSS has been used to study enumerable engineering applications of tethers. Someof these are:

i. TSS mission study (STOCS/TOSS, 2 rigid-bodies,both massless and bead modeltethers).

2. A spinmng, orbitalstation ( 6 rigid-bodies, 15 massless tethers).

3. Gravity gradient/Gyroscopic orienting spinning dumbell (2 particles,I masslesstether).

4. Electrodynamic day/night power generation/orbitalboost with tethered counterbalance (3 particles,1 bead model and 1 massless tether).

5. Real-time Shuttle Engineering Simulator (SES) verification (comparison runs

made with both GTOSS and STOCS).

6. Planetary exploration maneuvers using a slingshot mechanism.

7. Electrodynamic pulse maneuvers (2 particles,! bead model tether).

8. Space Station docking devices (3 particles,2 massless tethers).

9. Orbiting, spinning carousel (3 rigid-bodies, i massless, I modal synthesis,and ! bead model tether).

10. Gravity gradient stabilizedorbiting platform (3 rigid-bodies,I modal synthesisand 4 massless tethers).

li. Simulated bead model by chain-connecting 9 TOSS rigid-bodieswith 8 masslesstethers (for bead model verificationstudy).

12. Comparative solution verification studies between GTOSS and an independentbead model simulation (wave propagation, aerodynamic response, symmetrical

slack/taut gravity gradient behavior of a system exhibiting TSS physlcalproperties)

82

TOSS Tethered Object Sub-System

GTOSS [_ Generalized Tethered Object

Simulation System

R__ _ Result I]ata Base sub-system

DY®_ _ Display print R[IB post-processor

C:_(_ _ Chart/Graphics ROB post-processor

i_(_ _ I mi graphics ROB post-processor

83

SYSTEMINTERFACE

HOST c,_- -- l_ TOSS

AEF. PT.

INER. PT.

IINTERFACE DATA STRUCTUREI

• REF. PT. STATE WR/T INER. PT.

• ATTACH POINT KINEMATIC STATES

• ATTACH POINT FORCES/COUPLES

No Orbital State Assumptions

I_ No Small Motion Assumptions

84

GTOSS OPERATION

means

,'ISCII file

6TOSS Optional CRT Iinterectiveinput

OptionalCRT Irun Nonitoring

Ouicklookoutput

file OUTDATA

' e

I Results Data Basefile set run I

I

I Results Data Basefile set run .._

/

I Results Data Base _Kfile set run N

_IR, CHIUED R.OB's

//

,/

//

DTOSS

Optional CRT

interactiveinput

)tionalCRT

run Momtoring

(Similar ROB

processing

For CTOSS

and ITOSS )

85

oFFR EooMfill

19 Bodies (3 or 6 DOF) i

125 Different Tethers j

8 Tether attachment points per body I

ITotally General Connectivit_l

ITether models, your mixed choice of:

_ Massless

_i_ Modal Synthesis (3-D)Up to 15 Modal Coordinates (Legendre) peraxis

Up to 30 Generalized Force evaluation intervals

Tension via strain or Lagrangian multipiers

Point Synthesis (3-D)Up to 50 collocation points per tether

3 DOF per collocation point

Tether sever (on time) or break (on tension)

I Data-driven, arbitrarily assignable scenarios I

5 length-rate deployment scenarios

5 tension control deployment scenarios

5 power profile (amp limited) generation scenarios

86

Input to all TOSS environment routines:

I. Fidelity level flag2. Simulation Time

3. Position in Planet-fixed frame

Inertial Frame ModelTo evaluate this environment, use

EFTEI, EITEF

standard routine

I Gravity Model I GRAV

l'Globe Shape Model I GEOD

I Magnetic Field Model p GAUSS

I Atmospheric State Model i ATMOS I

I Atmospheric Kinematics Model _ WINDS I

87

CURRENT LIMITATIONS

_' Tether-Frame is Un-defined when

line of attach points is 90 degrees

o u t o f t h e orbitalplane

:_ Modal Synthesis model valid onlyf or a s t a t e o f intrinsic tension

•._ Modal Synthesis model dubious

for cyclic slack-taut states

Stabilized Gravity Gradient start-up

valid only for simple chains of up to

3 bodies and 2 tethers (mixed bead

and/or massless)

88

UERIFICRTION METHODS

E_ICLASSICAL VERIFICATIONI

• Keplarian/Newtonian behaviour

• Classical String Theory

I_ICOMPARATIVE VERIFICATION 1

Participants:

• JSC developed bead model

• GTOSS bead model

• GTOSS modal synthesis model

Study parameters:

• TSS Type Parameters• Aero Response

• Transverse Wave Response

• Symmetrical, Un-forced Response

i_IOFF_CleLUteIFiCeTiONi

I_IUN-OFF,C,nL,ER,F,CeS,ONI

89

TOSS/GTOSS APPLICATION

• TSS/Orbiter Compatibility (2 RB, I TH)

• Spinning, Orbital station (6RB, 15 TH)

• Gravity gradient/Gyro dumbell (2 P, I TH)

• Day/Night electro pwr gen (3 P, 2 TH)

• SES verification (GTOSS/STOCS)

• Planetary exploration studies

• Electro pulse maneuvers (2 P, I th)

• Space Station docking device (3 P, 2 TX)

• Orbiting spinning carousel (3 RB, 3 TH)

• Gravity gradient platform (3 RB, 5 TH)

• 9 Body equivalent bead model (8 TH)

• Verification studies (20 - 50 beads)

9O

LMHIRLING

_J

ix::::xcJc::::x

91

I_7 Non-uniform Point Spacing

I_ Non-uniform Tether Properties

I_ Auto-phase transition

I_ Improved aero-force model

I_ Flexible boom simulation

I_ Improved deployment fidelity

Expert, Friendly User interface

92

DEAD MODEL vs MODAL SYN AERO RESPONSE

1400

1200

I000

800

6oo

400

20o

00.0

\I

HodalSUnUw_rI_I (atT= _:0 stuo)

02 0.4 0.6 0.8

\

bad Hodel(atT = 960 soo)

NOm'S_i._ TOHnt LBOTH('aXk rT)

/,%I-

ia

I

93

L,IJ

(X:

t,"-

5OO0

443OO

3OOO

2OOO

I(XX)

0

OIW/ttITE POllER 613tl3mtlOtt (55k LEltGnt)

2 3

tSO

IO0

0

-5O

-I00

4

_R

In_m"e_ ir'Q Ir_w'o:ti_

-- _ (VOLT)--- CIJIqlq_NT-AMPS

150

i

! t I

5000 I(X_O 15000Hl611 TI_ (SEC)

$tmtkm tammat

futolNtt Tmmkm

Pi

I

wo

V

"7"a:

mrs

,,-It

I.s/"r

-Jo.

!£it.

!t--

0

1L:llER IIIG _ SFITELLITEItlG at STATIOH

-6 ¸

0 2

ORBIT NUMBER94

3 4

Tethered Satellites Simulation

John R. Glaese

Control Dynamics Company

95

Z

O

Z

0

Z0

Or]

mZm m

Z0

O9

0

PRECEDt_ PAGE BLANK NOT FILMED

97

f

c-O

Om

0

0

C0

Om

Fc"

Cn 0o_

0>" _ ,,--

o _ _ _ _.o _ r..D

_t

J

98

f

t-O

em

¢013

-00L.

.4-/¢-

i

c_

\ J

99

f

CO

E(1)

.+-,CO

CA

(D

Oc-

e_

"O

O ¸(D

e_

00

om

o"_O

L_ZV

>-

m

C;O

e_

O

>N

C;OO

C;em

O

O.0O

X

o o

U_

c- L.°_--_ .E:N

V

®

0:: X

Oc" E

k..O

O Z

Om

O L_> O

C;O >"_=O

._2

><

Oo

e_

O>m

OOO

..2

_>-

@

\

J

100

I,I

0 O

>_

_)Or)

Q) "0

o_ L

om

IJa.

r-

r"G)

m

L

r-

>_o

r_Q)

CI

i

/

/-

r-Q)

m

.lZ

0

0p-

J

__1

Q)

0 0L

C

0

i

I1)Om

0if')

J

lOl

t-

t-

t- O

L_ 0LL

U 0 L._u. o

_.- L Z

0 r"

i z

"L.I _

I-.I ! _

Ii I

,_. ,-i_c_-,

_ ,-I---2,

II II

zI OI

Ho _"._

t-- 0r-

_- o9

t_m0k..

0Ix_

0t-k..

x

0_t-O

0r_

1:::

.L.

"t:: ___ o.-.

ol _,a:.__ _-_

0

J

102

f

EO

o--

O

E_- OO °--

-+_t_

E E0 0

0

_ E0 _

°-- 0Emr-

E

0

"0 L

_ L

v 0C31 "c

Ol + ,.-I -0E

+ 0+ _--_ '----' r,_)

Zl + O L>_I +

--., _._ E-Q v

+ _1_" ,z. Om:El "_

II II II

vv :L|:L I

m

") E c

E _- L.Q) a)

= E-E>_ -_

o ._ ,..e_

w m >

v

O o oo Ii II II

v

Z 0v

0 I II II

+ _-

,'-,, "El 11 "_" -_,___ ,, --

+ + o-d--2T_,

I Ili !1

J

103

f

Z©k--<_r_4

F--i,irr"

o'3

r_

II

r-

C

N

0c"

Co_

F0

L.

F0

0

L_CDc-

O

C0

J_

II

L- I

00

+

00

ct)r--

_1 oo

II II

I

II

"-la.P

N

-t- -up

_-L_, ÷+

.._ :_u I_J

e,JI

+II

"_L_ I:-L_'

II

J

104

f

"0

I"qr

ILl t-EE: o

(._

O0

_-_-"_-I

II II

I-I >1

-_1

EI--

0I.i--

1-

¢-

E-o0r

f_

c- "_0 _-

C_ 0

o_

-8-o

121 O_ C

ffl

r-" "1_O

q_ CN

"_ "l:J

e,a_ e_

O._!--- "I_

+

J

+

_ I .--- I

t'- c-

II II

_J

_

J I J._ r" ._ t-"

II IJe_

o_

I

+

Ir-

H

J

+

II

_q

+o_

I--I

_4

I

F--I

+

+

t--I

C'4

IJo_

2>1

J

+

>l

II

_q

+

J

I05

f

\

697

CI_

<C]

Of

R-L_J

09D0C)O0

>

I

{-L-I.__1

I

._L_|_J

-- ---Z---

_J

>- >-

+ +

%.---

I I

_ ca.II II

Z

Z

II

71

C'4

Ie-

_--._k

t--- Ie-

l -<LI

Q

_4 Cq

I Ie- !-

I Ic- e-

._1+

+ __ ,e-

l___1 t-

i ZL.t

C_l-,-

,- II c-

__J,..., >"

,r=..

Ir-

il°_

J

106

f

,,,,,.

I--ZLLJ

>-0__J

O_I,Ir_

r_1,1_J_J

0n_h-Z0C)

Z0Or)ZLLJ

"0

Ct--

L_

C00:1

"_3

J

-0

E

<

o--

O0

0C

o_

C3_Om

0

v

:_J

+

421 .-J ,_ :._J

II II II II

• >',1 ._1 "_1 :._J

o_

r,j')

-oQ.)

o--

o--

-00

co

0

c-(D

0

E0

7-

_Q

c-(D

.t_aX

ILl

b_.

">',l>_1

,+_-!

:i "....I

+ +

II II

r_.m

C

x

C

o

IZ =

I z

L_

II:_._I

I+ =

Z

,+°I +

IIo

I

Z

II

CN

I

Z

J

107

0

o _

2(_9

<

J

I08

f

E

0

a_

Z0

c_)w

0r_0_

w"7-

W_--

• o

I

gI

!

++!

x

Z

J

109

f

V

ZV

Z0

(/3ZW

o0

, !000

v-

I I I I I I

0

o,

i t0O0

000

bJ

g0

o o0oq0

\ J

11o

f

-'I

0')0

E0£::

"0I,-

..c::

0,)

Q)

(b00

mo_

00")

0,)>

0 (""0Om

_E(,/') o_I--.-

a)N_>,0£::0

0,)

c

U

0')0,)r,/)0O

0

"r"0

ID

L.

0_J

t

ffl

n

0

0

ffl

Om

X

E00

n

02_

0m

Q)>O)

"0

L

0

0(/)

0o_

0,,41,=I

I,,,,,

0

o9U

o_

r--o,.oL

£.,0

\ J

Iii

Skyhook Program

David A, Arnold

Smithsonian Astrophysical Observatory

°RECEDING PAGE BLANK NOT FILMED

113

SKYHOOK PROGRAM

Ao PURPOSE OF SIMULATION

• GENERAL PURPOSE PROGRAM FOR SIMULATING THE DYNAMICS

OF TETHERED SATELLITE SYSTEMS

• FEASIBILITY AND DESIGN STUDIES

• STUDY SCIENTIFIC AND OTHER APPLICATIONS OF TETHERED SYSTEMS

_E_EDi_G PAGE BLANK NOT FILMED

115

B. COORDINATESYSTEMSANDDEGREESOF FREEDOM

• RECTANGULARGEOCENTRICCOORDINATESYSTEM

• POSITIONANDVELOCITYOF EACHMASS

• TEMPERATUREOF THEWIRE

• ORIENTATIONOF THE SUBSATELLITE(DIRECTIONCOSINES)

• ELECTRICCHARGEONEACHMASS

116

C. ENVIRONMENTAL MODELS

• SPHERICAL HARMONIC REPRESENTATION OF EARTH'S GRAVITY

• LUNAR & SOLAR GRAVITY PERTURBATIONS

• ATMOSPHERIC DRAG FORCE

• SOLAR, EARTH INFRARED, AND ATMOSPHERIC DRAG HEATING

• EARTH'S MAGNETIC & ELECTRIC FIELDS

• IONOSPHERIC DENSITY

117

D. SYSTEMMODELS

• BEADMODELOF THETETHERWITHVISCO-ELASTICFORCES

• AREATO MASSRATIO OF SUBSATELLITE,SHUTTLEANDWIRE

• TORQUESON SUBSATELLITE

• THERMALABSORPTIVITY,EMISSIVITY, ANDHEATCAPACITY

OF THEWIRE

• THERMALEXPANSIONCOEFFICIENT

• CAPACITANCEANDRESISTANCEOF THEWIRE

• CHARGECOLLECTIONMODELSOF THE WIRE, SHUTTLE,AND

SUBSATELLITE

• ELECTRODYNAMICFORCEONTHEWIRE

• THRUSTERMODELS

• VARIOUSREELCONTROLALGORITHMS

118

E. LIMITATIONS

• COMPUTERTIME ANDMEMORYREQUIREMENTSINCREASERAPIDLY

WITHTHE NUMBEROFMASSPOINTS

• RESOLUTIONOF WIREDYNAMICSIS LIMITED BY NUMBEROF

MASSPOINTS

• RESOLUTIONVARIESDURINGDEPLOYMENT& RETRIEVAL AS

BEADS ARE ADDED OR SUBTRACTION

• INDUCTIVE EFFECTS NOT INCLUDED IN ELECTRODYNAMIC MODEL

119

F. VALIDATIONMETHODS

, COMPARISONOF SIMULATIONSWITHANALYTICSOLUTIONFOR

THE BEHAVIOR

• COMPARISONOF RESULTSWITHDIFFERENTNUMBERSOF MASSES

• COMPARISONOF RESULTSFROMDIFFERENTSIMULATIONPROGRAMS

• EXAMINATIONOF INTERMEDIATECALCULATIONSDURINGDEBUGGING

ANDCOMPARISONWITHHANDCALCULATIONS

120

G. WHAT SHOULD BE DONE NEXT

• MODIFY SK-YHOOK TO MAINTAIN RESOLUTION AS WIRE LENGTH

CHANGES

• COMPARE RESULTS OF BEAD MODEL OF WIRE WITH MODAL

REPRESENTATION

121

o_ Poor c_J_

Ill

I)N

gtL

0

E

U'O

123

ORIGINAL PAGE IS

OF POORQUALrrY

O0"Olt

124

SLACK3

Gordon E. Gullahorn

Smithsonian Astrophysical Observatory

125

<

04-)

_JE_

0

0

0

0

<U

Z_o

L.) _,o

Z

m

r,.)

Z

0

<

0.-_

0

U

< < 0

_ E_

Z0I-4

E_I

i.-4

=E_

U

= <

_-

_-.

I-t

0

0

<

0

E_

_._

0

co

E_

>

0E__DZ

g0

0

0k-t

<

U

Z

=E_

127

__ P,_,GEBLANKNOTFlUmEO

0

I-4

o_

U

o_0

r_z

r_

Z0

0Z

tn

_" w0

LLI

w

0<

Z

Z

I-4

cZ >

1"-'4

H

Z

_0_

ZZz_

t-4

_ _ • •

1"-4

Z Z

0__0

0 _ _

m _

m_

_.0_

_ m

_0

m

Z

0_

Z0

_0

Z

0

Z mO_

Z0

Z0

Z

_0Or.)I

OZ_0

I-4

O_

O_Z0

Z.,_

.Z_0

O_I-4

_0

128

Z

0 _

m _Z Z_ _0

o_ _ __ _ 0_

_ dzo

_ __0_

>_ _z__

_ _.,___ _o__oDZ_ i I _ I _ _

_ Z _

_ •

_ 0

Z _m 0

_ m

mm_ m

_g_...

129

130

Gi4iG_i%_L P_C_ _S

SLACK3 INPUT PROMPTS

These prompts define the parameters available forspeciflcatlon by the program user.

THE FOLLOWING PARAMETERS AND FLAGS HAVE DEFAULT VALUES ANDMAY BE CHANGED BY ENTERING THE DESCRIPTOR IN THE FIRST COLUMN.

