143
Alejandro H. Morales UMass Amherst April 25, 2020 Discrete Math Day of the NorthEast Volumes and triangulations of flow polytopes of graphs a +1 b +1 based on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available at people.math.umass.edu/ahmorales/talks/DMD.pdf

April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Alejandro H. MoralesUMass Amherst

April 25, 2020Discrete Math Day of the NorthEast

Volumes and triangulations of flow polytopes of graphs

a+ 1 b+ 1

based on joint work with Karola Mészáros (Cornell)and Jessica Striker (NDSU)

slides available at people.math.umass.edu/∼ahmorales/talks/DMD.pdf

Page 2: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of graphs

graph G flow polytope FG poset volume

kn+1

?

1

n!

Catn := 1n+1

(2nn

)Euler numbers En

# standard tableauxstaircase shape

?

Page 3: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Integral polytopesP a polytope in RN with integral vertices:

P is the convex hull of finitely many vertices v in ZN

P is the intersection of finitely many half spacesOR

Page 4: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Integral polytopesP a polytope in RN with integral vertices:

P is the convex hull of finitely many vertices v in ZN

P is the intersection of finitely many half spacesOR

d-cube: convex hull of {0, 1}d

Cd ={

(x1, . . . , xd) 0 ≤ xi ≤ 1, i = 1, . . . , d}

Page 5: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of polytopes

Example:

standard simplex ∆n = {(x1, . . . , xn) |∑xi ≤ 1, xi ≥ 0}

∆2

euclidean volume

(normalized) volume 1

∆1 ∆3

1 12

16

normalized volume of P := dim(P )! · (euclidean volume of P )

Page 6: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of polytopes

Example:

normalized volume of P := dim(P )! · (euclidean volume of P )

euclidean volume 1

(normalized) volume d!

d-cube: convex hull of {0, 1}d

Cd ={

(x1, . . . , xd) 0 ≤ xi ≤ 1, i = 1, . . . , d}

Page 7: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of polytopes

Example:

normalized volume of P := dim(P )! · (euclidean volume of P )

euclidean volume 1

(normalized) volume d!

d-cube: convex hull of {0, 1}d

Cd ={

(x1, . . . , xd) 0 ≤ xi ≤ 1, i = 1, . . . , d}

Page 8: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points of polytopes• #P ∩ ZN number of lattice points (discrete volume)

Example:

standard simplex ∆d = {(x1, . . . , xd) |∑d

i=1 xi ≤ 1, xi ≥ 0}

∆2

Page 9: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points of polytopes• #P ∩ ZN number of lattice points (discrete volume)

LP (t) := #(tP ∩ ZN ) counts lattice points in t-dilation of P .

Example:

standard simplex ∆d = {(x1, . . . , xd) |∑d

i=1 xi ≤ 1, xi ≥ 0}

∆22

Page 10: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points of polytopes• #P ∩ ZN number of lattice points (discrete volume)

LP (t) := #(tP ∩ ZN ) counts lattice points in t-dilation of P .

Example:

standard simplex ∆d = {(x1, . . . , xd) |∑d

i=1 xi ≤ 1, xi ≥ 0}

∆22

standard simplex t∆d = {(x1, . . . , xd) |∑d

i=1 xi ≤ t, xi ≥ 0}

Page 11: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points of polytopes• #P ∩ ZN number of lattice points (discrete volume)

LP (t) := #(tP ∩ ZN ) counts lattice points in t-dilation of P .

Example:

standard simplex ∆d = {(x1, . . . , xd) |∑d

i=1 xi ≤ 1, xi ≥ 0}

∆22

standard simplex t∆d = {(x1, . . . , xd) |∑d

i=1 xi ≤ t, xi ≥ 0}

#(t∆d ∩ Zd) =(t+dd

)

Page 12: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopesG graph n+ 1 vertices |E| edges

a = (a1, a2, . . . , an,−∑ai), ai ∈ Zn

≥0

FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

Page 13: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopesG graph n+ 1 vertices |E| edges

G

a = (a1, a2, . . . , an,−∑ai), ai ∈ Zn

≥0

FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

a

a1 a2 a3 −a1 − a2 − a3

x14

x34

x13

x12 x23

x24x23 + x24 − x12 =a2

x12 + x13 + x14 =a1

x34 − x13 − x23 =a3

Example

Page 14: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopesG graph n+ 1 vertices |E| edges

G

a = (a1, a2, . . . , an,−∑ai), ai ∈ Zn

≥0

FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

a

a1 a2 a3 −a1 − a2 − a3

x14

x34

x13

x12 x23

x24x23 + x24 − x12 =a2

x12 + x13 + x14 =a1

x34 − x13 − x23 =a3

Example

dimension of FG(a) is |E| − n

Page 15: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopesG graph n+ 1 vertices m edges

a = (1, 0, . . . , 0,−1)

FG(1, 0, . . . , 0,−1) is flows on G: netflow first vertex is 1,netflow last vertex −1, netflow other vertices is 0.