ORIENTATIONTETHER.PROPTETHER.ANGLETETHER.TENS

DISCRETIZE

ORBITDEBUGSEG.LENGTH.RANDOMSEG.SLACKSEG.DIRDRAG.FUDGEBOOM.PROPBOOM.ANGLEBOOM.PHASEROT.AXISROT.RATEOFFSETREL.ABSBURNSCUT.FREERUN.TYPE

UP/DOWN TOGGLE IS: UP1 DENSITY 1.40 E 0.14D+12 CV 0.30D+09 DIAM 0.30PITCH 0.00 ROLL 0.00

ORIG LENGTH(KM) 20.0 SS MASS(TONS) 0.50TENSION FUDGE 1.00

LENGTH RATIO, ATTACHMENT/TIP: 0.50QUADRATICNESS (0_LINEAR TO i): 0.50HEIGHT (KM): 295.0 ATM. DENS.(G/CC): 0.27D-13DEBUG OUTPUT TOGGLE: F% SEGMENT LENGTH RANDOMIZATION: 5.0SLACK FACTOR: 0.95 % RANDOM: 5.0SEGMENT DIRECTION RANDOM : 5.0BALLOON DRAG FUDGE FACTOR: 0.75

EI,LENGTH,WEIGHT (NASA UNITS): 0.13D+09 849.0 106.2PITCH, ROLL: 0.0 0.0PHASE AT T=0: 0.0DEFINING ANGLES, PITCH & ROLL 90.0 0.0

RATE & ACCELERATION (DEG,SEC): 0.00 0.00X,Y,Z (METERS): 0.00 0.00 0.00RELATIVE/ABSOLUTE OUTPUT TOGGLE: REL0 THRUSTER BURNS. (MAXIMUM 5 )

CUT TETHER FREE AT T = 9999.9BREAK

THE FOLLOWING INPUTS ARE ALWAYS REQUIRED:

ENTER RANDOM SEED, ODD INTEGER < 2147483647NUMBER OF TETHER SEGMENTS? 3 TO 50LENGTH AT TIME OF REEL JAM (KM)?(The program now computes: )A CRUDE TIME SCALE FOR RECOIL, NEGLECTING GRAVITY

GRADIENT, IS: 1329.333973151609HOW LONG (TETHER-SECONDS) TO COMPUTE?HOW OFTEN (SECONDS) TO OUTPUT?SET A LIMIT ON # OF BOUNCES (INTEGER):

131

Z0

_:_0

0 _ u_

_<_

_. Z _ -_f_O_ I-

ra r..)<_ D_ <

0=__Z U_

CO

_m_o

Z u_ _

_Z<

B U

E_0

0

i-.q

_B<

<

<dm <

I--tm

_0

z

m _r_ z

132

_fj

0

Z0H

<

1"4

Z Z

_Z_Z__Z<_>_0_

HO_

_0_

0 0_ ZZ

O_ _Z

O_ _0

_Z_Z

_0 _ _ Z_

_ ZZ_O_

Z_

Z _<Z_

<_ O_ _= dd_ _0

_0 _= _ZH_0 _ ._>

_0

0_

OZ_O_

OM_m

._<Z_0 Z__0_

Z_0_

_00

_0

O_

M_H

00_

Z_Z_

133

0

<1..1

f_

0

_8 _

Hz•

Z 0 _ U I _ wO_ OH_ _

_0_ 0

_Z_

o_=:z

__0 H Z

• • • • • • _ •

134

r_Z0i--iE_

0

r_

-ZH

o_Z

,o

• • •

Z 0

_- r.r.l

r..) u_Z

0

Z 0o _

00_ _

Z_

_0_,_

O_E_

Z • • • •

Z0

135

H Z _

_ _ O_

t.-t _ ' °

0

136

8

i

gi

g

E'

u.r

)

_mo.oooloo

ORIGINAL PAGE ISOF POOR QUALITY

QO.OO -_O.oo -ko.oO -bO.O0 -'loo.oo -'lao.oo -'l,lo oo -'aso oo -'leo oo -_oo.oo -_zo.oo -_mo.oo -_so.oo -_eo.oo -_oo.oo .')z,IN-PLRN[ COMPONENT IM(T(RS) mlO'

i lll llIIIIIllIllllIIIIi(l(tlltlltlII

_,L oo;N : . . . " . -vooo -',oo.®-',ooo .',,ooo .,,ooo-,,,v.oo -_oo.®-_ooo ._,,o.®.:,,oo_ ._,o.oo_o O0

OuI-OF-PLANE [.OHPON(NI (IqEl"ER$)

EAgure 2.3.1. 20 Mm tether cut at i Mm. Output at 25 second intervals, total

run of 1350 sec.

137

_ORIGINAL PAGE IS

OF POOR QUAIJ'rY

t

m

o- .

_g

Ell

!

too.oo o'oo

L

-_o.oo -_o.oo -_,o.oo -bo.oo -'_oooo .'m.oo -;..oo ,-.o.Oelo. -'.o.oo -_oo.w -Im._ .:m.oo -_,o.ooOUT-OF-PLRN( COMPONENT IMET(R5)

8iI

=-

i.-z

I

|

nr_

.1,o._ .ko.oo -ko.oo .be.w, -'_oo.oo .'lao.oo .'.o oo .".. -'.o.. ._o.. -_zo.oo ._mo.oo"

IN-PLRN( COIqPONrNI IMET[RS) .10'

EIQure 2.0.4. Am for El(;. ).J.1, except: Thrusters directed mlong-orblt,

cutoff miter 20 mecond burn, totml run of 1200 seconds.

138

8i

8

i_8

8

_00.00

• ORIGINAL PAGE IS

OF POOR QUALITY

o:oo -_o.oo -;=o.oo -ko.oo -ko.oo .'too.oo -'_ao.oo .'=,=a. -'tSO.N .'loo.oe -k,O0.O0 ok,ao.mOUT=OF-PLRI._.COMPONENT114(TERSI ra|OO_

o.

=;

¢1¢_.

'=8

._.oo -_o.oo -I_.u u (m .'=oo.oe -'lao.oe .%a.w -'.m.oo -'_m. -l,_.oo -_eao.oo -1,qo.w ._io.oo -;_.m -' .IN-PLRNE COMPONENTIHETER$1 =10°_ M uo

Eigure 2.4.3. As for ELg. 2.3.Z, except: Thrusterm directed perpendicular to

orbAtsl plane, cuto£f after 20 second burn, total run of 1075 seconds.

139

Artificial Gravity Laboratory

Enrico C. Lorenzini

Smithsonian Astrophysical Observatory

PRECEDING PAGE BLANK NOT FILMEB

141

J_i_i_,_ ! _ _, _ •_,_._r _ I_I¸_ _

O_

_0_

_ozx_o_

_ HzI-'t

N_ z

d

I--t

H

[-t

zoo[_

mOZ

o

0"1

t,0,-4O(D

_.OfO

I

<

zu_

EZu4OOm

143

PRECEDING PAGE BLANK NOT FILMED

G_LLI

144

Ul

Ul

._! _ _o _

o ,'_ _d H

_J o m o m __ _ O_ _ [.,-I Z ,

o_

l I I I I I I

_ '

145

0

I-4

,--I t'_ l.i") _

i....I_ o_

I i t l I I l I I

I

<

Z

[_ _.Z H

F'M

0

I-.4

t

0 -----_

D

146

I-,-

0I-4

0

ila0

A

I

o_

I--IUul0

,<

'o_i.t.1

Z

M

0I-4

o

_ 0

0 _ r_ _ _ _

i _ i 0 0_

147

REFERENCE FRAMES AND COORDINATES

X

oi

ml

r i

mi+ 1

/I O'

!II

II

III

I

I

+1

/

/

• INTEGRATION VARIABLES

- CARTESIAN COORDINATES OF

THE N MASSES WRT. LH-LV

• STATE VARIABLES

- TETHER LENGTHS: L_

- LATER DEFLECTIONS

•IN-PLANE COMP: ¢i_

•OUT-OF-PLANE COMP: ¢o_

- IN-PLANE ANGLE: 8

- OUT-OF-PLANE ANGLE:

ZI

148

w

H

00 X

• _-

, _ _ ,_,

149

'' I'' 'i'' i'' '1'' '1' '' i' '' I ' ' ' i

II II II II

1

"._.._._._.1_ 1 i i i I.I , , I , , , I , , , I , , i I i i i I

_Q

I'--I

Z

U

I:I:I

150

O

H

k-

L

H

I

OZH

ZOH

H

>

>

_ _ _ 0 0

Z M

151

o_

H

o0

0 Z

_ Z0 _ m_ _ Z

0

0

0

_ 0 0 Z0 _ _ _ _ 0

0 _ M_ _ _ 0

_U _

152

U >.

0

D_

r_Q

0

Z0 >UI !

D-I

r/l

,_ _ _ _ _ 0

\_._._ _ uo

> _

,, ,, ,, o_

_ _ _ _ _ _ _ N_ _ _ ,_ _ o _

_ H Z 0

• • • • Q

153

ORIGINAL PAGE iS

Of.POOR QUALn'Y

, , i, , , ,i , ,, , l, , , , i , , , , i , ,

.

c

c

c

c

c

c

",,I,,,iliilll .... I .... I,,_

t i = i !

!

!

!

!iIIi

11

!

• '1' ' ' I ' ' ' I' ' ' I' ' '1 ' ' ' I ' ' '1 ' ''1_

J

C

",t,,,I, ,,t,,,I,,,l,,ll,, ,;, ,,I,

(_li::)as/m) c_v '"nuOv "linbl_ ii

I

i

1:

!

-.|

I'-'1

{/l

' ' I .... I .... I .... I ' ' ' ' I ' '

-

cCC

cc

c

", , I .... I , , , , I , , , , I , _ , , I ,

(_ll_ag/i) C'l.lv"lal._=v_ Cn

!

1

1

-|

o

t54

.... I ' ' _ ' I .... I ' ' ' ' I ' _7 ' ' ' I ............

l I| .|

s -.!

a -

_ ,',',', il;,_,2_ '_";. ;; ;,,;

||

l_ 1|_

!| :l| |

,I,,, ,I,_,,I,, ,,It,_,l ,_ I,,,, I,,, , I, i i i I i I I , I ;

| | ° i 1 _ _ ° i t

155

ORLGLNAL PAGE IS

OF POOR QUALITY

SIMULATION A___. SIDE-VIEW

NASS STnSOL

÷

,_ _x

.- . ." , .*_m n aQ.4am ,,alam i_ im ,HI u .;_oo -,,o ¢o -,_ N -,o_.am .'h_ll a_l • -_l,m,llIIm-PLAm*[ CO.eON[NT _.[T[_SI

; , . . . . . . . .bollII .ill.m .Nil 1111,ll ._l_o.m .:Im.m N u kao I ._lOmm -N.Io .:iTlo.lm.ImaO.lO .iNOm -'lUO.OO N • -lll*.ll -IMIImll

- Expanded Stele, S_de-V£ev Plotted Ever? 40 Sec for 7200 Sec.

156

ORIG1NAL PAGE IS

OF POOR QUALITY

SIMULATION B. SIDE-VIEW

MRS$ StM80L

| 1=3+_x

,

• .m Ilm.u _.m '_.os amo_ 4,o.i _ u .'_..o.as -',N. u ._. so -_t.m ._.as -_.n ._.=o -_m m 4_ m

IN-PLA_( COMPONENTLM(TE_$1

." . . . II,te I II I im I." . ." . ii,ml 21 . iml i=,wI ,ml -" • _ . iwaI _II - • -" • _ -uuMi imml0 -" . ilew ." . . . _ml tll lisa,

- Expanded Scale, Side-View Plotted Evmt-I &O $e¢ for 7200 See.

LonIltudlnal ÷ In-?lana Librational/Lateral Damperi On.

157

SIMULATION A AND B. FRONT-VIEW

o,

HESS STHBOL

! 0_A3+

_X

_.m .haNm.m -11*e.m _._ -_o,u -kum -'1_.m -_.m _ i -_'-e.w -i'**.m -b._o.mOUY-OF*PLAmaE C0#PONLNT IR[T[#_SJ

, .'in. m .'ION .• .'laal . u -'lla .m .'lla. m -'ira . m .'lamQ.m -'Ira . a -'l i,..11. a .'IN*. m -'l,la.i . m .'iN, a,. | -'LW. m -'ira . m .'ira . u .'_um. m

- Expanded Scale, Front-View Plotted Every 40 Sec for 7200 $ec.

158

Z0

H0Z

I--I I--I

Z 0 0

Z_ 0 0 0

0

_-I _ _ _-I 0

__ _\_o z

o_ _ __

_ °_ io _ _ o_

0

159

Z

ilaO

c)I,--I

I-N

I-'4

,-I CW

O

U

ul

H

Z

O M

M

m M 2

mm M +

M M

m O

O

Z0 _ _ Z

m 0

0

0

O

:zF-t

121

O

O

121

NI--I

LIUl

0 0

FI C_ <I

O Or_ _ 2; u

,

Mm _ _ U_ Om M O O

OE--t bl m

i _ < Z

Z _ Oisa H i.v-I I:_O _ _.. O Z

_ O

ul ul m

Z

O _ _O _ _ _ __/1 ila

Q

160

Elasticity Effects in Tether Dynamics

Silvio Bergamaschi

University of Padova, Italy

161

OBJECTIVES OF THE ITALIAN PROPOSAL

The overall purpose is to understand the relevance of tether elasticityin TSS dynamics, because:

long tethers have never been flown; experience is lacking

high frequency dynamical noise might preclude future

experiments (gravity gradiometry, atmospherics)

non-nominal situations can occur where elastic effects are of

primary importance (tether slackness_ impact with amicrometeoroid)

Thus, the work plan is:

To investigate natural frequencies of elastic vibrations of TSS

To study amplitude of response to excitations

To analyze data from _ros and accelerometers mounted on thesatellite

To check theoretical and experimental results

If needed, to improve the simulation models

THE MATHEMATICAL MODEL

Assumptions:

- Space Shuttle in circular, unperturbed orbit. Earth oblate-

ness, atmospheric and electrodynamic drag neglected

- Perfectly elastic tether. No material damping included

- Point mass satellite

- Constant tether length

- Constant tether diameter

- Ambient temperature changes ignored

Method

Lagrangian formulation adopted

_RZC,F.D_NGpAGE BLANK NOT FILMF_

163

Z

X

164

TF_ L _Q e_ r_ (_I f_ li bFti _,ITY

K L_ t_ic. _ r_,/"

1

v'_=, ZEA

G _Q.v;._q.Lo_,_._._"_,oL_,! •

_, : _,- _.'_,o_. _ tm ,_.

165

if,

_l_,_:_,l_"_ _l_,_)

_s_: _y-

166

.£ TA Tl(_ _ Q UIL I BtZi O 1',1

I

_-,1,4- oI

° &, l:o,,, -

167

200

XIL)- L

(m)

150

100

5O

00 5O

d: 1.5mm

d- 2ram

d 3ram

1

IO0

L (Km)

168

DYN/_ N IL/_L E"Q V/_TION S

_,.- ; _"-,. zm _!_.-_,,_'x,-- o

!

_,',',,_,-/ co,,-,_ J._o,.,,._-

da_a; i'),-

zT. (o,,_ -- o

169

cf.,L)

c,t,o_: oI C=O=): i

170

TRIAL AND EROR PROCEDURE TO COMPUTE THE EIGENVALUES

To assume a tentative value for q

To integrate numerically the resulting c equation (in

nondimensional variables)in the interval 0-I with c(o)=O and

c'(o)=l as initial conditions

To check if the boundary condition at the satellite end of the

tether is satisfied. If not, to reflect the sequence with an

increased lql value.

171

250

200

150-

100

50

0

L= 20Km

L- 100 Km

0 5 10 15 20 25 30 35

r

172

I

E

0

I!

o

E

0

|

Z0

0

WZ

O_

I.L0

0

0

WQ0

WWrYI

173

TETHER STRUCTURAL DAMPING

Purpose: To investigate transients in longitudinal vibrations

Assumptions:

coupling with orbital motion and lateral vibrations

neglected

experimental data from Martin Marietta used

Dynamical equation:

Boundary conditions:

Initial conditions:

"/t_',°1: _:_. _ (,,',o)- o

174

.,q

t/f

Y

,-co

_ _ o

175

c,

.,,%

- . . ,

_:.__...,,, _.,,. <., '.,'._,_":,:,-_..,:,".:

..,.:

",-_:::,), .,,a.

"Z""

- .. . .

"' .... b:;

[-i..:',!-,:,.>-.-'i[.:_.:'' ., "',", " : ..: ,,':;"-:,. ,. _,,. "., . --,i. _:';';,',,..:...... '. , , -. ,. ,.; • -, ,. , ...,.? , .. ,..• ".." -'';, . " '. ",,." -"..."." ".. 'C., ") - k...,.,: " -;." •

....... • .. ...... _,.,,,','._[. ,. .._._. ,.'. . ... :....-

-:':'-,, . '.:-._,. - " " :'.<"--/ ,"."..,'" " .'..'-"_'.t'.". "-'.",..,:.:, - .' ,'.,.,:,..,.,.. -... ".

,_,,,.,',_.-.,'. ,-,,,.,..:..._ • .... ,. , -,:. :

,. ,',: • ,.'" . " ,-... , -., ' •..-.:L"

•::,.: ,,,_:-,,,,-,,,, -,; _",, .v..:.... .. - .... ..[,....

., -:..:,..- -,-,_,? : -. 1 -, - • • .................. ","" ;'; " '.,- ,:-.i- . .... - . "...%

i'>i:/""::.,. ,. • . , .._,,:...,._,. .-... ,,.... ".,,.':..,-::::.,...'..,--_.--......,,

;.':;':, ".,.. -.'.4_ :,_.. " S.":,:: '"." : :: t" " :' _' '_ .,'-,:. '.'.-;• .,..:,,..-.,.':...,..,.?:,.. -., .'.'. ,.,:...,-,.. ,:,.:..,..-:..

:-:-.:':',.-,.:.._: ,;.., ..,;..,-,..,,...-,-:, :.. :-..

• ._ .. :.<. ,, ,".:_.:':',_• ,....-..._..'.,%._ ,;.;.,:),. )._ ",.,-.-,.,

176

SYSTEM DYNAMICS. RIGID TETHER

Purpose of the investi_atlon:

To analyze system stability during one elevator transfer fromthe Space Station to the SATP.

To evaluate orbital perturbations on the Space Station.

To devise velocity control laws, if needed.

Assumptions:

Tether elasticity neglected

Characteristic dimensions of Space Station, elevator and SATP

negligible with respect to tether length

In plane motion only (Coriolis force)

No external perturbations taken into account (Earth oblateness,atmospheric drag, etc.)

Method:

- Lagranglan formulation of the equations of motion

THE SYSTEM

Retrievable platforms tethered to the Space Station in order to:

conduct experiments in a dynamic noise force environment (not

attainable on the Space Station)

Elevator envisaged as:

platform for microgravity experiments at system center of

gravity

servicing module for the SATP

Tether intended to:

sustain SATP gravity gradient force

act as structural damper

transfer power and information (umbilical concept)

177

Y

m2(x2 _

/-/ _'_(',,y,)

/.//'_".C'.,y.)

z,'4_

_-go£

Y2)

X

178

s: o,t

I__- I_"_

179

7o _,_._,,. v. _.O'"

_,. l;_t ;..,t,,p_,+e:

• 1. "k 1, . t _._.%-'_ _- V. "t 3 Lo')

_t" ,,_ ,.,"k_td t_++t:

180

1_1

CONTROLLED TRANSFER

Control laws affected by:

m Coriolls force, with impact on average translation velocity

Transients at beginning and end of each maneuver, because of

singularities of the dynamical equations at both ends of the

tether

Linear Control:

In some cases numerical instabilities at the very beginning of

maneuvers

Exponential Control :

- At the beginning." _w _ _" _ _ _0 _)

At the end:

- Smoother motion

- Reduced time for a transfer

- Slightly increased perturbations on Space Station orbit

182

"_ 183

_2 PERTURBATIONS

Purpose: To evaluate tether motlon around the local vertical, forced byEarth oblateness

Assumptions:

- tether elasticity neglected

- first order theory used for the changes of the oscillatingelements

- three-dimensional motion simulated

184

K

8_

|

o!