Page 16: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopesG graph n+ 1 vertices m edges

G

a = (1, 0, . . . , 0,−1)

FG(1, 0, . . . , 0,−1) is flows on G: netflow first vertex is 1,netflow last vertex −1, netflow other vertices is 0.

a

1 0 0 −1

x14

x34

x13

x12 x23

x24x23 + x24 − x12 = 0

x12 + x13 + x14 = 1

x34 − x13 − x23 = 0

Example

−x14 − x24 − x34 =−1

Page 17: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Vertices of flow polytopes• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 ton+ 1 called routes.

1 −1

Page 18: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Vertices of flow polytopes• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 ton+ 1 called routes.

1 −11 1 1

Page 19: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Vertices of flow polytopes• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 ton+ 1 called routes.

1 −1

Page 20: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Vertices of flow polytopes• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 ton+ 1 called routes.

1 −1

Page 21: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Vertices of flow polytopes• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 ton+ 1 called routes.

1 −1

Page 22: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Vertices of flow polytopes• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 ton+ 1 called routes.

1 −1

13

23

13

13

13

0

Page 23: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Examples of flow polytopesFG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

ExampleG

1

x4

x1

x2

x3

x1 + x2 + x3 + x4 = 1

FG(1,−1) is a simplex−1

Page 24: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Examples flow polytopesFG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

ExampleG

1

FG(1, 0− 1) is a product of simplicies ∆a ×∆b

−10

...

a+ 1 ...

b+ 1

Page 25: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Examples flow polytopesFG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

ExampleG

1

FG(1, 0− 1) is a product of simplicies ∆a ×∆b

−10

...

a+ 1 ...

b+ 1

∆2 ×∆1

G

1 0 −1

Page 26: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Examples flow polytopesFG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

ExampleG

1

FG(1, 0− 1) is a product of simplicies ∆a ×∆b

−10

...

a+ 1 ...

b+ 1

G

1 −10 0∆1 ×∆1 ×∆1

Page 27: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes are "transcendental" tooflow polytopes have been related to:

• Jeffrey–Kirwan residues (Baldoni–Vergne 2009)• cluster algebras (Danilov–Karzanov–Koshevoy 2012)

• Toric geometry (Hille 2003)

Page 28: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes are "transcendental" tooflow polytopes have been related to:

• generalized permutahedra (Mészáros-St. Dizier 2017)

• Schubert polynomials (Escobar-Mészáros 2018)(Fink-Mészáros-St. Dizier 2018)

• generalized permutahedra (Mészáros-St. Dizier 2017)• generalized permutahedra (Mészáros-St. Dizier 2017)• generalized permutahedra (Mészáros-St. Dizier 2017)

• diagonal harmonics (Mészáros-M-Rhoades 17, Liu-Mészáros-M 18)

1 1 1 −3

• Gelfand-Tsetlin polytopes (Liu-Mészáros-St. Dizier 2019)

Page 29: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes are "transcendental" tooflow polytopes have been related to:

• Brändén-Huh’s Lorentzian polynomials (Mészáros-Setiabatra 2019)

• rational Catalan combinatorics(B-G-H-H-K-M-Y 2018, Yip 2019, Jang-Kim 2019)

• Alternating sign matrices (Mészáros-M-Striker 2019)

• juggling sequences (Harris-Insko-Omar 2015, B-H-H-M-S 2020)

Page 30: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of planar graphsTheorem (Postnikov 13, Mészáros-M-Striker 19)If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent toan order polytope of a certain poset P .

Page 31: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of planar graphsTheorem (Postnikov 13, Mészáros-M-Striker 19)If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent toan order polytope of a certain poset P .

Page 32: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of planar graphsTheorem (Postnikov 13, Mészáros-M-Striker 19)If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent toan order polytope of a certain poset P .

Page 33: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of planar graphsTheorem (Postnikov 13, Mészáros-M-Striker 19)If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent toan order polytope of a certain poset P .

Page 34: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of planar graphsTheorem (Postnikov 13, Mészáros-M-Striker 19)If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent toan order polytope of a certain poset P .

Corollary If G is a planar graph thenvolumeFG(1, 0, . . . , 0,−1) = # linear extensions P .

By Stanley’s theory of order polytopes:

Page 35: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of planar graphsTheorem (Postnikov 13, Mészáros-M-Striker 19)If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent toan order polytope of a certain poset P .

Corollary If G is a planar graph thenvolumeFG(1, 0, . . . , 0,−1) = # linear extensions P .

A linear extension of a poset P is an ordering of the posetelements compatible with the partial order.

By Stanley’s theory of order polytopes:

Page 36: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of planar graphsTheorem (Postnikov 13, Mészáros-M-Striker 19)If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent toan order polytope of a certain poset P .

Corollary If G is a planar graph thenvolumeFG(1, 0, . . . , 0,−1) = # linear extensions P .

• Fk7(1, 0, 0, 0, 0, 0,−1) is not an order polytope.(Behrend-M-Panova 20+)

By Stanley’s theory of order polytopes:

Page 37: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of graphs

graph G flow polytope FG poset volume

kn+1

?

1

n!

Catn := 1n+1

(2nn

)Euler numbers En

# standard tableauxstaircase shape

?

Page 38: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Examples flow polytopesFG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

Example

a

1 0 0 −1

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 0, . . . , 0,−1)

Fkn+1(1, 0, . . . , 0,−1) is called the Chan-Robbins-Yuen (CRYn) polytope

has 2n−1 vertices, dimension(n2

)

Page 39: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of the CRYn polytope

vn := volume(CRYn)

2 3 4 5 6 7n

vn 1 1 2 10 140 5880

Page 40: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of the CRYn polytope

vn := volume(CRYn)

2 3 4 5 6 7n

vn 1 1 2 10 140 5880

vnvn−1

1 2 5 14 42

Page 41: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of the CRYn polytope

vn := volume(CRYn)

2 3 4 5 6 7n

vn 1 1 2 10 140 5880

vnvn−1

1 2 5 14 42

• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1n+1

(2nn

)are the Catalan numbers

Page 42: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of the CRYn polytope• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1n+1

(2nn

)Catalan numbers (1, 1, 2, 5, 14, 42, . . .) count more than 200different objects

Page 43: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of the CRYn polytope• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1n+1

(2nn

)Catalan numbers (1, 1, 2, 5, 14, 42, . . .) count more than 200different objects

Page 44: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of the CRYn polytope• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1n+1

(2nn

)Catalan numbers (1, 1, 2, 5, 14, 42, . . .) count more than 200different objects

Page 45: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Volume of the CRYn polytope• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1n+1

(2nn

)Catalan numbers (1, 1, 2, 5, 14, 42, . . .) count more than 200different objects

. . . however, there is no combinatorial proof of formula for vn

Page 46: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of graphs

graph G flow polytope FG poset volume

kn+1

1

n!

Catn := 1n+1

(2nn

)Euler numbers En

# standard tableauxstaircase shape

Cat1Cat2 · · ·Catn−2Cat1Cat2 · · ·Catn−2?no poset

Page 47: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points: Kostant’s partition functionlattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

Kkn+1(a) is called Kostant’s partition function.

Page 48: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points: Kostant’s partition functionlattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectorsei − ej for 1 ≤ i < j ≤ n+ 1

Kkn+1(a) =

Kkn+1(a) is called Kostant’s partition function.

Page 49: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points: Kostant’s partition functionlattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectorsei − ej for 1 ≤ i < j ≤ n+ 1

Kkn+1(a) =

1 0 −1

0

1 11 0 −1

1

0 0

(1, 0,−1) = e1 − e3 (1, 0,−1) = (e1 − e2) + (e2 − e3)

Kkn+1(a) is called Kostant’s partition function.

Page 50: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points: Kostant’s partition functionlattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectorsei − ej for 1 ≤ i < j ≤ n+ 1

Kkn+1(a) =

Kkn+1(a) is called Kostant’s partition function.

Generating function for Kkn+1(a):

∑a

KG(a)xa =∏

1≤i<j≤n+1

(1− xix−1j )−1.

Page 51: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points: Kostant’s partition functionlattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectorsei − ej for 1 ≤ i < j ≤ n+ 1

Kkn+1(a) =

1 0 −1

0

1 11 0 −1

1

0 0

(1, 0,−1) = e1 − e3 (1, 0,−1) = (e1 − e2) + (e2 − e3)

Formulas for weight multiplicities and tensor product multiplicities oftype A semisimple Lie algebras in terms of Kkn+1

(a).

Kkn+1(a) is called Kostant’s partition function.

Page 52: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Lattice points: Kostant’s partition functionlattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectorsei − ej for 1 ≤ i < j ≤ n+ 1

Kkn+1(a) =

Kkn+1(a) is called Kostant’s partition function.