!

lib "l

185

N87-18823

TSS Subsatelltte Attitude Dynamics

and Control Laws Verification Programs

Floriano Venditti

Aeritalia Space Systems Group

m_.,_.___.._, ?, _,._ _,_ NOT _

187

TSS SUBSATELLITEATTIC/DEDYNAMICS

ANDCONTROLLAWS%'ERIFICATIONPROGRAMS

F. Venditti

Aeritalia - Gruppo Sistemi Spaziali

Torino, Italy

Abstract- This paper deals with the presen-

tation of a dynamic model of the Tethered

Satellite System and of the relevant

simulation program, developed in order to

provide the dynamic analysis support for the

design verification of the Subsatellite

attitude control. A special care has been

spent _n the Satellite attitude dynamic

analysis and the model has been specifically

conceived to this aim.

The way in which the simulation results can

be utilized for the verification and testing

of the attitude control is also presented.

i - INTRODUCTION

The design of the Attitude Measurement and Control

Subsystem (AMCS) of the TSS-Subsatelllte for the electrody-

189

_RE.CEDING PAGE 6LANK NOT FILMED

namlc mission has been completed and now it _s going to be

verified and tested. A representative dynamics of the system

is one of the main items that has to be implemented for the

design verification phase and in such an optic a dedicated

program has been developed.

The aims of this program are:

- to investigate the dynamics of the system, with a

particular interest for the Satellite attitude behaviour,

and to identify potentially critical areas for the AMCS

performance verification;

- to provide realistic _nput data for the verification

and testing phases.

To this purposes

0rbiter-tether-Sateliite

a model representing the overall

system has been considered and

developed, while the adoption of a simplified, provided

representative, ._CS model is enough for the goal.

On the other side, to the AMCS performance verification

aim, a complete and accurate model is needed for the AMCS

itself, requiring a small integration step (128 msec), tied

to the high on-board data handling sampling rate. The need

for the implementation of a simplified dynamic model (3

satellite rotational d.o.f + the possible elastic ones)

arises then, in order to avoid unaffordable CPU times.

The "dynamic-slmplifled" model can be called an 'open

190

loop' approach because it assumes that the overall system

dynamics impacts on the Satellite attitude, while the fact

that the attitude is controlled has a negligible effect on

the overall behaviour, this resulting in the tether tension

at the swivel point which does not depend on the Satellite

attitude. This seems to be a reasonable hypothesis, to be

anyhow validated by means of the "AMCS-simplifled" model,

which, in turn, can be called the 'closed loop' approach, as

it accounts for the coupling between the satellite attitude

and the overall dynamics, while being not burdened by low

integration step requirements.

The simulation results of the 'closed loop' model will

then be used as input data for the "dynamlc-simplified"

model runs; in fact, in order to provide an adequate capa-

bility to represent the system, the "dynamic-simplified"

model requires, for each run, the force time history at the

tether attachment point and the firing sequence of the

Satellite thrusters not driven by the AMCS (in plane and out

of plane thrusters) in input.

The results of the 'closed loop' simulations will also

be used for the integration and testing phase: the AMCS

hardware and software will work, by means of gyros and

sensors stimulators, in closed loop with a simulated real-

tlme-computed system dynamics. The same 'open loop' model

191 -_

as for the verification analyses will be used to provide the

necessary input to the stimulators.

At the moment, the 'closed loop' model has been

implemented and the program is undergoing integration tests,

while the first simulation runs will be performed _n a short

time.

Hereafter the 'closed loop' model and program are

described.

2 - MODEL DESCRIPTION

2.1 - Configuration

The electromagnetic mission will be supported by the

Shuttle in an approx 300 km orbit; the Satellite will be

deployed upward up to 20 km from the Orbiter; the Satellite

mass will be approx 500 kg.

0nly the Satellite yaw axis is controlled, stabiliza-

tion on the other two axes being assured by the gravity

gradient. During on-station phase, the Satellite spins about

the yaw axis and the spin rate is controlled (i rpm). During

retrieval, the yaw angle is controlled in such a way to

allow for the in plane and out of plane thrusters to fire in

the correct direction for llbration control. During the on

station phase, two deployable booms, part of the scientific

192

experiment, will be extended to approx Cm.

2.2 - Tether Model

Some preliminary analyses showed different kinds of

behaviour of the system depending on the tether length. This

leads to different representations of the system, depending

on the deployed length. In figure 1 the main system frequen-

cies are given as a function of tether length (_).

The frequencies of the Satellite oscillations about

its roll and pitch axes decrease as _ decreases; the gravity

gradient stabilizing effect for these axes also decreases,

support in tensioning the tether being provided at short

distances by in-line thrusters.

IH,]

.4O

Fig. 1

_ ax, Fr,q.

5a[ rd[ freq,

_. _tcb Freq.

_'Jax.fe-_.

1'_ax.freq.

5 'tO ;5 tr_sz fre_r's

193

The longitudinal frequencies of the overall system due

to tether elasticity decrease as 2 increases. It can be seen

that the axial frequencies may couple with the pitch/roll

oscillations. The number of modes to be taken into account

depends on the tether length: at short distance only the

first axial mode is significant, while the others could be

neglected, leading to a reduction of the integration step

without affecting the system behaviour representation; at

the longest tether extension also the second mode has to be

considered.

The string vibration too may have a significant

coupling with the Satellite oscillation at short tether

length.

These considerations lead to the need of considering

in any case the tether mass and elasticity: a lumped mass

approach for describing the tether was chosen, where the

number of masses is selectable as a function of tether

length.

The tether can be modelled as a massless spring

connecting the Orbiter and the Satellite; in such a way only

the first axial mode is simulated. To include the other

modes, the tether is described by mass points connected by

springs whose stiffness depends on the undeformed tether

length between adjacent bodies.

194

During deployment and retrieval the tether mass chan-

ges: this is represented by changing the mass of the mass

point closer to the Orbiter; the other mass points maintain

their mass. The nominal (unstressed) tether length between

the Orbiter and the closer mass point also changes (and so

its stiffness does), according to tether reeling, while the

unstressed tether length between the other masses remains

unchanged.

The number of mass point cannot be changed during the

simulation in the current version of the program. The fixing

of this number at the beginning of each run allows for

introducing only the frequencies of interest during each

part of the mission.

Fig. 2

\

\

\%

% % %

195

_hen, during deployment, the need for considering

another frequency appears, the simulation requires a restart

with a new description of the tether which takes into

account new mass points. The I.C, for such a new

configuration can be derived from the results of the

previous simulation, under the assumption that the new modes

are not excited; thus, the new masses must be added until

the associated mode effects are negligible. Reverse

considerations can be applied for the retrieval phase.

An alternative/complementary model is being developed,

to be used for cross validation purposes: the mass points

are maintained uniformely spaced along the tether length to

represent the actual mass distribution, during both

deployment and retrieval. The system frequencies are now

closer to the actual ones, but the mass points "move" along

the tether.

2.3 System Model

The Orbiter and the Satellite are considered rigid

bodies connected by a tether represented by series of

springs and point masses. The system is considered orbiting

around the Earth.

The references frames, showed in figure 3, are:

- Inertial reference frame (IRF), located in the centre

of the Earth.

196

Fig. 3

.4--

z Z

---A_7

O_gibe_ \

k

197

- Accelerating reference frame _ARF), in the centre of

mass of the overall system; it is always parallel to the

IRF. The motion of ARF origin is described with respect to

IRF, integrating the orbit equations of the system. The

motion of the parts of the system is described with respect

to ARF. This is to avoid possible numeric_l problems when

the motion of a System is referred to a very far reference

frame (small numbers added to large numbers).

- Orbiter body reference frame, located in the Orbiter

c.m.

- Satellite body reference frame, in the Satellite

c.m.; z-axis is directed toward the tether attachment point.

- Satellite attitude reference frame, in the Satellite

c.m., with the z-axis always directed toward the Earth

centre. The Satellite attitude is referred to this (r_me

<local vertical).

2.4 Dynamic Equations

The motion of each body is computed with respect to

ARF. The Orbiter has 3 translational rigid d.o.f's; the 3

rotational d.o.f.'s can be taken into account or neglected,

according to the figure of an input flag. The Satellite has

all the 6 rigid d.o.f.'s. The mass points describing the

tether have only 3 translational d.o.f's.

198

Three differential equations describe the orbital mo-

tion of the origin of ARF about the Earth.

The translational differential equations with respect

to ARF are obtained for each body considering all the forces

acting on it (actual and apparent ones):

where:

?

No Coriolis force is present because the ARF does

rotate.

.3cbiter or the Satellite are represented by the Euler

tions. The rotational motion is described by means

Euler angles, deriving from the integration of the

equations (motion about the centre of mass).

: body c.m. position in ARF

: acceleration of ARF origin in IRF

: local gravity acceleration

: force(s) coming from the tether

: other external forces (thrusters firing, imposed

perturbations).

not

The rotational differential equations for the

equa-

of 3

Euler

2.5 Other Features

No environmental model has been implemented: aerodynamic

drag and electromagnetic forces on the tether were consi-

dered negligible, even if the possibility to input forces on

199

the mass points is foreseen.

In general arbitrary forces can be introduced to

analyse the system behaviour under specified perturbations.

All the Satellite thrusters are modelled and their

misalignements, as source of attitude perturbations, consi-

dered.

The control laws of the tether length and in-plane &

out-of-plane libration developed for the TSS program have

been implemented.

The Orbiter attitude may have an indirect but important

impact on the Satellite behaviour during some mission

phases, so it has been included in the model together with a

very simplified model of the digital autopilot and reaction

control system.

Due to lack of data cn tether characteristics, no

damping has been considered for the system oscillation, this

resulting in a conservative hypothesis. The tether torsional

stiffness is negligible and so it is not taken into account

in this program.

A new feature which will be introduced in the program

is represented by the addition of flexible modes on the

Satellite , simulating two deployable booms.

The need to model in an easy way the flexibilltles

the deployer boom on the Orbiter,

of

expecially at very short

200

tether length, is being investigated.

3 - SOFTWARE DESCRIPTION

The general architecture of the program is presented in

figure 4. The simulation program is coded in FORTRAN 77 and

runs on a VAX 785 machine.

Fig. 4

I

I I

I II I •

201

The YDT routine computes, time by time, the state

vector derivative to be integrated. It determines all the

force and torque vectors acting on each part of the system,

via the management of the call of several st_routines, each

describing a particular _tem (see table l),allowing to build

the differential equations.

Subroutine Function

LOCVERT

AMCS

ACS

INLINE

PTCHCMD

5IBRCTL

0RBATT

TENSCMD

REELEQ

VARMAS

THRUST

0RBEQS

TENSION

GRAVITY

TRANEQS

ROTEQS

Sat. attitude wrt local vertical computation

AMCS model

Simplified AMCS model

In-line thrusters command logic

Commanded libration pitch angle

5ibration control logic

Orbiter attitude control system model

Commanded tether tension

Tether reeling equation

Tether variable characteristics computation

Thrusters forces and torques computation

Orbital equations

Tether tension force acting on each body

Gravity forces computation

Translational equations for each body

Rotational equations (Satelllte,0rbiter)

TABLE 1

202

the

as well as new routines introduced and other bypassed.

The integrator is a 4th order Runge-Kutta algorithm.

The output of the program are:

- diagrams of selected variables;

- print-outs;

- restart file, which allows for the restart of

simulation from the end of a previous one;

The program has been conceived in a modular way so that

change of the generic module can be friendly performed,

the

containing the time

as input for the

- output file , stored on tape,

history of all the variables needed

verification and testing programs.

The dynamic part of the program is being

comparison runs

program.

checked via

to be performed with a qualified simulation

4 - REFERENCES

1 - C.S. Bodley, A.C. Park - TSS Orbital Dynamics Model IB,

Martin Marietta Corporation, June 1984,

Contract no. NAS8-36000

2 - C.S. Bodley, A.C. Park, P.J. Grosserode - TSS Orbital

Dynamics Model IB (Revision A), Martin Marietta Corp.,

203

February 1985, Contract no. NAS8-36000

3 - DC_2 User Manual - Vol i Theory, Aeritalia

£SA Contract he. 4045/79/NL/A/<, (SC>

204

VIEWGRAPHS

205

I---

C,O

I---

C,O

I..._1

Z

Z

0

DI

0

I---"

Z

0

C_

0

O0

0I

0

I--

206

I--

r_

_1_JC

t

!

!

t

O0

O_0"I"03

03=

o3

207

C_Q_

C_ Zk.--

_ I t,I

--t-l-- O0

tt -t-O r'_

O0>- COO0 ,--, Z

CO >- I---(./3 __J

Z I---

-t- Z

U_ h---Z

>'-- _ Z

U_

Z _ I---->--

0_

cO>-J

rY

0

Z>-r-_

A

u_ 0_ _--..._1n o")_- (...)

+

L_ -JF- UJ

>- 0r._ _-

J (Jg

_ Z

0 _

Z0

,y

O'r !n j

CO I'--

UJ F-F- COZ ILl

" II

JI,I uJ_._ _.__J 0..J{3..

0

3=

_" c_

4-

_'_ ILlUJ _ I-- 0

..J

>- I

I

C_

Q.

0

0

N:

208

0

C_

J

Z

Z

[,I 0

CD ,,i

L.J

-- >- Zh-- J

c=Z Z

I._ It--r- F-- _--

___ >-

Z Z

>- _

t---

O0

0"T-

v

0

r_I--

209

/

\

ZU_

C_UuJc_

'U-

LUF--

>-

L_

CO

o_

(Dn-

C,_.0

o9

210

_Ju_c_fED

uJ-r-

uooO

0.O-T-(nvo-O3:

u9c_F-

211

(

Z

o.J

1,1

/

(Z

>*0..Ja..

O_0

0

cO

I--

212

(

I .......... i:' _i'"/

................... I'" /i : /

, a_ i

T oE

f

,o _k.

a U H _. _ b h

zw

w

LL.

__J

--_ W

LOO0

0-l-

n,,,

o

I--

213

s _

___J

L.___

o---

>

I---"

-'r-H-"

H--

O0

0..0I

v'r_0

o_

I--

214

.....J

0E

E

I---

>-

0I

e_0

215

LOO0

0"I-co

,_.

0

&O

216

O0

r_0-i-

0

o_

I--

217

,r

-r-

L.D

0__J

t/-

._J

LUZt_J

C_

C__

COO0

o_

0-vu_

12:0

3=

u_

F-

218

Validation of TSSEngineering Simulation

Zachary J. GalaboffNASAMarshall SpaceFlight Center

219

z0

-=I

kL(,.0 la..Z O

a: ,,:I:

Z (=0

(.0 *

>-

O

Z0

I--

...3

)

o

_::_i_IG pAGE _LANK NOT I:;ILMED

221

0

|o

c"o°--

.,_

• - u_ 0 0

_- 0

0 0 0 U

u,- _ '-- 0

._ _n 0 _CD _.-- > i-

_" '_ 0 "--_ U 4.a u,,-

r- _ _ 0

0 _ ,k,_ _o

• - _ _

_- 0 •

U_

"0

EI--

c" I_ .-- I-

0 ,-- c" ,_,

0 m .-_u.- _ u_ U

k. 0

0 0 0 '-

t- ,_,

L= .---_ .Ca

_,' W 0

CO

3.-

_r-

u_

U

X

°--

0 m

m

"_ 0 0

m m _ ¢"

0

"-- _ _ 0 "--

• '=_ .-- 0 _ .--

O- -- U .-- "0

_._ .-- ¢_

k_

O0

>-.,J

--)

222

O0 O0

(/) w

)=IJ

O-L_

!

i¢B

r

E

oo.

0

>.

Q.

.zz c-O

r-

J-J O_

f" E°-4.1

vs..

_o• 0 _t.-._

0

¢- ._ e-_

•-- V'_ 0-r-_ _

0°--

Eo--

0

°--

!-

"E

°-

Iz0

°_

E _

e- I1_

¢,.

L .-

e- e'-

0._

• 0 _

I 4,_ .-

0 t- 0 _-•s.- -- _.._ ._

223

o--

r_

O.t_

EO.

°--

O.EOL)

O

°--Lr_

°--

t-Oo-

e- ._

-- U

"0 _.a_- 0

q}

o

I-

wI.-

wI,-

>-

F-

-.I,.I

l'-

-,rI'-

I--

I

w._1

I'-

t--

I--

I.UI--

wI.-

u.II--

I--u')

I--

Q

U

"T_"_r. x_

0""Q.>-o a-

l.-

>.

0

o----

0°_

.wJ0_,-

o

u

"Z "_(_

t" "{3

0 ""¢_.>.-Oa.I--

>,.

"5"C0 ¢)

w,-0 V

t-O

,w,J_

O_¢L.

0

,j-

o 0

o,_ G

o

0 Lt_ 0

t'N _

CM _

W

oo'_ 0 0

_ G 6

0 _

_ 0

oo

0ocOO_co 0 0

224

0 o

0

o,t o

co

o_

0

0 o

o o

0

o'_c,_ 0

oo

00oo

oo o 0

oo o_

%Ou.I

oo o%

0 u_ ,.,0

V_ dg

0 _ co

r,4 0('M ¢M

w

00

f..,.,-_- o_o_ o,,.10 r--

o _ cr_

c_ _o_

c,.I (',4

co

0 "_ I._

g,?,_(_ _ m

o _ co

(__ of,4 _1

_o

co

00co

oO o 0

)

i0

)

X

k-c_

Z

IY"

p--

k-

Z

w

k-

wk-

_J

I--

wn-I--w

I--

I

W..I

k-

0r_O.

k-

k-

I--

0

Z

I--

k-

Z0

k-

O

k-

I--

0

t-O

r-

t-O

°-

Eo

oo

c.._ _ 0

L_ ._ _. 0-_

0 C: _ _--

• II _-- _ _-U 0

_ ..I ,._r C

• *--II ,.,_ _

0

0

0

C

t-O

_r

t_

t-

O 0 _-_._ 0

i-

X_

I 0

0 _

°-

l_

0

0

r-

e-

0e-

0 _

_ 0 0

"0

t-t_

vl _,-

0II

0 L.

c-

O0

00

c

0_=_

0

Q;N

0 _-

O

i--- _.o I-

•._ m N

c-

00X

0

I

_- eq

0 0 .--

--_-_ _ _n

1

0

QJ

0

t_

!N

0

e- 0

t_

0

e- • 0

0 t_

0

225

00

o

ILl

Z

2:0

I

X

<C

Z

_nUJ

tJ

<_Z>-

_J

>-

ILl

.J

.JILl

<[

W

_J"r

L_J

I

W--J_3<

W

o

CL.