". . . he said to me that in any good mathematical theory there should be atleast one “transcendental” element . . . should account for many of the subtletiesof the theory. In the Cartan-Weyl theory, he said that my partition function wasthe transcendental element."Bertram Kostant on profile of I. M. Gelfand (Notices of the AMS, Jan. 2013)

Page 53: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

where ik is indeg(k)− 1

let KG(a) := #(FG(a) ∩ Zm)

Page 54: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

Example

where ik is indeg(k)− 1

1 −1

let KG(a) := #(FG(a) ∩ Zm)

Page 55: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

Example

where ik is indeg(k)− 1

1 −1

let KG(a) := #(FG(a) ∩ Zm)

Page 56: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

Example

where ik is indeg(k)− 1

1 −1

0 −21 1 0 −21 11 2

1

volume = 2.

1

let KG(a) := #(FG(a) ∩ Zm)

Page 57: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

where ik is indeg(k)− 1

Corollaryvolume(CRY n) = Kkn+1

(0, 0, 1, 2, . . . , n− 2,−(n−1

2

))

let KG(a) := #(FG(a) ∩ Zm)

Page 58: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

where ik is indeg(k)− 1

Corollary

Zeilberger showed volume is Cat1 · · ·Catn−2 using thisinterpretation and the Morris constant term identity:

volume(CRY n) = Kkn+1(0, 0, 1, 2, . . . , n− 2,−

(n−1

2

))

let KG(a) := #(FG(a) ∩ Zm)

Page 59: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

where ik is indeg(k)− 1

Corollary

Zeilberger showed volume is Cat1 · · ·Catn−2 using thisinterpretation and the Morris constant term identity:

constant term ofn∏

i=1

x−a+1i (1− xi)−b

∏1≤i<j≤n

(xi − xj)−c =

=n−1∏j=0

Γ(1 + c/2)Γ(a+ b− 1 + (n+ j − 1)c/2)

Γ(1 + (j + 1)c/2)Γ(a+ jc/2)Γ(b+ jc/2).

volume(CRY n) = Kkn+1(0, 0, 1, 2, . . . , n− 2,−

(n−1

2

))

let KG(a) := #(FG(a) ∩ Zm)

Page 60: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

where ik is indeg(k)− 1

Corollary

Zeilberger showed volume is Cat1 · · ·Catn−2 using thisinterpretation and the Morris constant term identity:

constant term ofn∏

i=1

x−a+1i (1− xi)−b

∏1≤i<j≤n

(xi − xj)−c =

=n−1∏j=0

Γ(1 + c/2)Γ(a+ b− 1 + (n+ j − 1)c/2)

Γ(1 + (j + 1)c/2)Γ(a+ jc/2)Γ(b+ jc/2).

volume(CRY n) = Kkn+1(0, 0, 1, 2, . . . , n− 2,−

(n−1

2

))

at a = b = c = 1 gives Cat1 · · ·Catn−2.

let KG(a) := #(FG(a) ∩ Zm)

Page 61: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Zeilberger’s entire paper

Page 62: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of graphs

graph G flow polytope FG poset volume

kn+1

1

n!

Catn := 1n+1

(2nn

)Euler numbers En

# standard tableauxstaircase shape

Cat1Cat2 · · ·Catn−2Cat1Cat2 · · ·Catn−2?no poset

Page 63: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Flow polytopes of graphs

graph G flow polytope FG poset volume

kn+1

1

n!

Catn := 1n+1

(2nn

)Euler numbers En

# standard tableauxstaircase shape

Cat1Cat2 · · ·Catn−2Cat1Cat2 · · ·Catn−2?no poset ?

Page 64: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

Page 65: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

Example

1 −1

Page 66: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

Example

1 −1

0 −21 1 0 −21 11 2

11

volume = KG(0, 1, 1,−2) = 2.

Page 67: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

Example

1 −1

0 −21 1 0 −21 11 2

11

Postnikov–Stanley gave a recursive triangulation of FG withsimplices indexed by integer flows in a similar flow polytope.

volume = KG(0, 1, 1,−2) = 2.

Page 68: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

Example

1 −1

0 −21 1 0 −21 11 2

11

Postnikov–Stanley gave a recursive triangulation of FG withsimplices indexed by integer flows in a similar flow polytope.

volume = KG(0, 1, 1,−2) = 2.

G0 G1 G2

a i b a i ba i b ore f fe

e+ f e+ f

Page 69: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

Example

1 −1

0 −21 1 0 −21 11 2

11

Postnikov–Stanley gave a recursive triangulation of FG withsimplices indexed by integer flows in a similar flow polytope.Question 1:

volume = KG(0, 1, 1,−2) = 2.

Can we describe this triangulation explicitly? i.e. what simplexcorresponds to each integer flow?

Page 70: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).

Page 71: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).

ProofBoth sides are the volume of FG(10 · · · 0− 1) ≡ FGr (10 · · · 0− 1).