I--V_,.II--

t_>

b"

LU

0

t--

I--

Z0

Z0

I--

I--

z

r-

(-

ridc

EE0,,3

t-,-

-,10

+

":" "D ":,j

u,--IIJ

II

0,.,-J

-- 00 u'_

,,C V

,o 0

e-

C I1)0 _

0> _

_ II e-U

0 ',Jr" ''_

u ,r"" t-

°_ . _ o-

_0 > O--

U U-J __1

II II

U U

00

,#

0

II

U U_.1 ._1

11 II

,,_ , ,,,-I

0

00

,.,-, "S"

i11

u u u

II li II

o (,.).J .._1 ..2

V

cD_

0u_3_n

OOc_

c-

cOo_3u_

ooco

c

r"

°->- cL..-

>'O_- _ O0 o c

1,3""_ .C

"_"_ ".__

_ °-- > _

0 tO _ ,--

¢0 _ U ¢"

-K _.._ r- .--

¢,._'-- ° 0 _-

>-<_

226

|

_W_Z_E _WZ_OZ _i_ _

z

0._Jcr_

OL.cJ

(./')L._

I l

__._..-- _

|I HA34J 8_Is'

s o0

moO_

e=,

227

228

C_

C:]C)t_J

C_

o U_

C_

U_o Z

LUF--

LLJU3

O3[33._J

t-c_C_

III1" I

..._J£_,_1I-,_1

0

I_,.=/

i,n

.,.,,.,,n

8

]E

m

.! J II_ -4)

| u_ . ,,, .

i,C/)c..)W¢J)

I-- a

e 2298 .* .s . ,i • . o •

11 HI_IIJ I£111

!

]|

00

00

0

o

J

o o o o o o q

oo

230

e0 "01 D 0e.

O3,-.., Z c_

LLI _I'---

I-

_E

n,i

"w"-

. o

I'',-

i

GI

.i .

! ""

__ -.

I_"W I,- Z WI _ _t,,q v,=J I _,,-_

Q

i

i i,

2 ,

g ,

_ej

]L

_ ............ 231" " i_ _'_J ,eL; "'......."_

i

i|

E3E3O

E3

(:3CD

(3

o q Q. _.U:) _r (%1 O

L._

(:3

"5III oz

i.I

I.I

(:3 E: _-cJ

L_J

III|11III

I [I1!

i lllllilllllillllllllli[ IIIllllll|l|llllllllllll I IIIllllllllllllllllllll[l[IIllllllllllllllilllllllil[lilli[I]llllllllll[lllllll[llllllllll

I I 1 [[llilllllllllilllllllllL I I I |llllllllllll]lllllll

IIl[llllllllllllrlllllllllllllllllll[llllll[llllll IIIII

Z_m

LU _jB-

II[llillllllllIIIIIIIIIIIIIll[ll

iIIIIIlilllll]l[lllllli]llll[l[[lllllli[[llll|llllllillllIIIil11]11[11111[11lllllillllllllll[l]

Ill I l I IIIIII11[1|[1111]11111111 IIIllllllll iiiiiiiiiili111[11 |

llllillllllllllllllllllllllllllllll[ll]llllillllllllllllllllllllllllll [ll]lllll[lllllliilI I I I II Ill]l|l.---IIIIIIlil

I IIIlllilll IIIIIIIII

--, i IIIIJllll I I t lllltlllllllltlllllllllZl'llllll wl I t I [ I tl|llilllllill[ll[llllll ] Illllililll IllmPml'rllll|l|ll _+

I I U llUlllnllllUllnlllllllllllllllltll :

i 1 Illllllllil]llllllllllllllllillll IIl[l]lllll :I l I I IIIIIIIIIIIIIIli]llllllllllll

IIIIIIIliilllllll l l ]llllillllllrlPllllllllilLd_ t l I I I I [llllllll Ij_LIII[II[II

II I1111111 II i l lltlllllllllllllllmlllllllllll] IIIIllilllllllllll]llillllll *ill

! Illl[]lllllllll[lllllllllllllillililllllllllllllllll _ Iili[llllllllllllllli[lllll[

IIIIIIIIIIIIIIIIIIIl[lllllllllllli,,lllllllllll I--_: ] I I IIIIIIIllllllllll[ll]lll _111111111

IIIIII111111 1111111111111 IlllllllllllllllllllllllllllI i 1 I I IIIIIIIIIIIIliilllllllllll

l I I IIIIIII1111111111111111111111

............................................... II::I:I.I I I I iiiillllllllllllllllililtl

I 11 I 1 I lllll]lllllllllllllllll I iiiillllllll •

I I IIIIlllllllllllllllllllll[llllllllllllllllli IIIIIllll] IZ I Ililllllllli|lllllli]lll I 71111111111H 11 I I I I I1111111111111111111

i i II IIIllllllllllllllllllllllllllll 111 I 1 1 I IIIIIIIIIIIIIIIIIIII _ I I I 11 IIIIIIllllilllllll[ll[i I ........ IIII ............. ,,,,, ................... II ......................................

z 11 . ........................... ,,, .................. ,,,,,,,, ............. __:II".,',:I'.

es'_ ee._ os.¢ ee.c e_'_ ee'_ es'_ ee'_ es.o •@ _7) 81_Sl

232

l.I"I)

(:_C)

LF)

l-ii.

C

0

3E°-

u_

°_

0

>.

>-

t-O

_Jt-ara

0t-

_n

_n

DCu

E0U

0

t-

Ou_

L-

E

il°

El

CL

U°--

(3.

0

U

°-

oI

UoI

E >

L U

_ °--

0-'_ c-

O L

m 0

U E

m m

0

_ m

.._ c"--k-

4._

r _

°--

E _

o_ f-

0.._

1- >

c-

O _

U

UoI

3_ 3--

O

U

-_ °_°_ i,-

c- t_

°-- m

I I

m m

1" r-

E

¢-

E c

0 --

O _"

o _- .-

"_ O

°-

233

234

TSS-I Dynamics Flight Experiments

Gordon E. Gullahorn

Smithsonian Astrophysical Observatory

PRECEDING PAGE b-'1.ANKNOT F}LMED

235

Z

X

h-_

Z

I

0

0

Z _

• _

H

0

_DCO

_D

>

z_0

Z

£0

0

©

r..)

237

_"_I_C._D;NG PAGE BLANK NOT FILMED

238

H

I

E_H

0

0a_U,<

0

Z0

,<

I--4

0 •

),--I

,<

_ Ae'.°

Z

,<

> o_o ,-t

Z -

_ x_"_Z

O_ .<

0

_ • • • •

0

ZH

V_

Z

O_ _

_ . . . _Z _

Z

<>

ZO

ZO<

0

<

0_

-ZO_0_

mm_

oo

0 • • •

mulI-t

239

L)

or]

iJZb.l

Ot

ila

i.d

¢/1>_¢/]

Ld

¢/1

b-I

[-4

¢Xl

II

N

N

III N N

r0 oO O ¢xl ,-4 1.13

O O O O O

0 ZZ _ 0

Q 0 _0 _ _ _ H

0 0 _ _ _ _ 0

•- _ i i _

I I I I

L_

O

OZH

{JH

:E

6L_

ZO

=E

(JI--'4

_d

c_0

<

1"4

_ Z

0

I-'t_J

T0 o

ua J _:ul ul _

_ _ , ,_ ' ,

m o

@ •

240

VIBRATION MODESOF TSS

(EXCITED BY ATMOSPHERICIRREGULARITY)

F'-F "I-_-'-"I .... i .... i .... -[" _T'_-T+' _ _-i " _-]-_ I .... I .... i .... I ' "

Zl-_

11mE (_)

-2

-4

r,,.1 -8

e

o.J -lO

-]2

11 i'n'entc°°P°°'°'

)T, I , , , , I , , , , I --L, ,__L_t , , , I , , , , LZ0 .1 .2 .3 .4 .5

FREOUENCY (llz)

241

0Z

Z0

ha

0

0

Z

Z

Zha

Z0

Z

Z

C__a

0

ha

00

or_H Z

>

ha_

0

0

z I_ L_

- _ _:o _

_o =_ o__o0

z_ar_

_ZZ_haO

ha

_<0

_0_

r_

O<

II _

0_a

Z

Z0

<

Z

_0

Z

Z

_0

ZH

Z_

Z<O_

Z

¢_ Z0

II Z

Z _ 0

• < <

242

00

243

/

CD 0 0 0 CD

244

oo

i

Z

0.,_]

>

C_

C_

?:

Zo _:

0

o __ 0

_0_C_ H u_ [m

_ZC_,_0

m_

I HO_

_Zul_C_O,_ _

Z

Z

Z

Z

0

0u_

%) 0,_ 00 ::=

_gS"

_ 0

m m

0

ZZ __0 _

_Z _

O_Z_

Z__ _0

m zm_ _

_0

245

H

Z

Z zZ

_0Z<

Z_o

r..) H _z oo_r..) _

0_

_00_

OOm_

_0 _

m

ZZO_ M M _0 _

Z0

0

0

246

N

Z

Z

_0_

_0_Z_I

H H

" ZZ_M_0_H _ N

_0

_0_

_0

o_ o

247

Tether Simulation Design for Mission Planning and Analysis

Richard M. DeppischNASAJohnsonSpace Center

Yashvant JaniLINCOMCorporation

F;.W..._.NG P_E BLANK NOT FiL_._=D

249

LJUl

PRECF.DiI_ PAGE.BLANK NOT FILMED

251

f

UUl...,)

o

o{3ZuJ

Z

- _':E u.II-- S, LU 1---- _- Z cc _- <:

Z '_ Z O _ v_ _; ,_O _ uJ -- w >.I--- I-- Z uJ u_ ___.L9

IJLI

._J ,.,,, O. -- uJ ::) >- Z

,_ :) , , ,= 0 > QU U

.. z z _ u C0 0 0 C_ 0 u_

0 .-J ._

_ _ LU • •" _ _ _ • •

l

h"

LU

Z<

LLIc_D

LL

LUh-

C_ u__' uaZ) --

QZ0

D

w'_ LL

• •• •

z0

>5

z,<

z,<

@z

z

z@

J252

ULI

LU

I

uJEl

Z

253

0O.@.

0 z

o

xLU

Z 5Z

_- z

Z z

Z zoF- z

mln_ _k

k9_u z_- 0Z

o _0.,,I>.

0k-

J

f

254

Z0

>

>-

Z

Z

Z

ZZ

_=

Z0

J

e_, m,,:,l ,l o l, i • ,l

z o

255

Z0

>

<z<

z.<

0zzz.<91

Q.

z0

U

= 2W

°<

iL.

i_I_I_I_I

I I

256

Z-0

>D

0

_J

<Z

Z<

0Zm

ZZ<.,.I

Z0

J

w

:>

LU

,._ 0

257

m

>.

<Z<

Zm

c_I.iJIJJZ

ZI.IJ

0

0

Z0u0

,_J<

zo

>

ul

)..,ml

<Z<

Z.<

(3Z

Z

Z0

J

EL'

Z0

>

)-.d

<Z<

c_Z<

0Z

7

0

J258

0

fl

© 'o

Z

I-- oo _

r_ F_oo _

c o

0

_.# .-_

Z

- _-_

-- _ "0

II- 'Y II _:

_o ,,_E,

E 0

,._ 0 Z

" ,- " ,,_ ,,3_-_

.,,,. < = ,_ - -E_,S

E o E o E o

I--

ELII--

,,-,,

LU1--

>.

..5

-- 0- C).

S.

_c@ 0

E_o

_, .._ _-_ _,-_"

Z____ ,, __-_'_ _o_=

,,,- _ -o'_ _ -=_-<._.:_- ___=_ _7_

6

0

0

_--5c=E&

--"%0:_ _ =,

0 -

-"_=$3

___ .c" 0_

C'_ ---- '0 :_--

_,o .# - • :,,-=- -- _, " _ _-- _ _._ , _

,-, >_o _ _.._'£

o 5

= 2= -: - 5_

2.59

260

Z0

>

>.

<Z<

Z<

0Z

ZZ<

Z0

J

Z0

W

E-oJ

W

0

_D

X

/

/

J

/f

//

dI I I I I I

_D

0

00

O_

0

r_

W0

0z0..J

(ova)3onll±_q

261

6.6694

MODEL 1B: TEST TWO XINC=O.OORBITAL RADIUS (M xl.E÷O6) VS TIME

6.66938

6.66936

6.66934

6.66932

6.6693

6.66928

6.66926

6.66924

6.66922

6.6692

6.66918

6.66916

6.66914

6.66912

6.6691

0

-0.1

--0.2

-0.3OLu --0.4

--0.5

_"_ --0.6uJi

--0.8

_' -o.9gE;_g -i

--I .Im --I .2n-O --1.3

--I .4

--1 .._

--1.6

0I I I I I I

2 4 6

TIME (SEC)

MODEL 1B:

I I I 1 I I I I I I I I

8 10 12 14- 16 18(Thousanas)

DATE:8/05/86

TEST TWO XINC=O.OORBITAL RADIUS RATE VS TIME

20

2 4 6

TIME (SEC)'

8 10 12 14. 16 18

(Thousanas)DATE:8/0._/86

262

2O

3.7

MODEL 1B:TEST THREEIN--PLANE LIBRATION Vll TIME

s--%

"oo

Z_o

m..I

i.i

0.I

Z

3.6 --

3.5-

3.4-

3.3-

3.2-

3.1 -

3-

2.9-

2.8-

2.7-

2.6

0

0.3

I

2.I I

4

A

I I I

6! I I I

14 16I 1 I I I

8 10 12(Thousands)TIME (iiec)

1B:TESTMODELOUT OF PLANE LIRRATION vii TIME

THREE

/

VI I

18 2O

0.2

0.1

o

a.

-o. 1

-0.2

-0.3

A

0 2 4 6 8 10 12(Thousands)TIME (=ec)

263

A

14 16 18 20

Z i i i ¢ s Z ! ! ¢

0 0_._ _J

z0

>

>...==i

<z<

_3z.<

0zi

zz<

z0

_5

J264

210

MODEL 1B: TEST FOURIN--PLANE LIBRATION VS TIME

OI.ut',

Z_o

hi

13.I

Z

205

200

195

190

185

180

175

170

165

L)

4,4

I I I I I I I I I I I I I

4 8 12 16 20 24 28(Tl_ousoncls)

TIME (SEC) DATE:8/04/86

MODEL IB: TEST FOURTENSION vS TIME

Z

Z_ov)ZWI.-

42-

4,0-

38-

36-

34-

32-

30-

28-

26-

24-

22-

20

18

0

I I I I I I I I I I I

4, 8 12 16 20 24

(Tl_ousanas)TIME (SEC) DATE:8/04/86

265

I

28

0.03

MODEL 1B :TEST FOURTPIO VS TH (PHASE PLANE)

0.02

0.01O

IK

Z0 --0.01

__ -0.o21J

Z

_ -0.03

I

_z--0.O4

-0.05

16.5

DEAD6AND

BURN 3

I : I

17._ 185

IN--PLANE LIBRATION,DEG

MODEL 1B: TEST FOURX THRUST MS TIME

I I I

195 20_

DATE:8/'4./86

Z

l-_q

n_I

x

-1

-2

-3

4 8 12 16 20 24 28(Thousands)

TIME (SEC) DATE:8/04/86

266

MODEL 1B : TEST FOURPHID VS PHI (PHASE PLANE)

0.04

003 __-'--- __

dl

g o I : !J/JC --0.01

--0.02

I 0 u 0 _i

--0.04

O

(9

OEADBANOi

-0.05 , ,

--14 --10 --6 --2 2 6 10

OUT--OF--PLANE LiBRATION,DEG DATE:8/4/'86

14

3

MODEL 1B: TEST FOURY THRUST VS TIME

2

1

Z

i-

n-

>.

-1

--2

-3

8 12 16 20 24(Thousands)

TIME (SEC) OATE:B/04/B6

267

28

_r

2.4

MODEL 1B: TEST FIVETETHER LENGTH VS TIME

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

G.4

t

!/

D,1"

to

1"

Zto_l

6 °

5

4

0

in 1 ,-_

2 4

TIME (HRS) DATE: 8/1 8/_6

MODEL 1B : TEST FIVELENGTH RATE VS TIME

--2

L

0 2

TIME (HRS)

268

4

DATE: 8/18/86

6

191

MODEL 1B: TEST FIVEIN--PLANE UBRATION VS TIME

Qv

Z_o

m.J

hi

nI

_z

190

189

188

187

186

185

184

183

182

181

180

179

178

177

176

175

174

173

172

171

170

169

3

0

iIL

v

2 4

TIME (HRS) DARE: 8/18/86

MODEL 1B: TEST FIVEIN--PLANE X "FHRUST VS TIME

6

2

Z

I--

n,II-x

bJ

O.I

Z

0

--1

--5

I.....IiiiII IlUU

0 2

TIME (HRS)

269

4

DAT_8/18/S6

6

18

270

Z0

>.1J

.<z,<

z.<

Ozzz,<a.

z0

J

MODEL 1B:

50

UPWARD MISSIONTEn-ER klEl_'m_ VS TIME

XINC = 5?

4O

O5.J

LJJT

30

Deployment

20

o ...,20 4 8

TIME (HRS)

On $tetion

12 16 20 24

DATE: 8/11/86

Retrieval

28

5.0

_.0

1.0

I !

!.0

1.0

Oe

I/

J

U

0

m

o

III.L

Q

iii

271

MODEL 1B

40

: UPWARD MISSIONLENG'T)-I RATE VS. TIME

XINC = 57

_0

rrI 2O

,_. Deployment

_o /

jW,.J

-10

-20

0 4

On Station

12 16

RetrievalI I I

20 24 28

DATE:B/1 1/85

].5

e.S

I.S

"J .11

-.S

1 !I I

X

/\[/

UQ 0 0

•- Itl MHOURS

272

_m_

%.4

_r

ZW_J

Ld

20O

190

180

170

160

150

140

1.30

120

110

100

9O

80

70

6O

5O

4O

.3O

2O

10

0

MODEL 1B: DOWNWARD MISSIONTETHER LENGTH VS "rIME

,Deployment

_ _ _ Retrieval

/ t4 8

TIME (HRS)

12 16 20 24 28

DATE: 8/14/86

e.O

I.II

t._

0e

w

0

w

0

t;Q

Pl

273

n,T

Y

l.i

n,

OZi,i.J

14D

131;)

120

110

100

90

B0

70

60

50

40

30

20

10

0

-10

-20

-30

-40

-50

-60

MODEL IB : DOWNWARD MISSIONLENGTFI RATE VS. TIME

Dep Ioyment

/\/,

\ On Station

•Vvv_ vv/vv;vv_vv Ivy^/_ AA h A_

JV_VV_ VV

Retrieval

^1

0 4 B 12 16

TIME (FIRS)

20 24

DATE'8/14/156

28

l.ll

1.0

.IIA

I,-= II'J I

¢ •• _..|

i

w

|L=JSaili IAAaIA IdkAJL&akA! AAiJ&A

_VlV rvlv_l lVlVlVl VIVIVl7

Vo o o

274

-_ 0

iJJ

Z0

>-..J

<Z<

Z<

0Z

ZZ.<

Q.