Page 72: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).Example:

1 −1

0 −21 1

0 −21 1

1 2

11

G

G

volume = 2

Page 73: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).Example:

1 −1

0 −21 1

0 −21 1

1 2

11

Gr

1 −1

G

G

volume = 2

Page 74: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).Example:

1 −1

0 −21 1

0 −21 1

1 2

11

1−10 10

−10 101

Gr

1 −1

GExample:

G Gr

volume = 2

Page 75: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

• two distinct flow polytopes have the same number oflattice points!

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).

Page 76: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

• two distinct flow polytopes have the same number oflattice points!

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).

0 1 2 110 −2−3

G Gr

Example

Page 77: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Fundamental theorem + symmetryTheorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

• two distinct flow polytopes have the same number oflattice points!

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).

a+ 1 b+ 1...

...a −a

G a+ 1b+ 1

b

...... −b

Gr

0 0

Example

(a+bb

)= #(a∆b ∩ Zb) = #(b∆a ∩ Za) =

(a+ba

)

Page 78: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik, i′k is indegree −1 vertex k in G and Gr.

Question 2:Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−

∑k ik)

and lattice points of FGr (0, i′2, i′3, . . . ,−

∑k i′k)?

• KG(a) := #(FG(a) ∩ Zm)

Page 79: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Summary

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).

Question 1:

Question 2:Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−

∑k ik)

and lattice points of FGr (0, i′2, i′3, . . . ,−

∑k i′k)?

Can we describe this triangulation explicitly? i.e. what simplexcorresponds to each integer flow?

• let KG(a) := #(FG(a) ∩ Zm)

Page 80: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

Page 81: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths• for a route P with vertex v, Pv and vP are the subpaths ending and

starting at v.

setup

Page 82: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoingedges on each vertex 2, 3, . . . , n.

Example:

• for a route P with vertex v, Pv and vP are the subpaths ending andstarting at v.

setup

Page 83: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoingedges on each vertex 2, 3, . . . , n.

Example:

• for a route P with vertex v, Pv and vP are the subpaths ending andstarting at v.

setup

Example: two framings of G

Page 84: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoingedges on each vertex 2, 3, . . . , n.

Example:

• routes P and Q are coherent if at shared vertex v, Pv,Qv havesame relative order as vP, vQ in the framing.

• for a route P with vertex v, Pv and vP are the subpaths ending andstarting at v.

setup

Page 85: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoingedges on each vertex 2, 3, . . . , n.

Example:

• routes P and Q are coherent if at shared vertex v, Pv,Qv havesame relative order as vP, vQ in the framing.

• for a route P with vertex v, Pv and vP are the subpaths ending andstarting at v.

setup

P

Q

X

Page 86: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoingedges on each vertex 2, 3, . . . , n.

Example:

• routes P and Q are coherent if at shared vertex v, Pv,Qv havesame relative order as vP, vQ in the framing.

• for a route P with vertex v, Pv and vP are the subpaths ending andstarting at v.

setup

P

Q

×

Page 87: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoingedges on each vertex 2, 3, . . . , n.

Example:

• routes P and Q are coherent if at shared vertex v, Pv,Qv havesame relative order as vP, vQ in the framing.

• for a route P with vertex v, Pv and vP are the subpaths ending andstarting at v.

setup

Example: two framings of G

P

Q

× P

Q

X

Page 88: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoingedges on each vertex 2, 3, . . . , n.

Example:

• routes P and Q are coherent if at shared vertex v, Pv,Qv havesame relative order as vP, vQ in the framing.

• for a route P with vertex v, Pv and vP are the subpaths ending andstarting at v.

setup

• a clique C is a maximal collection of pairwise coherent routes

Page 89: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

Theorem (Danilov-Karzanov-Koshevoy 12)Given a framed graph G, the simplices {∆C} whose verticesare routes in cliques C give a unimodular triangulation of FG.

Page 90: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

DKK triangulation of flow polytopesIn 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

Theorem (Danilov-Karzanov-Koshevoy 12)Given a framed graph G, the simplices {∆C} whose verticesare routes in cliques C give a unimodular triangulation of FG.

Example: FG

∆C

∆C′

Page 91: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Summary

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

Question 1:Can we describe the Postnikov-Stanley triangulation explicitly? i.e. whatsimplex corresponds to each integer flow?

let KG(a) := #(FG(a) ∩ Zm)

Page 92: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulationsQuestion 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

Page 93: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulationsQuestion 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

Page 94: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

Page 95: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 1

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

Page 96: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 1

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

0

Page 97: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 1

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

0

Page 98: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 1

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

0

Page 99: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 1

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

0

Page 100: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 1

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

1

Page 101: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 1

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

2

Page 102: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

Example:

0 −21 11 2

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

00

0

0

Page 103: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Relation between triangulations

Theorem (Mészaros-M-Striker 19)Given a framing, the DKK triangulation is a PS triangulation andthere is a bijection between the cliques and the integer flows inFG(0, i2, i3, . . .): Φ : C 7→ fl.

fl((u, v)) = # times (u, v) appears in {Pv | P ∈ C} −1

Example:

0 −21 1

1

1

Question 1:Can we describe the Postnikov-Stanley (PS) triangulation explicitly? i.e.what simplex corresponds to each integer flow?

• for a route P with vertex v, Pv is the subpaths ending at v.

00

0

0

Page 104: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Summary

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑k ik),

CorollaryKG(0, i2, i3, . . . ,−

∑k ik) = KGr (0, i′2, i

′3, . . . ,−

∑k i′k)

Gr reverse of G, ik (i′k) is indegree −1 vertex k in G (Gr).

Question 2:Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−

∑k ik)

and lattice points of FGr (0, i′2, i′3, . . . ,−

∑k i′k)?

let KG(a) := #(FG(a) ∩ Zm)

Page 105: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

Q2: Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−∑

k ik)and lattice points of FGr (0, i′2, i

′3, . . . ,−

∑k i′k)?

• for a route P with vertex v, Pv and vP are subpaths ending andstarting at v.

Page 106: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

Q2: Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−∑

k ik)and lattice points of FGr (0, i′2, i

′3, . . . ,−

∑k i′k)?

fl((u, v)) =# times (u, v) appears in {Pv | P ∈ C} −1Φ : C 7→ fl,

• for a route P with vertex v, Pv and vP are subpaths ending andstarting at v.

Page 107: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

Q2: Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−∑

k ik)and lattice points of FGr (0, i′2, i

′3, . . . ,−

∑k i′k)?

fl((u, v)) =# times (u, v) appears in {Pv | P ∈ C} −1Φ : C 7→ fl,

Φr : C 7→ fl′,fl′((u, v)) = # times (v, u) appears in {vP | P ∈ C} −1

• for a route P with vertex v, Pv and vP are subpaths ending andstarting at v.

Page 108: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

Q2: Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−∑

k ik)and lattice points of FGr (0, i′2, i

′3, . . . ,−

∑k i′k)?

Theorem (M 2020+)

fl((u, v)) =# times (u, v) appears in {Pv | P ∈ C} −1Φ : C 7→ fl,

Φr : C 7→ fl′,fl′((u, v)) = # times (v, u) appears in {vP | P ∈ C} −1

Φr ◦ Φ−1 is a desired bijection.

• for a route P with vertex v, Pv and vP are subpaths ending andstarting at v.

Page 109: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

Q2: Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−∑

k ik)and lattice points of FGr (0, i′2, i

′3, . . . ,−

∑k i′k)?

Theorem (M 2020+)

fl((u, v)) =# times (u, v) appears in {Pv | P ∈ C} −1Φ : C 7→ fl,

Φr : C 7→ fl′,fl′((u, v)) = # times (v, u) appears in {vP | P ∈ C} −1

Φr ◦ Φ−1 is a desired bijection.

Example:

Φ

0 −21 11 2

• for a route P with vertex v, Pv and vP are subpaths ending andstarting at v.

00

0 0

Page 110: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

Q2: Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−∑

k ik)and lattice points of FGr (0, i′2, i

′3, . . . ,−

∑k i′k)?

Theorem (M 2020+)

fl((u, v)) =# times (u, v) appears in {Pv | P ∈ C} −1Φ : C 7→ fl,

Φr : C 7→ fl′,fl′((u, v)) = # times (v, u) appears in {vP | P ∈ C} −1

Φr ◦ Φ−1 is a desired bijection.

Example:

−10 10

1ΦrΦ

0 −21 11 2

mirror

• for a route P with vertex v, Pv and vP are subpaths ending andstarting at v.

00

0 0 0 0

0 0 0

Page 111: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Bijection between lattice points KG and KGr

Q2: Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−∑

k ik)and lattice points of FGr (0, i′2, i

′3, . . . ,−

∑k i′k)?

Theorem (M 2020+)

fl((u, v)) =# times (u, v) appears in {Pv | P ∈ C} −1Φ : C 7→ fl,

Φr : C 7→ fl′,fl′((u, v)) = # times (v, u) appears in {vP | P ∈ C} −1

Φr ◦ Φ−1 is a desired bijection.

Example:

ΦrΦ

0 −21 1

1

1

−10 10

• for a route P with vertex v, Pv and vP are subpaths ending andstarting at v.