Z0

J275

f

UUl

Z0

<{

ZLU

LU

LL

0

ZuJ

Z0

lal

>-

<Z<

Z<

OZ

Z<

Z0

J276

II

ADDITIONALPRESENTATIONS

277

Preliminary Analysis of DampingEffect on Tethered Satellite

Giovanni BianchiniUniversity of Padova, Italy

t[_RF,._ pP.GE __ANK NOT FILMED

279

o

6_T .

_ _ o

o_ _ _ _-

2

_ __°o_

WOL

v

_nwLnL_

(N

\_nwz>-r_

X

-_ r,.

0\O__0

_0

_nz

T 0 nz j

bq Z O_ W O

W n_ W Q -- 0_" W n_ CO

T 0 W Z wn_ _- u_ __ "_ n_O_ W '-4 0 0 ,-

Z0

W-(_ 0 0 0 0 0.J

In

0

281PRECEDINGPAGE BLANK NOT FILMED

UlW

JJW

W

WI

W

Z0

N-

WU.U_W

Z

0.

Q

b.0

t-q

)-J

Z

Z

.JW

O.

z 6W WZ 00n n•- 00 ntO n

.J Z(3: w,- w0 mO:OL w

W O:T "1"

ZO 0Z --

0W _-0"I bJi- i-

Z -J

O: bJ

Z tno I-. rn

Z LnW_- OJ

T

0b.0

0-Jn

0

W0 T

n_ b.0 0b.n/ UIW W

JZ EWW• 0

Z

ZU_ O

• ZZ O

zW _rv

Z ,-,

_ w _rv (I:_- td rvE b.121 _ O

m _z,-, 0.T rv IE!-- O E

U. OIEO

O

282

Z0

m

ozo(.3

zo

I-D

ntF-

w z-r o

..J I,-J Z

(J

I-,- b.Z ,--,

U (.'.'3

W lrlo.

w

0 _ Z_- 0 0

nl .-

bJ O:b_ Ol mO: ILl ntW 0IX 00 _- ntW WO Z O.

00 -- ILl

_- O: --O: nl .Jnt rn _j

•- ILl

Z O:•-. J O_n O: Is- Z m

0 (3" 6'I"I

W _- bJ

_- f_O F-Z

_- 0 0.- .J

283

F-UWb.b.ILl

Z

0..).-

o

wk-

..JJW

0w(_WTF-mLd

b.Q

tnt.dtn

)-t_LdF--

Lnzo

_-_0-zo-z_"oo

bJjnl

e-9

Z

.0O..-

O:Er_n/

LnbJ

c_,,oZOO

W _

t _u _

O. hlXUm

ZO

I'-

O:69m

_n

Zo

_3

+

tO\

W+.

(NO_

(N

Wtn

to

inin0:

zo

o

o

I

0:in 69m In

in _-

z zo o

o (J

c_ c_(N (N4- !

lO

m"W

_JldIn

(N

O:_nm

Lq

Z0

C_

0

4-

_qw

c_

c3

0w

Z0

Z0

_nzw

b_OOZ

U_Oo_rnObJ_jr_

(N

WLno:u

LnO:

W

O:6q

_OW

(:3

c_c_c__N

0W

ILl

0\ \

O_\CO

_0\O_

z 6r_z

s-(

284

(M M3

0

e4+XO4-KhI_X]I_-O 0 --o

Q.

O

w

/,III

I

I

ti,

4

i K

v

ii

],

],

n

tT

I 1.

Jj ,

• ql

J.,i

J.iI

"i

,:1ttI IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII II I! IIIII IIIII.IIIII IIIII IIIII

I| i I || 8 Iiii _,i, i, ii _,ii il il ii ii " " " " "i, ii ii ti tt tt tti

i i i i t J i I i l , _ i _f t i i i286

o

0

0

rkc_

i

"o

al r'

e=o

a)

i'le=i _i

_o::::)

tii

" 4--

t,0

\%

/ _. e'0

0

a

(::)

| !

00"0_(.I I I I I I I . I I I

oo'ot,s oo'oss o_'oet, oo'oot,., oo'o_ oo'_t,z,OI, -seunp-epn_luoe_ UOlSUe'_

287

I I

O0 "09_

0

Q

0_q

C"f

Od

B

0

a

-0

I;n

0" O)

It)

"ILl

_,t---0

OJ

.pd

D

0

00")

0

0

0

U_

oo

o

O0"08

[ ! I I I

00"0 00"8- 00"91-"WO

04+XO¢-KN)-XII£1NI--O n "_ _Q

oo'osoz oo'oss oo-oss o_'os,' oo'oss_ oo'oss oo'os_ oo'os_,0I • -seunp-epn-_ ! u_e_ uo Isue'),

290

0

Zl

Z_

7"7"(KI

O0 ° 08_.I '1 I I I I

00"00_ 00"0_[ 00"0_

o

c_-o

-u_NJ.i

>-

,7-_W

c_LL..

-i

Q

c_

Q

00" 01;,-

O)

C_

OJ

0Q

II0

I

CDL.

CO CCO 0

E 0')C

o (1)OJ i.--

LD..PCO (1)\ COO7.O\ D07_0

_P wnai03 s W3MO_

C_

291

UlUl

EOJ

O0"8_ O0"OZ oo'_,, oo't,- oo'z_-"),ueuoawoo Ie I pe,J

292

-0

oJoJ

0

OJ

II

O0"9£ -_

t)

II0

i1

C

(_

O)O)

c_OJ

U3CO

O_\m.

0

L97"k..-I

7"

(EI

00 09I T T

00"0_ 00"0_-

C_

N

a

O)

C3C_

el

(I)I

il(_)

II

• CLC ED 0L. 0

(I) 0

E'Oo •OJ L

L04-_CO 0

07.0

070'_

_IP WnWI331S _3M0_

293

• ,

ty out71.dlt

oo**o LOB. POWER SPECTRUR

L I N. SPETTRRLE FREOUENIA

Ha

0 0,0000

1 0,0049

2 0. 0098

3 0.0146

4 0.0195

5 0.0244

6 O. 0293

7 "_"0"$ 42"

8 0.0391

9 0.0439

10 O. 0488

11 0.0537

12 0.0586

13 0.0635

14 O. 0684

15 0.0732

16 0.0781

17 0.0830

18 0.0879

19 0.0928

20 0.0977

21 O. 1025

22 O. 1074

23 O. 1123

24 0.1172

25 O. 1221

26. O. 1270

27 O. 1318

28 O. 1367

29 O. 1416

30 O. 1465

31 0.1514

32 O. 1563

33 O. 1611

34 O. 1660

3_- O. 17oe

37 O. 18074

38 O. 1855"

39 O. 190_,40 O. 1953"

41 O. 20_-_

42 0.2051

43 0.2100

44 0.2148

4_ 0.2197

46 O. 2246

47 O. 2295

48 Oo2344

49 0.2393

50 0.2441

51 0.2490

52 0.2539

53 O. 2588

54 0.2637

5_ O. 2686

._6 o. 2734

eteeetleie C

VRLORE (08)

0.2640E+03

0.2ff20E÷03

0.1088E*03

0.1270E*03

0.1543E*03

0.1981E+03

0.2046E+03......__ _ *0.1863E_03

0.1399E+03

0.1182E+03

0.1035E÷03

0.9212E+02

0.8307E+02

0.7117E_02

0.7826E+02

0.5549E+02

0.6273E÷02

0.5181E+02

0.4676E+02

0,4664E÷02

0.3690E+02

0.5726E÷02

0.6066E*02

0.5506E+02

0.7034E+02

0,7798E+02

0.6906E+02

0.9138E+02

0.9077E+02

0.I033E÷03

0.1129E+03

O.1261E+03

0.1437E÷03

0.1699E+03

0.1928E+03

o. 19.__J_to__.& o0,1746E+03

0.1469E+03

0.1284E*03

0.1143E÷03

0.1047E*03

0,9477E÷02

0.8497E+02

0,8512E*02

0.7166E+02

0.6021E÷02

0.7460E+02

0,7214E÷02

0.7006E+02

0.5799E+02

0.2386E+02

0.3885E+02

0.5115E+02

0,5628E+02

0.6742E÷02

0.6572E÷02

0,7012E*02

ff,_S5 - I; fILl U_

294

J

0

&

J

)

J

0

O'

t

0

0

J

575859

6061

626364

656667

68

6970

71

7273

7475

7677

7879

8081

8283

84

858687

88

8990

9192

9394

95

9697

9899

100

101102

I01104

105

106107

108109

110111

112113

114

115116

117118

119120

ORIGINAL

OF POOR

0.27B30.20320.29810,29300,29790.30270.30760.31250,31740.32230.3271

0.33200.33b90.34180.34670.35160.3564

0.36130.3662

0.37110.37600.38090,38570.39060.39550.40040.40530.41020.4150

0.41990.42480.42970.43460.43950.44430.44920.45410.45900.46390.46880.47360.47850.4834

0.49_0.99800.50290.50780,51270.51760.52250.52730.53220,53710.54200.54690.55180.55660.56150.56_40.57130.57620.58110.5959

fn^n

295

qUALITY

0.5607E+020.6274E*020,7209E+020.7753E*020.8_b2E*020,9255E*_20. I019E+03

0.1119E+030.1233E÷03

0.1336E+030.1398E+030.1383E_030.1297E÷030.1188E+030. I082E÷030.9812E÷02

0,BqSqE+020.7050E+020.8268E÷020.6825E÷020.7211E÷020.6364E÷020.5779E+020.6172E÷020.5810E÷020.2955E÷020.5_96E÷020,6391E÷020,4415E÷020.5656E+020.7105E+020.6572E÷020.7568E÷020.6009E÷020.7015E*020.7537E÷02O.BI73E÷020.8440E+020.8868E+020.9886E÷020,9845E+020.1055E÷030.1078E÷030.1087E+030.1070E÷Q30.1038E+030.t00tE÷03O.QSI2E+020.8794E÷020.8459E÷020.8158E+020.7248E+020,7630E÷020.7391E+020,5411E÷020.6524E÷020.5947E÷020.5804E÷020,3929E÷020.746BE÷020,6563E+020.7135E÷020,5954E+020.5907E÷02

o

JD

0

0

0

t

9

®

0

0

,t

iz!

122

123

124

125

126

127

12B

129

130

ISI

132

IS3

134

135

136

137

139

139

140

141

142

143

144

14.5

146

147

t48

149

150

151

152

153

154

155

1.56

157

158

159

160

16!

!62

!63

164

165

166

167

168

16q

170

171

172

173

174

175

17b

177

17B,

179

180

181

182

183

184

185

U. 3_UU

0.5?57

0.6006

0.605_

0.6104

0.6152

0.6201

0.6250

0.6299

0.6348

0,6396

0.6445

0.6494

0.6543

0.6592

0.6641

0,6689

0.6738

0,6787

0,6836

0.6885

0.6934

0.69B2

0.7031

0.7080

0,7129

0.7178

0.7227

0.7275

0.7324

0.7373

0.7422

0.7471

0.7520

0.7568

0.7617

0.7666

0.7715

0.7764

0.7813

0.7861

0,7910

0.7959

0.8008

0.8057

0.8105

0.8154

0.8203

0,8252

0.8301

0.8350

0.8398

0.8447

0.8496

0_8545

_.8594

0.8643

0.8691

0,8740

O,B7Bq

0.8838

0,8887

0.8936

0.8984

0.9033

296

o.6u_jb÷o2

0.6938E+02

0,6393E+020 6446E+02

0 7962E+02

0 7336E+02

0 73698÷02

0 8290E+02

0 8777E+02

0 7951E+02

0 8642E+02

0.8522E÷02

0.8417E+02

0.8291E+02

0,7995E+02

O.B520E+02

0.6310E+02

0.8071E+02

0.6773E+02

0,6600E+02

0.66028+02

0.63_38+02

0.5734E+02

0.5652E+02

0.5780E+02

0.4971E+02

0,4986E+02

0.5911E+02

0.6719E+02

0,6732E+02

0,6661E÷02

0,5175E+02

0,5175E_02

0,4142E+02

0.4779E+02

0,4462E+02

0,7024E+02

0,71938÷02

0.b330E+02

0.53008+02

0.5418E+02

0.5894E*02

0.5069E÷02

0.4569E+02

0.5389E+02

0.6012E+02

0.3828E+02

0.5606E+02

0.6770E÷02

0,72168+02

0.6633E+02

0.4606E+02

0,3270E+02

0.3201E+02

0,5276E+02

0.5992E+02

0,6399E+02

0.6977E÷02

0.623_E÷02

0,.5294E+02

0.5046E÷02

0.2716E+02

0.4254E÷02

0.4881E+02

0.1746E÷02

.- 6

TE._gLo_

ir -,;,kj.--, :. •

OF POOR QUALITY

0

O

0

¢

0i

g

e*t_t LOG, PO_ER

LIN.SPETTRALE

01234S6789

1011]21314151617iS192021222324252627282930313233343536373B3940414243444546474S495051$2

53$4555657w_

SPECTRUM *t_e,o****

FREQUENZA VALORE (DB)

0.0000 -.48SHE+020.0049 -.8073E+02O,O0?B -.6447E+020.0146 -.3870E+020.0195 -.1373E+020.0244 0.303_E*020.02_3 0.3683E*020,0342 0.1860E*020.0391 -.2761E+020.0439 -.5204E+020,0488 -.56S6E+020,0537 -.8272E+020.0586 -.7025E*020,06_5 -.8186E*020.0684 -,7501E÷020.0732 -.8670E+020.0781 -.1000E*030.08_0 ".9258E+020.0879 -.IO00E+030.0928 -.9879E+020,0977 -,B472E*020.1025 -.8446E_020.1074 -.8436E÷020;1123 -.7976E+020.1172 -.7753E*020.1221 -.8612E÷020.1270 -.8866E÷020.1318 -.8566E+020,1367 -,1000E+030.1416 -.874lE÷020.1465 -.B661E+020.1514 -.IO00E+030.1563 ".810EE*020.1611 -.5741E+020.1660 -.3821E*020.1707 -.3701E+n2

-.5449E+02

0.1807 -,7146E+020.1855 -.8704E÷020.1904 -.BB67E+020.1953 -.9200E+020.2002 -.IO00E+030.2051 -.9790E÷020.2100 -.8143E_020.2148 -.BO59E+020.2197 -.8832E÷020.2246 -.BS52E+020.2295 -.7533E÷020._344 -.7615E+020.2393 -.833SE+020.2441 -.96S7E+020.2490 -.IO00E+030.2539 -.9682E+020.25BB -.9738E÷020.2637 ".B560E÷020,2686 -.8148E+020.2734 -.8144E_020.2783 -.8889E+02

_?.o

297

0

)

8

0

0

D

55

5b

57

58

59

60

61

62

63

64

65

66

67

68

69

7O

7!

72

73

74

75

76

77

78

79

EO

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

I01

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

J17

118

ORIG'INAL PA_ ;:o

POORQUALnX

O,268b

0.2734

0.2783

0.2832

0.2881

0.2930

0.2979

0.3027

0.3076

0.3125

0.3174

0.3223

0.327.____.10.3320

0.3369

0.3418

0.3467

0.3516

0.3564

0.3613

0.3662

0.3711

0,3760

0,3809

0,3857

0.3906

0.3955

0.4004

0.4053

0_4102

0.4150

0.4199

0.4248

0.4297

0.4346

0.4395

0.4443

0.4492

0.4541

0.4590

0,4639

0.4688

0.4736

0.4785

0.4834

0.4883

0.4932

0.4980

0.5029

0.5078

0.5127

0.5176

0.5225

0.5273

0._322

0.5371

0.5420

0.5469

0.5518

0.5566

0.5615

0.5664

0.5713

0.5762_. °

-.8148E+02

-.8144E+02

-.8889E+02

-.8990E+02

-.8865E÷02

-.9329E+02

-.9269E+02

-.B059E+02

°.I000E+03

-.8425E+02

-.8990E+02

-.9356E+02

-.8514E+02

-.8927E+02

-.1000E+03

-.8535E+02

-.7544E+02

-.8493E+02

-.8754E*02

-.8942E*02

-.I000E÷03

-.8810E+02

-.8925E+02

-.9559E+02

-.86888+02

-.8564E+02

-.1000E+03

-.8257E+02

-.8303E*02

-.I000E÷03

-.8677E+02

-.8600E÷02

-.1000E+03

-.8373E÷02

-.B266E÷02

-.1000E÷03

-.1000E*03

-.1000E+03

-.8701E÷02

-.8441E+02

-.1000E+03

-.7584E+02

-.7361E+02

-.9064E+02

-,9156E+02

-.8756E+02

-.9458E+02

-.9310E+02

-.1000E+03

-.1000E+03

-.8436E+02

-.8593E+02

-.9258E+02

-,7683E÷02

-.8798E÷02

-.9342E+02

°.7984E+02

-.8506E÷02

-.9031E÷02

-.9220E+02

-.1000E+03

-.9986E+02

-.8371E*02

-.8614E÷02

298

ORIGINAL PAC=P_ |ll

POOR QUALITY

eJ

O4+XO_KN)-X_IIB4--e q --" eQ

!o

o0 "0_9 0o "o9sgOT,"

oo'os_, o.o.-oot, oo'oz_, oo'ot,z oo'os[-seunp-epn_ 1uoew UO ! sue'_

299

00"08 00"0

c_

W

c_

\

\

.+

e_

0L

(3

2

P

P4C

I

00"08

oo

.(:D,q.OJ

oo

A

-0

O,J

00

1.0

C.)