000

0 0 0

0 0 10

mirror

Page 112: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Summary• FG(a) flow polytope of a graph G netflow a

• volumes and lattice points important in representation theory

Page 113: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Summary

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik).

• let KG(a) := #(FG(a) ∩ Zm)

• FG(a) flow polytope of a graph G netflow a

• volumes and lattice points important in representation theory

• if G is planar then volumeFG(1, 0, . . . , 0,−1) is thenumber of linear extensions of a poset P .

• let KG(a) := #(FG(a) ∩ Zm)• let KG(a) := #(FG(a) ∩ Zm)kn+1

Page 114: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Summary

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−∑

k ik).

• We give an explicit bijection between the integer flows ofFG(0, i2, i3, . . .) and the simplices of a DKK triangulation.

• let KG(a) := #(FG(a) ∩ Zm)

• FG(a) flow polytope of a graph G netflow a

• volumes and lattice points important in representation theory

• if G is planar then volumeFG(1, 0, . . . , 0,−1) is thenumber of linear extensions of a poset P .

• let KG(a) := #(FG(a) ∩ Zm)• let KG(a) := #(FG(a) ∩ Zm)

• The bijection depends on a framing of G and has interestingsymmetry properties.

kn+1

Page 115: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Gracias

Panta Rhei = everything flows (Heraclitus)

• (with K. Mészáros, J. Striker) On flow polytopes, orderpolytopes, and certain faces of the alternating sign matrixpolytope, arxiv:1510.03357v2, Discrete andComputational Geometry, Volume 62 (2019) 128–163

• Triangulations of flow polytopes, in preparation

Page 116: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

p

Page 117: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

Page 118: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

Page 119: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

• encode choices with a bipartite noncrossing tree

Page 120: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

Example:

• encode choices with a bipartite noncrossing tree

e

e′

f

f ′

e

e′f

f ′

Page 121: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

Example:

• encode choices with a bipartite noncrossing tree

e

e′

f

f ′

e

e′f

f ′

e

e′

f

f ′

Page 122: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

Example:

• encode choices with a bipartite noncrossing tree

e

e′

f

f ′

e

e′f

f ′

e

e′

f

f ′

e

e′

f

f ′

Page 123: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

Example:

• encode choices with a bipartite noncrossing tree

e

e′

f

f ′

e

e′f

f ′

e

e′

f

f ′

Page 124: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

• encode choices with a bipartite noncrossing tree

e

e′f

f ′

e

e′

f

f ′

Example:

Page 125: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

• encode choices with a bipartite noncrossing tree

e

e′f

f ′

e

e′

f

f ′

Example:

Page 126: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

• encode choices with a bipartite noncrossing tree

e

e′f

f ′

e

e′

f

f ′

Example:

• bookkeep the noncrossing trees as an integer flow

Page 127: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

• encode choices with a bipartite noncrossing tree• bookkeep the noncrossing trees as an integer flow

e

e′

f

f ′

Example:

0 −21 11 2

Page 128: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Postnikov-Stanley triangulation of flow polytopesG0 G1 G2

a i b a i ba i bor

p q q−pp

p−qq

q ≥ pq < p

FG0≡ FG1

∪ FG2

p

Subdivision Lemma

and the intersection FG1∩ FG2

is lower dimensional.

• fix a framing of G, for each vertex i = 2, . . . , n iteratesubdivision lemma until you get rid of vertex i.

• encode choices with a bipartite noncrossing tree• bookkeep the noncrossing trees as an integer flow

e

e′

f

f ′

Example:

0 −21 1

1

1

Page 129: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Proof sketch: correspondence

G0 G1 G2

a i b a i ba i bor

e f fee+ f e+ f

In subdivision view new edges as sum/path of original edges

0 −21 1

1

1

Page 130: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Proof sketch: correspondence

G0 G1 G2

a i b a i ba i bor

e f fee+ f e+ f

In subdivision view new edges as sum/path of original edges

Example:

0 −21 1

1

1

e

e′f

f ′

e

e′

f

f ′k

e+ f

e′ + f

e′ + f ′k

g g

Page 131: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Proof sketch: correspondence

G0 G1 G2

a i b a i ba i bor

e f fee+ f e+ f

In subdivision view new edges as sum/path of original edges

Example:

0 −21 1

1

1

e

e′f

f ′

e

e′

f

f ′

g

e+ f ′

e′ + f ′k

k

e+ f

e′ + f

e′ + f ′

e+ f

e+ f ′ + k

e′ + f ′ + kk

g g g + k

Page 132: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Proof sketch: correspondence

G0 G1 G2

a i b a i ba i bor

e f fee+ f e+ f

In subdivision view new edges as sum/path of original edges

Example:

0 −21 1

1

1

e

e′f

f ′

e

e′

f

f ′

g

e+ f ′

e′ + f ′k

k

e+ f

e′ + f

e′ + f ′

e+ f

e+ f ′ + k

e′ + f ′ + kk

g g g + k

Page 133: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Connection to diagonal harmonics

a

1 1 1 −3

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 1, . . . , 1,−n)

Page 134: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Connection to diagonal harmonics

a

1 1 1 −3

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 1, . . . , 1,−n)

Fkn+1(1, 1, . . . , 1,−n) is called the Tesler polytope

Page 135: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Connection to diagonal harmonics

a

1 1 1 −3

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 1, . . . , 1,−n)

Fkn+1(1, 1, . . . , 1,−n) is called the Tesler polytope

has n! vertices, dimension(n2

)

Page 136: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Connection to diagonal harmonics

a

1 1 1 −3

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 1, . . . , 1,−n)

Fkn+1(1, 1, . . . , 1,−n) is called the Tesler polytope

has n! vertices, dimension(n2

)• a weighted sum over lattice points gives Hilbert series of

the space of diagonal harmonics (Haglund 2011)

Page 137: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Connection to diagonal harmonics

a

1 1 1 −3

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 1, . . . , 1,−n)

Fkn+1(1, 1, . . . , 1,−n) is called the Tesler polytope

has n! vertices, dimension(n2

)• a weighted sum over lattice points gives Hilbert series of

the space of diagonal harmonics (Haglund 2011)

• Connection was suggested by François Bergeron

Page 138: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Connection to diagonal harmonics

a

1 1 1 −3

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 1, . . . , 1,−n)

Fkn+1(1, 1, . . . , 1,−n) is called the Tesler polytope

has n! vertices, dimension(n2

)

Theorem (Mészáros, M, Rhoades 2014)

volume equals (n2)!∏n−2

i=1 (2i+1)n−i−1· Cat1Cat2 · · ·Catn−1

• a weighted sum over lattice points gives Hilbert series ofthe space of diagonal harmonics (Haglund 2011)

Page 139: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Other results: Lidskii volume formula

volumeFG(a1, . . . , an) =∑j

(m− n

j1, . . . , jn

)aj11 · · · ajnn

×KG(j1 − o1, . . . , jn − on, 0)

ov = outdeg(v)− 1

Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08)graph G with m edges, n+ 1 vertices, ai ≥ 0

Page 140: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Other results: Lidskii volume formula

volumeFG(a1, . . . , an) =∑j

(m− n

j1, . . . , jn

)aj11 · · · ajnn

×KG(j1 − o1, . . . , jn − on, 0)

ov = outdeg(v)− 1

Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08)graph G with m edges, n+ 1 vertices, ai ≥ 0

• Original proof uses Jeffrey–Kirwan iterated residues

Page 141: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Other results: Lidskii volume formula

volumeFG(a1, . . . , an) =∑j

(m− n

j1, . . . , jn

)aj11 · · · ajnn

×KG(j1 − o1, . . . , jn − on, 0)

ov = outdeg(v)− 1

Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08)graph G with m edges, n+ 1 vertices, ai ≥ 0

• Original proof uses Jeffrey–Kirwan iterated residues

• give a proof using polytope subdivisions (Mészáros-M 2019)

Page 142: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Other results: Lidskii volume formula

volumeFG(a1, . . . , an) =∑j

(m− n

j1, . . . , jn

)aj11 · · · ajnn

×KG(j1 − o1, . . . , jn − on, 0)

ov = outdeg(v)− 1

Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08)graph G with m edges, n+ 1 vertices, ai ≥ 0

• Original proof uses Jeffrey–Kirwan iterated residues

• give a proof using polytope subdivisions (Mészáros-M 2019)

Corollary:KG(j1 − o1, . . . , jn − on, 0) are mixed volumes and so arelog-concave in j1, . . . , jn.

Page 143: April 25, 2020 Discrete Math Day of the NorthEastahmorales/talks/DMD.pdfbased on joint work with Karola Mészáros (Cornell) and Jessica Striker (NDSU) slides available atpeople.math.umass.edu

Other results: Lidskii volume formula

volumeFG(a1, . . . , an) =∑j

(m− n

j1, . . . , jn

)aj11 · · · ajnn

×KG(j1 − o1, . . . , jn − on, 0)

ov = outdeg(v)− 1

Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08)graph G with m edges, n+ 1 vertices, ai ≥ 0

• Original proof uses Jeffrey–Kirwan iterated residues

• give a proof using polytope subdivisions (Mészáros-M 2019)

• define combinatorial objects like parking functions that index thevolume of FG(a) (B-G-H-H-K-M-Y 2019)

1 1 −221

12 1

2

21