'_W"r-

o

CO

oo

o0

, , 0_OOJog ' O0'Ot' ''00"0;_ O0 ;

,01,

ILUHOIZ313S I£Ua

300

O

7-

IS

LD

-,4

7-7"(ET

00"89II I I I I I

00"gSl 00"9EI 00"0gi

E[P WN_133ES _3MOE

301

j-

,4"

CDQ7"I,---4

L9

7-

zi7-LCIZ

00"00£ O0"OOE

c_CO

00"001

==.

o

CD

-OJ N

_T

.)-

00

0

II0

LiI

I

iJ

i

C

C_

(I)

E C0

(ki COr-

& rq ._c:

(?0 ol"X. ()0"1 _0 i"N..._ P(X) U')

8P WO_Z33dS _3MOd

303

O0"8_ 00"_ oo'z; oo'_,, oo't,- oo'zz-• _uo '_ueuoo_uoo "relpeu

304

c_

_r

0

Z

LO7"

7"7"G_I

00"09

NI

O0"OE 00"0_-

0')

0

0,1

(D{m

IIC._ •

D CL 0

O_E

CO 0(0 0E

,-..&

o (0

"0I (0

LD-_CO (0\ CO0%.0\ DOltO

EIP WAWI331S W3MOI

305

0

0

@

O

@

D

O_IG_J_- PAGE IS

OF poor QUALITY

_e*** LOG. PONER SPECTRUM **********

LIN.SPETTRALE FREQUENZA VALORE (DB)

.0 0.0000 0.2640E+03

1 0.0049 0.2520E+03

2 0.00?8 0.1108E*03

3 0.0146 0.1276E+03

4 0.0195 0.1550E+03

5 0.0244 0.1988E+03

6 0.0293 0.2053E+03

7 0.0342 0.1871E+03

B 0.0391 0.1406E+03

9 0.0439 0.1190E+03

10 0.0488 0.1040E+03

11 0.0537 0.9231E*02

12 0.0586 0.8247E+02

13 0.0635 0.7373E+02

14 0.0684 0.6548E+02

15 0.0732 0.5724E+02

16 0.0781 0.4852E+02

17 0.0830 0.4140E÷02

18 0.0879 0.4293E+02

19 0.0928 0.4932E+02

20 0.0977 0.5547E*02

21 0.1025 0.6098E+02

22 0.1074 0.6615E+02

23 0.1123 0.7124E÷02

24 0.1172 0.7647E+02

25 0.1221 0.8201E÷02

26 0,1270 0.8801E+02

27 0,1318 0.9467E+02

28 0.1367 0.1022E+03

29 0.1416 O.IIIOE+03

30 0.1465 0.1216E+03

31 0.1514 0.1351E+03

32 0.1563 0.1536E+03

33 0.1611 0.1852E+03

34 0.1660 0.2164E+03

35 0.1709 - 0.2182E+03

36 0.1758 0.1934E+03

37 0.1807 0.1572E+03

38 0.1855 0.1375E+03

39 0.1%_'4 0.1235E+03

40 O.JY_53 0.1126E+03

41 0.2002 0.I035E+03

42 u.2051 0.9581E+02

43 0.2100 0.8904E+02

44 0.2148 0.8299E*02

45 0.2197 0.7746E+02

46 0.2246 0.7230E*02

47 0.2295 0.6737E+02

4B 0.2344 0.6253E+02

49 0.2393 0.5761E÷02

50 0.2441 0.5232E+02

51 0.2490 0.4640E+02

52 0.2539 0.3949E+02

53 0.2588 0.3401E*02

54 0.2637 0.3757E*02

55 0.2686 0.4568E+02

56 0.2734 0.5333E+02

57 0.2783 0.6027E+02

58 0.2832 0.6676E_02

306

o

Z.c,N _/-.,

S Wz_w_ - H,_ss

9

8

0

0

0

Q

Q

0

Q

_Y

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

7B

79

80

81

e2

83

84

B5

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

U. _dl

O. 2930

0.2979

O. 3027

O. 3076

0.3125

0.3174

0.3223

0.3271

0.8105E+020.8913E+02

0.9844E+02

0.I097E+03

0.1240E+03

0.1442E*03

0.1810E*03

0.202_E÷0_0.3320

0.3_69

0.3418

0,3467

0.3516

0.3564

0.3613

0.3662

0.3711

0,3760

0.3809

0.3857

0.3906

0.3955

0.4004

0.4053

0.4102

0.4150

0.4199

0.4248

0.4297

0,4346

0.4395

0.4443

0,4492

0,454[

0,4590

0.4639

0.4688

0,4736

0,4785

0.4834

0.4883

0.4932

0.4980

0.5029

0.5078

0,5127

0,5176

0.5225

0.5273

0.5322

0.5371

0.5420

0.5469

0.5518

0.5566

0.5615

0.5664

0.5713

0.5762

0.SBII

0.5859

0.5908

0._957

0.6006

0.1987E÷03

0.1658E+03

0.1369E+03

0.1190E+03

0.1059E+03

0.9549E+02

0.9675E+02

0.791bE+02

0.7235E+02

0.6606E+02

0.6001E+02

0.5390E+02

0.4732E+02

0.3940E+02

0.2796E+02

0.6709E+01

0.2424E+02

0.3688E+02

0.4503E+02

0.5149E+02

0.5729E+02

0.6287E+02

0.6853E+02

0.7449E+02

0.8095E÷02

0.SBI5E*02

0.9638E+02

0.1061E+03

0.1180E+03

0.1336E+03

0,1562E+03

0.1886E+03

0.1991E+03

0.1880E+03

0.1555E+03

0.1332E+03

0.1177E+03

0. I058E+03

0.9606E+02

0.8777E+02

0.8047E+02

0.73BIE+02

0.6754E+02

0.6138E+02

0.5494E+02

0.477_E+02

0.389IE+02

0.2953E+02

0.3302E÷02

0.4243E+02

0.5004E÷02

0.5635E+02

0.6207E+02

0.6763E+02

0.7323E+02

0.7916E+02

307

o

8

@

l

I

0

®

I19

120121

122123124

125126127

128129

130131

132133

134135

136137

138139

140

141142

143144

145146

147148

149150

151152

153154

155156

157158

159160

161162

163164

165

166167

168169

170171

172

173174

175176177

178179

IBO

181182

183

0.5811

0.58590.59080.5957

0.60060.6055

0.61040.6152

0.6201.0.6250

0.62990.63480.6396

_0.64450.64940.65430.65920.664!0.66890.67380.67870.68360.68850.69340.69820,7031

0.70800.71290.71790.72270.72750.7324

0.73730.74220.74710.7520

0.75680.76170.76660.77150.77640,78130.78610.7910

-0.7959O.BO08

0.80570.8105

0.81540.82030.8252

0.83010.83500.8398

0.84470.84?60.85450.95940.86430.86910.87400.87890.88380.88970.8936

308

O. 56.',5E÷02O. 6207E÷02O. 6763E+020.7323E÷02O. 7916E÷020.8556E÷020.9266E*02O. 1008E+03O. 1102E÷03O. 1217E*03O. 1364E_'03O. 1561E*03O. 1795E*03O. 1892E÷03

, r'-O. 1810E÷03O. 1581E÷03O. 1378E+03O. 1229E+030.1112E*03O. I016E÷03

0.9356E÷020.8655E÷020.8036E+020.7480E+020.6975E+020.6506E*020.6069E+020.5651E÷020.5248E÷02O. 4844E÷020.4428E÷020.3976E*02O. 3442E*02O. 2755E*02O. 1916E÷02O. 2098E*020.3318E+02O. 4394E'020.537bE÷020.6377E÷020.7490E÷020.8905E÷02

O. 1041E÷03O. 1215E+03 0O. t _d,lF.__O_,I_ ---_O. 1275E+03O. 1124E+030.9515E÷020.8079E+020.6903E÷020.5890E÷020.4968E÷020.4079E÷020.3214E÷020.26_5E+020.2915E÷020.3312E+020.3821E+020.4277E÷020.4700E+020.5119E+020.5535E÷020.5964E+020.641BE÷020.689BE÷02

0

g

0

D

O

0

O

0

0

0

182

183184185186187

188189

190

1.91

19.2193194

195196

197198

199

200201

202203

204205

206207

208209

210211

212213

214215216

217218

219

220

221222

223224

225226

227

228229

230231

232

233

234235

236237

23B

239240241

242243

244245...

p_ORiGiNAL P_,=E IS

OF POOR QUALITY

0.8887 0.6418E+020,893b O,6BgBE+02

0.8984 0.7424E+020,9033 0.7999E+020.9082 0.8639E+029,9131 0.9363E÷02

0,9180 0.1019E÷030,9229 0.1116E÷03

0,9277 0,1229E÷030,9326 0.1360E+03

0.9375 0,1489E÷03

0.9424 0.1565E÷03 _70---0.9473 0.154BE÷030.9521 0.1447E+030.9570 0.1313E÷030.9619 0. IIBBE+030.9668 0. I080E÷030,9717 0.987BE÷020.9766 0.9075E+020.9814 0,8362E_020.9863 0.7717E+020.9912 0.7115E÷020.9961 0.6543E+021,0010 0.6001E+021,0059 0.5512E÷021,0107 0.5188E+021,0156 0.5196E÷021.0205 0,5520E+021.0254 0.5993E+021.0303 0.6513E+021,0352 0,7051E+021,0400 0.7617E÷02

1.0449 0.B217E÷021.0498 0.8868E+021.0547 0.9589E÷021.0596 0,1040E÷031,0645 0.1130E+031.0693 0.1232E÷031.0742 0.1337E+031,0791 0.1426E÷03

• 1.0840 __ 0.1466E+03_...------O •1.0889 0.1440E+031,0938 0.135BE+031,09B6 0,1254E÷03

1.1035 0,1151E+03

1,1084 0.1058E÷031.1133 0.9765E+021.1182 0.9041E+021.1230 O.B401E+021.1279 0.7831E+021.1328 0.7316E+021.1377 0.6856E÷021.1426 0.6446E÷021.1475 0.6083E+021.1523 0.5777E+021.1572 0.5543E÷021,1621 0.5402E+021,1670 0.5396E÷021.1719 0.5563E÷021.1768 0.5897E+021.1916 0.6386E÷021,1865 0.6997E+021.1914 0.7710E+021.1963 0.8508E+02

309

0

0

0

,0

0

G

0

b

1

0

0

0

0

247

248249

250:51

252253254

255256

25725S

259260

261262

263264

265266

2672682b?

270271

272273

274

27527b

277278

279

280281

292283

2B4285

286287

288

289290

291292

293

294295

296297298

299300

301302

303304

305306

307

308

,_0931094e

I 2031

1.21091.2158

N

V,7.'OO¢'V_

0.1023E*030.1097E÷03

0.11_8E÷031.2207

1.225b1.2305

1.23541.2402

1.24511.25001.2549

1.25981.26461.26951.2744

1.27931.28421.28911.2939

1.29881.30371.3086

1.31351.3184

1.32321.3281

1.3330

1.33791,34281.34771.35251.35741.36231.36721.3721

1.37701.3818

1.38671.39161.3965

1.40141.4063

1.4111

1.41601.4209

1.42581.43071.43551.44041.44531.45021.4551

J .46001,464B1,46971,47461.4795

1.48441.4893

1.4941

1.49901.5039

1.50991.5137

esne

0.1132E*030.1081E*030.I003E*030.9160E+02O.B314E*020.7541E+020.6860E+02O.b293E*020.SBaOE+020.5594E÷020.5505E÷020.5582E÷020.5782E+020.6071E+020.6428E+020.6B39E÷020.7301E+020.7BI2E÷02O.B373E+02O.B9B7E+020.9651E+020.1035E+030.1106E+030.1170E+030.1216E+03

- O,|_2E÷O_0.1214E÷030.1166E÷030,1102E÷030.1032E÷030.gb35E+02O.B990E+02O,B4OOE÷020.7874E÷020,7417E÷020.7045E÷020.6789E÷020.6681E*020.6740E+020.6954E+020.7290E+020.7712E+020.8200E+02O.B739E+020.9315E+020.9902E+020.1046E÷030.1092E+030. II19E÷03

0.1122E+03O.IIOOE÷03

0.1057E÷03O. IO01E+030.9399E+020.8772E+020,8153E+020,7549E+020,694BE÷020.6329E÷020,565BE+020.4968E÷02

310

41t°

ORIGINAL PAGE ISOF POOR QUALITY

***** AMPLITUDE SPECTRUM **********

LIN.SPETTRALE FREQUENZA VALORE

0

0

O

0

0 0.0000

1 0.0049

2 0.0098

3 0.0146

4 0.0195

5 0,0244

6 0.0293

7 0.0342

g 0.0391

9 0.0439

10 0.0488

11 0.0537

12 0.0586

13 0.0635

14 0,0684

15 0.0732

16 0.0701

17 0.0830

18 0.0879

19 0.0928

20 0.0977

21 0.1025

22 0.1074

23 0.1123

24 0.1172

25 0.1221

26 0.1270

27 0.1318

28 0.1367

29 0.1416

30 0.1465

31 0.1514

32 0.1563

33 0.1611

_4 0.1660

35 0.1709

36 _.1758

37 0.1807

30 0.1855

39 0.1904

40 0.1953

41 0.2002

42 0.2051

43 0.2100

44 0.2148

45 0.2197

46 0.2246

47 0.2295

46 0.2344

49 0.2393

50 0.2441

51 0.2490

52 0.2539

53 0.2588

54 0.2637

55 0.26B6

56 0.2734

57 0.2783

5B 0.2832

0.5740E-01

0.2439E-01

0.7062E-01

0.1936E*00

0.9735E+00

0.1200E÷02

_,1744E+02

0.6IOIE÷OI

0.4246E_00

0, I132E*00

0.6377E-01

0.8520E-02

0,273BE-01

0.9887E-02

O.125gE-OI

0.9037E-02

0.1457E-01

0.1610E-01

0.3068E-02

0.5413E-02

0.3958E-02

0.7972E-02

0.1531E-01

0.1574E-01

0,1037E-01

0.1278E-01

0.6441E-02

0.2168E-02

0.1328E-01

0.1904E-01

0.7523E-02

0.4397E-02

0.2385E-01

0.1486E+00

0,9056E÷00"

O. IO04E+OI

0.2330E+00

0.3624E-01

0=1547E-01

0,5231E-02

0.1361E-01

0.2062E-02

0,7295E-02

0.4307E-02

0.1046E-01

0.1249E-01

0,2016E-0!

0.2197E-010,1643E-01

0.4621E-02

O. I060E-OI

0.71_2E-02

O.9859E-02

0.8347E-02

0.1271E-01

0.1510E-01

0.7488E-02

0.2681E-01

0.1601E-01

0,1 Z °

311

o

J

O

Q

@

62_364656667_e6970717273747576777879BO81B283848586878889?0?192

949596979B';9

100101102103104105106107108109110111112113114115116117118119120121122123124

0.3027 0 8216E-020.3C)76 0.2211E-01

0.3125 0.7347E-020.3174 0.1217E-010.3223 0.2920E-01

o.3271 o._o_se+oo O 30.3320 0.8715E-01 •0.336_ 0.311_e-0130.341e 0.7_2_E-020._4_7 0.1:eSE-Ol0._I_ 0.7284E-020.3564 O. IO70E-OI0.3613 0.2274E-010.3662 0.2571E-010.3711 0.1527E-01

0.3760 0.9731E-020.3809 0.5012E-02

0.3857 0.I084E-010.3906 0.3625E-01

0.3955 0.2667E-010.4004 0.1599E-02

0.4053 0.1246E-010.4102 0,8206E-02

0.4150 0.5890E-020.4199 0.2320E-010.4248 0.1690E-010.4297 0.1017E-020.4_46 0.9560E-020.4395 0.1368E-010.4443 0.2617E-010.4492 0.391_E-010.4541 0.2382E-010.4590 0.575_E-020.4639 0.6221E-020.4688 0.1353E*01

0.4736 0.1670E-01 ,_j_j_oo.4"--_§5' 0.1Sl;E-O't--"

0.4034 0.3486E-OL0.4003 0.2604E-Or0.4932 o. zeOSE-OZ0.4980 O. IIOIE-OI0,5029 0.1406E-01o,5o7e 0.1384E-010.5127 0.1718E-010.517_ 0.1521E-010.52'25 0.7684E-020,5273 0.1455E-01g.5322 0.1678E-010.5371 0.6516E-020.5420 0.1335E-01

0.5469 0._325E-020.5510 0.1449E-010.5566 0,2014E-010.5615 0.2011E-010.5664 0.1225E-010.5713 0.1145E-010.5762 0.1556E-010,5811 0.6703E-020.5859 0.9616E-020.5908 0.9919E-020.5957 0._327E-020.6006 0.9681E-020.605_ 0.6503E-030.6104 0.1298E-01

312

ORIGINALOF POOR QUALITY

O

@

O

0

t

O

O.

D

0

@

0

B

125

126

127

128

129

15o131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

7J Cancel •

v.wvv_

0.b055

0,6104

0.6152

0.6201

0.6250

0.6299

0.6348

0.6396

0.6445

0.6494

0.6543

0.6592

0.6641

0.6689

0.6738

0.6787

0.6836

0.6885

0.6934

0.69B2

0.7031

0,7080

0.7129

0.7178

0.7227

0.7275

0.7324

0.7373

0.7422

0.7471

0.7520

0.7568

0.7617

0.7666

0.7715

O.7764

0.7813

0.7861

0.7910

0.7959

0,8008

0.9057

0.8105

0,8154

O.92qT

0.82_2

0,8301

_,8350

0.8398

0.8447

0.8496

0.8545

0.8594

0.8643

0.8691

0.8740

0.8789

0.b503E-03

0.12989-01

0.1978E-01

0.1940E-01

0.3077£-O2

0.7190E'02

0.84646-02

0.1_916-01

0.79199-02

0.6410E-02

0.10439-01

0.13826-01

0.1182E-01

0.6834E-02

0.1420E-01

0.1842E-01

0.9449E-02

0.4677E-02

0.7512E-02

0.1247E-01

0.1966E-01

0.87066-02

0.3272E-02

0.16289-01

0.1383E-01

0.41616-02

0.7833E-02

0.17959-01

0.7262E-02

0.2390E-02

0.29329-02

0.8188E-02

0.7918E-02

0,14429-01

0,6509E-02

0.19686-01

0.1183E-01

0.3446E-02

0.36986-02

0,36129-02

0,42019-02

0,1160E-01

0,1460E-01

0.7758E-02

0.11976-01

0.15656-01

0.71389-02

0.30549-02

0.1484E-01

0,2574E-01

0.1780E-01

0.84419-02

0.80669-02

0.7842E-02

0.12239-01

0.20939-01

0.2161E°01

3L3

N87-18824

Rigorous Approaches to Tether Dynamics in Deployment and Retrieval

Ettore Antona

University of Torino, Italy

PRIEC:EDING pAGE BLANK Nor FILMED

315

ETTORE ANTONA

DIPARTIMENTO DI INGEGNERIA AERONAUTICA

E SPAZIALE DEL POLITECNICO DI TORINO

RIGOROUS APPROACHES TO TETHER

DYNAMICS IN DEPLOYMENT

AND RETRIEVAL

AIAA - NASA - PSN - FIRST INTERNATIONAL

CONFERENCE ON TETHER IN SPACE

Arlington, VIRGINIA - September 1986

PRECEDtT_G pAGE BLANK NOT FILMED

317

ABSTRACT

Dynamics of Tethers in a linearized analysis can be

considered as the superposition of propagating waves.

This approach permits to have a new way for the analysis

of a Tether behaviour during deployment and retrival,

were a Tether can be considered composed by a part at

rest and a part sujected to propagation fenomena, being

the separating section depending on time.

The dependence on time of the separating section

requires the analysis of the reflection of the waves

travelling toward the part at rest. Such a reflection

generates a reflected wave, whose characteristics are

determined.

The propagation fenomena of major intest in a Tether are

transverse waves and longitudinal waves, all

mathematically modelled by the "vibrating chord"

equations, if the tension is considered constant along

the Tether itself. An interesting problem also

considered is concerned with the dependence of the

Tether tension from the longitudinal position, due to

microgravity, and the influence of this dependence on

propagation waves.

318

INTRODUCTION

Dynamics of Tethers('), as well as of any structure, in a linearized

analysis can be considered as the superposition of propagating waves.

This requires the study of dynamic propagation along the Tether with

the appropriate boundary conditions. During deployment and retrieval,

with reference to a lagrangian reference system("), Tether can be

considered as composed of two parts - one at the rest and one subjected

to the propagation phenomena. These two parts are separated by a

section that changes with time, i.e. the Tether section that bounds the

part constrained to rest is changing with time (the other part being

free to move and vibrate and having the opposite end section subjected

to the boundary conditions imposed by the satellite).

The propagation phenomena of major interest from a practical point of

view are the following.

i) Transverse waves, mainly a "vibrating chord" behaviour, where

inertial forces and the tension in the Tether - in combination with

its local curvature - are the most important elements of the

dynamic equilibrium.

2) Longitudinal waves, mathematically modelled by the "vibrating chord"

equation, where inertial forces and longitudinal internal forces,

due to elastic deformations, are the most important elements of the

dynamic equilibrium.

The dependence on time of the section which bounds the part at rest

requires the analysis of the reflection of the wave travelling toward

the part at rest. Such a reflection generates a wave travelling

outward, whose characteristics are to be determined.

The A. had previously considered from a theoretical point of view such

problem in particular in order to analyze the behaviour of deployable

booms subjected to longitudinal and flexural dynamic phenomena (see

(i), (2), (3) and (4)). Also in the case of the problems concerning a

structure like the Tether, the theoretical analysis gives rigorous

solutions and permit an insight into experimentally observed effects,

(') It can be suggested Ref. (8) for a general presentation of Tether

concept and its (dynamic) problems.

(") A reference system which introduces a bi-univocal correspondence

between a longitudinal coordinate and each Tether section.

319

that by some authors were erroneously thought to be "continuous"

changes of frequencies and amplitudes of the proper modes.

This paper belongs to a series of works having the scope of opening a

new way in the approach by means of mathematical models of several

mechanical problems of deployable systems of telescopic and Tether

type.

Recently several attempts have been made to solve the problem of the

telescopic structures behaviour. Such attempts are mainly based in

changes of the coordinates in order to take into account the changes

during the time of the space where the problem is defined.

As a matter of fact these attempts don't seem obtain good results. They

don't take into account energetic balances.

On the contrary this work introduces and developes to some extent the

basic idea of considering each dynamic motion in a structure as the

results of wave propagation , taking also into account energetic

exchanges at the ends.

In the case of vibrating chord the problem of the time dependence of

the definition space can't be resolved by means of the Cauchy, Goursat

and Darboux results, (5). These results deal with the problems of time

dependinE location of the sections where are imposed the boundary

conditions. In the part that is external to such sections dynamic

phenomena take place that are coherent with phenomena acting in the

internal part and contribute to supply or spillover energy in it.

This work deals with the request of having external parts at the rest

(not only the boundary sections). Therefore boundary sections have the

behaviour of surface where internal dynamic phenomena "reflect".

Obviously reference is made to a constant section unaxial structure, as

Tether can be considered. Longitudinal tension loads due to

microgravity permits to consider additive small tension or compression

loads without critical phenomena.

320

FUNDAMENTAL EQUATIONS

Let us have first a brief recall of concepts, with reference only to

the case of longitudinal waves making use of Ref. (i). The reader can

easily do the extension to transverse waves. The problem can be

analyzed by means of an equilibrium and a continuity equations.

If _:_%_) is the stress at point :_ and time _ and _ :_C_)is

the velocity of the motion, the equilibrium linearized equation is

l) = _ .

The continuity linearized equation on the other hand is

2) __ = _ _ __ o

_ E Qr

we put ¢ z _/_/If= . ) operating we obtain

i') -- -- __

9, wz ¢,.- _)tz.

The general solutions of eq.s i') and 2') are

4) +- -C /

Eqs. 3) and 4) indicate that the motion of the bar is composed of two

waves: one travelling in the increasing x direction and another

travelling in the decreasing x direction.

On the base of these considerations it is possible to obtain a relation

between p and u of each travelling wave.

321

¢

5)

6)

and _z = _ w --_ , from 3) and 4) one obtainsC

9G- x f_._5 <';_f<"

_t 9t_ 9t_

Taking into account eq. l) from 5) and 6) we have the relation

If A=_ )_=0 , eq. 7), giyes the rela_on

On the other hand if_,=O_._6+-O , we have the relation

fc

With the initial conditions 4.d_4_]_):0

t__l_O):O %_>J--_the following relations betweentravelling wave

) --.i_t_,) =0 or (separately)

u and p hold for each

: k,

) ,_/'-9) _ (_+ __ c (t+z C '

Such relations enable us to determine one of the two values_or_when

the other is known (eq. 8) and also to determine one of the values_zor

_ when the other is know (eq. 9).

They are connected respectively with the separate behaviour of the two

travelling waves.

322

REFLECTIONONTHETIMEDEPENDENTSECTION

Also in this paragraphlongitudinal wavesare consideredas a sampleproblem,still makinguseof Ref (i). Theextension to transversewaveiseasy. In practical applications the boundaryconditions that are usuallyconsideredfor uniaxial extensionalbars are free edge( _=O ) and fixed

edge (_O). At the edge where deployment is done, it is (_)=O, where

_(.a=X_t) is the time dependent section that can be considered as fixed

and_14_=% r is the velocity of displacement of the constraint. Here

_ is an abscissa on the indeformed bar.

As a first analysis of the behaviour at a time dependent fixed section we

can consider the problem of an extensional bar having a free edge at 9o=O

and constrained with _)=o _T 7_c=_+61]" _ where _, U" are

constant. The bar is subjected in _=O to an external extensional

specific force _4 indipendent of the time_.

Such force produces a wave travelling in the direction of the increasing

when such wave reaches the moving constraint section _ a

reflected wave of specific force _z is generated that runs in the

direction of the decreasing x.

We will now determine the characteristic of the reflected wave, before it

reaches the section :_O

In order to determine the reflected wave by means of an energy balance is

necessary to dispose of an evaluation of the energy exchanged at the

constrained end. A discussion on this subject is performed in ref. (I).

The conclusion is that the constraint has and energy exchange different

from zero e that the reflected wave can be determined by means of a

behavioural analysis like the following.

During the time we have the already introduced displacement of the

section where the constraint is imposed. Such displacement corresponds to

the internal deformation of the rod.

The interval _'_=_'_d_,during _, withstands a length change _l=-_x_,,_J_-

with a strain _ = _6/_.

On the otherE hand the final stress in _- ./ must be E= _+_ :

=_._) _, that means a strain 6 = _,-_,.I _/C

323

Equating the two expressions of the strain gives

i0) "_Z -- - _4

This result I0) coincides with that of the application of the Goursat

Darboux and Cauchy problem solution,(5), with the condition.M=o at_=_.

In spite of the observed coincidence with the well known results of the

vibrating chord analysis, the proposed model presents the advantage of

the applicability to more complex problems as dispersive systems, (see

for instance (6) and (3)).

324

EXTENSION TO TIME DEPENDENT AMPLITUDE (OF THE TRAVELLING WAVE) AND SPEED

(OF THE BO_ARY CONDITION)

Let us consider in a non dispersive system the wave v&¢ 4 travelling

inward the time variable restraint and the _4_ z. travelling outward

expanded as follows, (see also (2)),

If at a time %_ the restraint condition is

a_ at the time tt_t where 4/" will tends to zero,

without loss in generality we can put _I_-0 and introduce a dummy

variable _ such that #_ _ <t6_.

During _ at the section _4 the displacement

take place. During the same _- in the region _>0 the internal

deformation generates a change in length

The equation between such two _ } substituting 14) and taking into

account only the terms of the lower order for respect to the principal

_" , operating gives)

or

Relation 14) means that, beside the higher order terms,

like in the case of_ andi¢_ of constant value.

325

EXTENSIONTOPROPAGATIONSPEEDDEPENDINGONTHELONGITUDINALPOSITION

Thepresent paragraphconcernsthe extensionof the analysis to the casewhereeq. I') and2') becomeas follows

X")-- )

- 'This case includes the dynamics of transverse waves in Tethers where

longitudinal load is depending on the position due to microgravity.

Because c_) is not constant but a function ofgK t C_ =_z)) expressions

3) and 4) are not still valid, and it is necessary to find an appropriate

way of solution.

The A. in a previous paper, (7) here largely recalled, proposed that the

general solution of eq.s I") were composed by means of two waves in

opposite directions travelling and having speed depending on x. Such

waves reduce to eq.s 3) and 4) when _(z_reduce to a constant C. If_

indicates _ or_. as necessary, the following expression was adopted (')

where _ is an arbitrary constraint and --__ _ C_XJ could be the

propagation speed at 2f.. /

Obviously, not all the functions _4and _&are usefull to satisfy_ i"). Thei

problem is now reduced to the determination of the functions _4 and _zgif

any, that can satisfy l").

The functions _4 and _& can be examined separately.

Q¢, _ i4 L, _ )

('-_When _C)--const. and _--4 , the proposed expression reduces to 3)

and 4),

326

Recalling now i") we obtain

The function _4 ' if it there exists, must satisfy eq. 16). To the same

conclusion we lead if we consider C_>.7&

As an application we can now restrict to the case

We have _) -- CO andC= Co_d.

This is a linear ordinary seconc_ order equation.I L

Its solution is of the form(_x_and preciselyiT --

If we consider dZ we obtain also

In the previous analysis _ is an arbitrary constant. If we let _ assume

all the values 0'---_---_ _ we obtain _as _ and _complete sets of

functions, which allow us to expande by integral whatever function. Each

dynamic fenomenum in, a structure where eq.s i") are valid and C= _o

can be analysed as, (see 17} and 17')),

_D

327

Obviously 18) is not the only way by which to expand by integral such a

dynamic fenomenum, but this way allows us to consider component functions

when the propagation speed at any x is well know. Such speed, as we know,

is a fundamental datum in order to evaluate the speed of a reflected

wave, in particular in the case of time depending restraint conditions.

328

REFERENCES

{1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

E. ANTONA : Dynamic problems in eleastic systems with time

variable restraints. Accademia delle Scienze Di

Torino, 1985.

E. ANTONA : Further results on time variable restraints in one

dimensional non dispersive systems.

(To be Published).

E. ANTONA : Dynamic problems on time variable restraints in

dispersive systems. (To be Published).

E. PERSICO : Introduzione alla fisica matematica, Redatta da

Tino Zeuli, para. i17, Ed. Zanichelli, Bologna 1948.

L. AMERIO : Analisi matematica, Cap. 4, para. ii, Ed. UTET,

Torino, 1982;

E. ANTONA : Sopra due propblemi di preparazione di onde

elestatiche. L'Aerotecnica - Missili e spazio n ° 2 -

1975

E. ANTONA : Dinamica dei sistemi unidimensionali con condizioni

di vincolo dipendenti dal tempo. Atti del Congresso

AIMETA, Torino futtembrich 1986.

J.A. CARROLL : Guidebook for analysis of Tether applications Final

Report on Contract RH4-394049 with the Martin

Marietta Corporation, March 1985.

329

III

WORKSHOP SUMMARY

AND

PANEL DISCUSSION RESULTS

P_ECED_NG PAGE B1.ANK NOT FILMED

331

SUMMARY OF THE SEPTEMBER 16

TETHER DYNAMICS SIMULATION WORKSHOP

Charles C. Rupp

George C. Marshall Space Flight Center

The objective of the Tether Dynamics Simu-

lation Workshop is to provide a forum to

discuss the structure and status of existing

computer programs which are used to simulate

the dynamics of a variety of tether appli-

cations. The reasons for having differentsimulation models and how the simulations are

verified is discussed. Recommendations made

during a panel discussion regarding the dir-

ection of future work are presented.

INTRODUCTION

This summary was prepared by a Tether Dynamics Simulation

Review Committee consisting of the following members:

Peter M. Bainum

William A. Baracat

Silvio Bergamaschi

Paul A. Penzo

Charles C. Rupp

American Astronautical Society/Howard

University

General Research Corporation

University of Padova, Italy

Jet Propulsion Laboratory

George C. Marshall Space Flight Center

The workshop featured presentations on eleven simulation

models and special presentations on the validation of the

Tethered Satellite System Engineering Simulation at the

Johnson Space Center and the dynamics flight experiments to

be conducted on the first flight of the Tethered Satellite

System. A panel composed of preselected workshop participants

discussed five issues regarding future simulation validation

activities. Approximately 120 people participated in the

workshop.

RECOMMENDED FUTURE SIMULATION DEVELOPMENT

Comments that were received during the presentations of the

simulation models are summarized as follows:

I. Incorporate sensor hardware and observer measurement

dynamics.

333

PRECEDING PAGE B_..._'_K NOT FILMED

2. Improve simulation of tether transient thermodynamic

effects such as rapid heating and cooling duringterminator crossing.

3. Resolve different approaches to atmospheric dragmodels.

4. More experimental information is required on tether

material damping and thermoelastic effects.

5. Simplify simulations where possible.

PANEL DISCUSSION TOPICS

Five topics were selected for the panel discussion with the

intent of provoking opposing viewpoints. However, little

disagreement was found among the panel members and the mem-

bers of the audience who participated. These topics, the

names of the panel members leading the discussion, and theconclusions follow.

TOPIC i:

Howard Flanders

Henry WolfMartin Marietta Denver Aerospace

Analytical Mechanics Associates

Should a universal simulation program be developed?

a. General consensus is no.

b. Desirable in theory, but not practical at thistime.

c. A universal program will be difficult to verify,

costly to maintain, not likely to be widely andreadily accepted.

d. There may not exist such a program--various

applications may require their own "best" program.

e. A library of special purpose application programsor subroutines might be useful.

f. These programs should be mini or micro-computer

usable, well documented, and user-friendly.

g. An alternative to a universal program development

would be better documentation and use of existingprograms.

TOPIC 2:

David A. Arnold Smithsonian Astrophysical Observatory

Silvio Bergamaschi University of Padova, Italy

What accuracy is required in tether dynamics simulations?

a. The simulation model should be selected based on

the mission goals and the mission phase.

334

b. The influence of various factors should be studiedindividually to determine the magnitude of theireffect.

c. Effects should be included in the simulationaccording to their influence on the particularproblem.

d. Accuracy verification of the selected simulationshould be madewith a sample case of the completesimulation, and comparison of results with anindependent program.

e. Results depend not only on the accuracy of thecomputer algorithms, but on the accuracy of thephysical parameters.

TOPIC 3:

Joe CarrollCharles C. Rupp

Energy Science LaboratoryGeorge C. Marshall Space Flight Center

What methods should be used to verify simulations?

a. Mathematical confirmation can be used to computesimple cases whose results are known, compare withother simulation programs, and provide a self-teston the level of accuracy.

b. Physical confirmation tests can be performed in alaboratory to determine tether physical character-istics, perform dynamics and control system tests,and test tether motion in a large vacuumchamber.The KC-135 can provide zero-G tests of tethers andsystem components.

TOPIC4:

Enrico LorenziniPaul A. Penzo

Smithsonian Astrophysical ObservatoryJet Propulsion Laboratory

Whoshould be responsible for simulation verification?

a. The sponsoring agency should ultimately beresponsible for verification.

b. Possible options for the verification effortinclude in-house, unbiased third party, and/ora formal professional committee (e.g. AIAA-AASconnected).

c. The methodology should include providingsufficient updated documentation for each modeland establishing, case by case, a set of testruns.

335

TOPIC 5:

Peter M. Bainum

Bill Djinis

American Astronautical Society/HowardUniversityNASAHeadquarters

Should a peer process be established? How?

a. Numeroussimulation programs have been developedunder various contracts.

b. The complexity and accuracy required of simulat-ions will depend on use (preliminary design,particular phase of mission support, experimentalflight dynamics verification, future applicat-ions).

c. Small new projects may not be able to afforddevelopment of their own simulations and couldbenefit from a group of expert peers.

d. The panel recommendsformation of a working groupto study peer selection, availability, andfinancial support.

RECOMMENDATIONS

The final recommendations of the workshop are as follows:

i. Establish a joint tether applications working groupwith the following objectives:

a. Serve as a focal point for dynamics studies fortether applications.

b. Advocate simulation validation.c. Maintain a simulation capabilities catalog.d. Perform periodic reviews of dynamics issues.e. Provide recommendations to managementon resource

requirements.

2. Pursue ground and flight dynamics experimentation.

336

APPENDIX A

WORKSHOP AGENDA

337

7:45

8:15

TETHER DYNAMICS SIMULATION WORKSHOP

Tuesday, 16 September 1986

PROGRAM

Registration/Continental Breakfast

Introduction

Chris Rupp

NASA Marshall Space Flight Center

William A. Baracat

General Research Corporation

8:30

9:00

9:30

10:15

10:45

11:20

11:40

12:00

Simulation Descriptions

Tether Dynamics Simulation

Vinod J. Modi

University of British Columbia, Canada

Arun K. Misra

McGill University, Canada

HIFITS Simulation

Howard Flanders

Martin Marietta Denver Aerospace

Tethered Satellite System on the Systems Engineering Simulator

Ron Humble

Lockheed Missiles and Space Company

David Harshman

Rockwell Space Operations Company

GTOSS

David D. Lang

David D. Lang Associates

Tethered Satellites Simulation

John R. Glaese

Control Dynamics Company

Skyhook Program

David A. Arnold

Smlthsonian Astrophysical Observatory

Slack3

Gordon E. Gullahorn

Smithsonlan Astrophysical Observatory

Artificial Gravity Laboratory

Enrico Lorenzlnl

Smithsonian Astrophysical Observatory

12:20 Lunch/Computer Simulation Demonstrations

339

PRECEDIt_G PAGE BLANK NOT FILME_

PM

1:30

2:00

2:45

3:15

3:30

4:00

5:30

6:00

Simulation Descriptions - Continued

Elasticity Effects in Tether Dynamics

Silvio Bergamaschi

University of Padova, Italy

TSS Subsatellite Attitude Dynamics and Control Laws

Verification Programs

Floriano Venditti

Aeritalia Space Systems Group, Italy

Validation of TSS Engineering Simulation

Zachary Galaboff

NASA Marshall Space Flight Center

TSS-1 Dynamics Flight Experiments

Gordon E. Gullahorn

Smithsonian Astrophysical Observatory

Tether Simulation Design for Mission Planning and Analysis

Richard Deppisch

NASA Johnson Space Center

Yashvant Jani

LinCom Corporation

Panel Discussion on Future Validation Activities

Topic I: Howard Flanders, Henry Wolf: Should a single

universal simulation program on tether dynamics bebuilt?

Topic 2: Dave Arnold, Silvio Bergamaschi: How accurately must

simulations be able to compute tether system

dynamics?

Topic 3: Joe Carroll, Chris Rupp: What verification methods

should be employed?

Topic 4: Enrico Lorinzini, Paul Penzo: Who should be

responsible for simulation verification?

Topic 5: Peter Bainum, Bill Djinis: Should a peer process beestablished?

Adjournment

Executive Committee Meeting - Report to be presented FridayI0:00.

340

APPENDIX B

WORKSHOP ATTENDEES

341

Randall S. Aadland

NASA Lewis Research Center

NASA-CASE Co-op Student

21000 Brookpark Road

Cleveland, OH 44135

(216) 433-6134

Adrian Abraham

Bethesda-Chevy Chase Space Experiment ClubClub Leader

6406 Stratford Road

Chevy Chase, MD 20815(301) 654-0127

Dale T. Adams

Texas A&M University

Military Aerospace AssociationPO Box 6500

College Station, TX 77844

(409) 260-7140

Charles Alexander

Energy Science LabsPO Box 85608

San Diego, CA 92138-5608

(619) 455-4688

Norman Alexander

General Electric Space Div.

PO Box 8555 Bldg. I!

Philadelphia, PA 19101

(215) 962-2123

Kyle T. Alfrlend

General Research Corporation

7655 Old Springhouse Road

McLean, VA 22102

(703) 893-5900

Marc Allen

Computer Technology Associates

11847 Canon Blvd., Suite 3

Newport News, VA 23606

(804) 873-2021

Sean Allen

Field Box 183

Wapello, lowa 52653

343

P_E_ING pAGE BLANK NOT FILMED

John L. Anderson

NASA Headquarters

Office of Aeronautics and Space Technology

Mail Code RS

Washington, DC 20546

(202) 453-2756

Ettore Antona

Polltecnico Di Torino

Dipartimento Ingegneria Aerospaziale

Corso Duca degll Abruzzi, 24

10146 Torino, Italy

39-11-5566807

David A. Arnold

Smithsonlan Astrophysical Observatory

60 Garden Street

Mail Stop 59

Cambridge, MA 02138

(617) 495-7269

Wayne L. Bailey

Teledyne Brown Engineering

300 Sparkman Drive

MS 52

Huntsville, AL 35807

(205) 532-2829

Peter M. Balnum

Howard University

Department of Mechanical Engineering

Washington, DC 20059

(202) 636-6612

William Baracat

General Research Corporation

Aerospace Group

7655 Old Springhouse Road

McLean, VA 22102

(703) 893-5900

Ivan Bekey

NASA Headquarters

Director, Advanced Programs

Code MT

Washington, DC 20546

(202) 453-1147

Silvlo Bergamaschl

University of Padua

Institute of Applied Mechanics

Via Venezla 1

35131 Padua, Italy

39-49-8071033

344

Gianfranco Bevilacqua

Aeritalia

Space Systems GroupCorso Marche 41

10146 Torlno, Italy

39-11-725089

Giannandrea Bianchini

University of PaduaVia Venezla 1

35131 Padua, Italy

39-49-20198

Karen D. Blumentrltt

Rockwell International

1840 NASA Road One

Houston, TX 77058

(713) 483-2627

Andrew E. Boeck

6558 Idlewild Road

Apartment E

Charlotte, NC 28212

(504) 242-0714

Alexander Boschitsch

Princeton University

Dept. of Mechanical Engineering

D-209 Eng. Quadrangle

Princeton, NJ 08544

(609) 452-5674

Edward J. Brazill

NASA Headquarters

Code MTS

Washington, DC 20546

(202) 453-1155

Cyrus L. BurnerGeneral Research Corporation

Aerospace Group

7655 Old Springhouse Road

McLean, VA 22102

(703) 893-5900

Michael A. Calabrese

NASA HeadquartersCode EED

Washington, DC 20546

(202) 453-1676

345

Nellie N. CartNASAJohnsonSpaceCenterASTFlight SystemsOperationsCodeDH64Houston,TX 77058(713) 483-4966

JosephA. CarrollEnergyScienceLabsPOBox85608SanDiego, CA 92138-5608(619) 455-4688

Brian F. Class

Fairchild Space Company

Senior Engineer, ACS Section

2031 Century Blvd.

Germantown, MD 20874

(301) 428-6245

Mario Cosmo

Smithsonian Astrophysical Observatory60 Garden Street

Cambridge, MA 02138

(617) 495-7433

Capt. Carl E. CrockettUnited States Air Force

Air Force Space Command/DOA

HQ Space CommandPeterson AFB

Colorado Sprlngs, CO 80914

(303) 554-2851

Eric Dahlstrom

7630 Tomlinson Avenue

No. 35

Cabin John, MD 20818

(301) 229-6599

Richard M. Deppisch

NASA Johnson Space Center

Mission Planning and Analysis

Houston, TX 77058

(713) 483-4457

Lamont DiBiasl

Fairchild Space Company

Dlrector, NASA Business Development

20301 Century Boulevard

Germantown, MD 20874-1181

(301) 428-6363

346

William Djinis

NASA HeadquartersCode MTF

Washington, DC 20546

(202) 453-1157

Charles R. Eastwood

NASA Headquarters

Code EED

Washington, DC 20546

(202) 453-1723

Pamela Edwards

AIAA

1633 Broadway

New York, NY 10019

(212) 408-9778

Marinella Ercoli

PSN/CNR

Viale Regina Margherlta 202

00198 Roma, Italy

39-6-8445107

Ruying Fan

Howard University

Dept. of Mechanical Engineering

Washington, DC 20059

(202) 636-7124

Joseph V. Fedor

NASA Goddard Space Flight Center

Code 712

Greenbelt, MD 20771

(301) 286-2088

Mr. Festa

Aeritalia

Space Systems Group

Corso Marche 41

10146 Torino

Italy39-11-333271

Howard Flanders

Martin Marietta Denver Aerospace

Mall Stop $8071PO Box 179

Denver, CO 80201

(303) 977-5951

347

KevinFlanneryGeneralElectric RSL3129ChestnutSt.Room5450MPhiladelphia, PA 19101(215) 823-3759

ThomasW.FlatleyNASAGoddardSpaceFlight CenterCode712Greenbelt,MD 20771(301) 286-5336

ZacharyJ. GalaboffNASAMarshallSpaceFlight CenterCodeEDI3MarshallSpaceFlight Center,AL 35812(205) 544-1446

MarcoGalantlnoPSN/CNR

Viale Regina Margherita 202

00198 Roma, Italy39-6-4767249

William H. Ganoe

University of Arizona

S.I.E. Department

Tucson, AZ 85721(602) 621-6562

James Gearhart

777 West Middlefleld Road

#134

Mountain View, CA 94043

(408) 742-8085

Mireille Gerard

AIAA

Administrator, Corporate and

International Programs

1633 Broadway

New York, NY 10019

(212) 408-9770

Francesco Giani

Aeritalia

Space Systems GroupCorso Marche 41

10146 Torino, Italy39-11-3332235/721345

348

JohnR. GlaeseControl DynamicsCompanyOffice ParkSouthSuite 304600BoulevardSouthHuntsville, AL35802(205) 882-2650

RonGlickmanBall AerospaceP.O. Box1062Boulder,CO80306(303) 939-4275

Filippo GrazianiUniversita Di RomaAssociateProfessorVia Lariana 5

Roma 00199

Italy

39-6-858333

Luciano Guerriero

PSN/CNR

Viale Regina Margherita 202

00198 Roma, Italy39-6-4767249

Gordon E. Gullahorn

Smithsonlan Astrophysical Observatory

Mall Stop 59

60 Garden Street

Cambridge, MA 02138

(617) 495-7419

Kevin Hames

University of Michigan

5594 Northcote

West Bloomfield, MI 48011

(313) 626-0509

Calvin D. Herr

Martin Marietta Denver Aerospace

7775 S. Trenton Ct.

Englewood, CO 80112(303) 977-5451

James K. Harrison

NASA Marshall Space Flight Center

Mail Code PS04

Marshall Space Flight Center, AL 35812

(205) 544-0629

349

Dave Harshman

Rockwell Space Operations Co.600 Gemini Avenue

Houston, TX 77058

(713) 282-2789

William S. Hayes

McDonnell Douglas Astronautics14651 Mimosa Lane

Tustln, CA 92680

(714) 896-1338

Xiaohua He

Stanford University

Aeronautics/Astronautics Dept.

Stanford, CA 94305

(415) 725-3297

Gall Helm

System Planning Corporation1500 Wilson Blvd.

Suite 1202

Arlington, VA 22209

(703) 841-2880

Ronald W. Humble

Lockheed Engineering & Management ServicesMail Code BI2

2400 NASA Road I

Houston, TX_ 77058

(713) 333-6285

Paul Ibanez

ANCO Engineers, Inc.

9937 Jefferson Blvd.

Culver City, CA 90232-3591(213) 204-5050

Rodlca lonasescu

Jet Propulsion Laboratory4800 Oak Grove Drive

Pasadena, CA 91109

(818) 354-0445

Yashvant Jani

LinCom Corporation

18100 Upper Bay RoadSuite 208

Houston, TK 77058

350

Philip O. JarvinenMassachusettsInstitute of Technology244WoodStreet, Rm.D-382Lexington,MA 02173(617) 863-5500

FrancisJ. KellyNavalResearchLaboratorySectionHead,LongWaveRadio4555OverlookAvenueWashington,DC20375(202) 767-2941/(202)767-2891

JosephC. KolecklNASAHeadquartersCodeMTSWashington,DC 20546(202) 453-1881

MeredithC. Kurz4101LongfellowStreetHyattsville, MD 20781(301) 277-5682

DavidD. LangDavidD. LangAssociates222270th Avenue,SEMercerIsland, WA98040(206) 236-2579

JamesR. LeaseNASAHeadquartersCodeMSDWashington,DC 20546(202) 453-1576

JohnF. L. LeeHoneywellInc.Mail Station 809-513350U.S.Highway19, SouthClearwater,FL 33546(813) 539-5667

Carolina Leonard

Adroit Systems

809 N. Royal Street

Alexandria, VA 22314

(703) 684-2900

Sue Leszkiewlcz

NASA Goddard Space Flight Center

Code 554.1

Greenbelt, MD 20771

(301) 286-3155

351

AlejandroLeviANCOEngineers,Inc.9937Jefferson Blvd.CulverCity, CA 90232-3591(213)204-5050

JohnLewakBristol AerospacePOBox874WinnipegR3C2S4Canada(204) 775-8331

Lin LiangdongHowardUniversity2225NStreet, NWApartment404Washington,DC 20037(202) 636-7124

EnricoC. LorenziniSmithsonianAstrophysical ObservatoryMail Stop5960GardenStreetCambridge,MA02138(617) 495-7211

AndreaLorenzoniPSN/CNRViale ReginaMargherita20200198Roma,Italy39-6-4767259

CharlesA. LundquistUniversity of Alabamain HuntsvilleResearchInstituteDirector of Research/CMDSRoomM-65Huntsville, AL 35899(205) 895-6620

GianfrancoManariniPSN/CNRViale ReginaMargherita20200198Roma,Italy39-6-4767249

Chris A. Markland

European Space Agency2200 AG

NoordwijkThe Netherlands

31-17198655

352

Pietro MerlinaAeritaliaSpaceSystemsGroupCorsoMarche4110146TorinoItaly39-11-3332356

Paul A. MillerRCAAstro-Electronics DivisionPOBox800Princeton, NJ 08543(609) 426-3857

William MillerAeritallaSpaceSystemsGroupCorsoMarche4110146Torino, Italy39-11-725089

ArunK. MisraMcGill UniversityDepartmentof MechanicalEngineering817 SherbrookeStreet, W.Montreal, Quebec,CanadaH3A2K6(514) 392-5480

AntonioMocclaIstituto di GasdinamicaUniversita dl NapoliPie Tecchio8008125Napoli, Italy39-81-7682158

VinodJ. ModiUniversity of British ColumbiaDepartmentof MechanicalEngineering2324MainMallVancouver,B.C.CanadaV6TIW5(604) 228-2914

DeanS. MonitorMartin Marietta AerospaceMichoudOperationsDept. 3514P.O. Box29304NewOrleans,LA 70189(504) 255-2092

353

MariaB. MontiniPSN/CNRViale ReginaMargherita, 20200198Roma,Italy39-6-4767261

ClaudeNicollierNASAJohnsonSpaceCenterESAOffice CodeCBHouston,TX 77058(713) 483-4513

JohnOldsonEnergyScienceLaboratoriesPOBox85608SanDiego,CA 92138-5608(619) 455-4688

MichaelPattersonNASALewisResearchCenterMall Stop500-22021000BrookparkRoadCleveland,OH44135(216) 433-2405

JessA. PedrenaAcademyof AeronauticsLaGuardiaAirport530E. 20th StreetNewYork, NY 10009(212) 254-6536

Paul A. PenzoJet PropulsionLaboratoryMall Code301-170U4800OakGroveDrivePasadena,CA91109(818) 354-6162

J. DavidPowellStanfordUniversityDepartmentof Aeronauticsand

AstronauticsDurandBuildingStanford, CA94305(415) 723-3425

ChristopherR. PurvisJet PropulsionLaboratoryMail Code156-2464800OakGroveDrivePasadena,CA91109(818) 354-4986

354

TerrenceG. ReeseGeneralResearchCorporationDirector, AerospaceGroup7655Old SpringhouseRoadMcLean,VA22102(703) 893-5900

CharlesC. RuppNASAMarshall SpaceFlight CenterMail CodePS04MarshallSpaceFlight Center,AL35812(205) 544-0627

Cal RybakBall Aerospace

P.O. Box 1062

Boulder, CO 80306

(303) 939-5462

Jean SabbaghPSN/CNR

Viale Regina Margherlta 202

00198 Roma, Italy39-6-4767247

Lester Sackett

Charles Stark Draper Laboratory, Inc.

Mail Stop 4-C

555 Technology Square

Cambridge, MA 02139

(617) 258-2283

Chikatoshi Satoh

Nihon University

7-24-I, Narashinodai

Funbashi-city, Chiba-pref

274 Japan81-47-466-1111

Claire Savaglio

University of Michigan

Aerospace Engineering

3217 Harvard

Royal Oak, MI 48072(313) 288-5668

Ralph Schinnerer

Ford Aerospace

10440 State Highway 83

Colorado Springs, CO 80908

(303) 594-1367

355

Silvano Sgubini

Universita Di Roma

Dipartimento Aerospaziale

Via Salaria 851

00100 Roma, Italy

39-6-8120529

Stanley D. Shawhan

NASA Headquarters

Branch Chief, Space Plasma Physics

Mail Code EES

Washington, DC 20546

(202) 453-1676

Anna Sinopoli

Universita di Venice

Assistant Professor

S. Croce 191

30125 Venice, Italy

39-49-8071033

Emil Soderberg

Analysis & Technology

258 Bank Stret

New London, CT 06320

(203) 444-0827

Carl I. Soderland

NASA Johnson Space Center

Code EH24

Houston, TX 77058

(713) 483-4405

Thomas H. Stengle

NASA Goddard Space Flight Center

Mail Code 554.1

Greenbelt, MD 20771

(301) 286-6354

Stephen W. Strom

TRW Defense Systems Group

PO Box 58327

Houston, TX 77258

(713) 333-3133

Thomas D. Stuart

NASA Headquarters

Office of Space Flight

Mail Code MST

Washington, DC 20546

(202) 453-1562

356

Daniel Swanson

Princeton University

MAE Department

Eng. Quadrangle

Princeton, NJ 08544

(609) 452-6083

Frank R. Swenson

Tri-State University

Professor, Mechanical Engineering

Angola, IN 46703-0307

(219) 665-3141, ext. 256

Giorgio Tacconi

University of Genova

Dipartimento Dibe Universlta Genova

Via dell_Opera Pie II A

16145 Genova, Italy

39-10-311811

John M. Van Pelt

Martin Marietta Denver Aerospace

Mail Stop $8071PO Box 179

Denver, CO 80201

(303) 977-4888

Floriano Venditti

Aeritalla

Space Systems Group

Dynamic Systems DirectorCorso Marche 41

10146 Torino, Italy

39-11-3332752

Serglo Vetrella

Unlversita di Napoli

Istituto Gasdinamica

P.le Tecchio 80

08125 Napoli, Italy

39-81-7682159

Andy Von FlotowMassachusetts Institute of Technology

Department of Aeronautics and Astronautics

7755 Massachusetts Avenue

Cambridge, MA 02139

(617) 253-4865

357

RogerWackerMcDonnellDouglasAstronautics Co.Mall CodeT5K16055SpaceCenterBlvd.Houston,TX 77062(713)280-1772

Justin WallsUniversity of Alabamaat HuntsvilleHuntsville, AL 35899(205)895-6126

DouglassWheeluckUniversity of Alabamaat HuntsvilleHuntsville, AL 35899(205)895-6126

RogerWilllamsonStanfordUniversitySTARLab/SERADurandBldg., Room331Stanford,CA 94305-4055(415) 723-9774

HenryWolfAnalytical MechanicsAssociates, Inc.17ResearchDriveHampton,VA 23666-1398(804)865-0944

HolgerWolffMesserschmittBoelkowBlohnGMBHPostfach8011698012OttobrunnMuenchen,WestGermany49-84-60007762

William WoodisMartinMarietta DenverAerospaceMail StopS-8073POBox179Denver,CO 80201(303) 977-6452

Italo ZoninEmbry-RlddleAeronauticalUniversity327Wilder Blvd.Unit 6-104DaytonaBeach,FL 32014(904) 252-4976

358

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CP-2458

4. Title and Subtitle

Tether Dynamics Simulation

7. Author(s)

9. Peforming Organization Nameand Address

NASA Office of Space Flight, Advanced Programs

Washington, DC 20546

and

George C. Marshall Space Flight Center

Marshall Space Flight Center, Alabama 35812

12. SponsoringAgencyNameandAddress

National Aeronautics and Space Administration

Washington, DC 20546

5. Report Date

February 1987

6. Performing Organization Code

MTS

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Conference Publication

14. Sponsoring Agency Code

15. Supplementary Notes

The proceedings of the International Conference on Tethers in Space,

published under the auspices of the American Astronautical Society under

the title Volume 62, Advances in the Astronautical Sciences; Tethers in

Space, are available from Univelt, Inc., P.O. Box 28130, San Diego, CA 92128.

16. Abstract

The proceedings of the first Tether Dynamics Simulation Workshop are

presented. The workshop was held at the Hyatt Regency Crystal City Hotel

in Arlington, Virginia, September 16, 1986, in conjunction with the

International Conference on Tethers in Space. The objective of this work-

shop was to provide a forum for the discussion of the structure and status

of existing computer programs which are used to simulate the dynamics of

a variety of tether applications in space. A major topic of the workshop

was the purpose of having different simulation models and the process of

validating them. Guidance on future work in these areas was obtained

from a panel discussion; the panel was composed of resource and technical

managers and dynamic analysts in the tether field. The conclusions of

this panel are also presented in this document.

17. Key Words(SuggestedbyAuthor(s)) electrodynamic

tethers space shuttle tethers

dynamics space station

computer simulation

tethered satellite system

tether dynamics

18. Distribution Statement

Unclassified - Unlimited

Subject Category 37

19. Security Classif.(ofthisrepoR)Unclassified

20. Security Ciassif. (of this page)

Unclassified

21. No. of pages

368

22. Price

At6

NASA-Langley, 1987