Author
others
View
0
Download
0
Embed Size (px)
Graz University of TechnologyInstitute of Applied Mechanics
Application of generalized Convolution Quadraturein Acoustics and Thermoelasticity
Martin Schanz
joint work with Relindis Rott and Stefan Sauter
Space-Time Methods for PDEsSpecial Semester on Computational Methods in Science and EngineeringRICAM, Linz, Austria, November 10, 2016
> www.mech.tugraz.at
Content
1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm
2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples
3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example
Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39
Content
1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm
2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples
3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example
Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39
Content
1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm
2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples
3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example
Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39
Content
1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm
2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples
3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example
Martin Schanz gCQM: Acoustics and Thermoelasticity 3 / 39
Convolution integral
Convolution integral with the Laplace transformed function f̂ (s)
y (t) = (f ∗g)(t) =(f̂ (∂t )g
)(t) =
t∫0
f (t− τ)g (τ)dτ
=1
2πi
∫C
f̂ (s)
t∫0
es(t−τ)g (τ)dτ
︸ ︷︷ ︸x (t,s)
ds
Integral is equivalent to solution of ODE
∂∂t
x (t,s) = sx (t,s) + g (t) with x (t = 0,s) = 0
Implicit Euler for ODE , [0,T ] = [0, t1, t2, . . . , tN ], variable time steps∆ti , i = 1,2, . . . ,N
xn (s) =xn−1 (s)1−∆tns
+∆tn
1−∆tnsgn =
n
∑j=1
∆tjgjn
∏k=j
11−∆tk s
Martin Schanz gCQM: Acoustics and Thermoelasticity 4 / 39
Convolution integral
Convolution integral with the Laplace transformed function f̂ (s)
y (t) = (f ∗g)(t) =(f̂ (∂t )g
)(t) =
t∫0
f (t− τ)g (τ)dτ
=1
2πi
∫C
f̂ (s)
t∫0
es(t−τ)g (τ)dτ
︸ ︷︷ ︸x (t,s)
ds
Integral is equivalent to solution of ODE
∂∂t
x (t,s) = sx (t,s) + g (t) with x (t = 0,s) = 0
Implicit Euler for ODE , [0,T ] = [0, t1, t2, . . . , tN ], variable time steps∆ti , i = 1,2, . . . ,N
xn (s) =xn−1 (s)1−∆tns
+∆tn
1−∆tnsgn =
n
∑j=1
∆tjgjn
∏k=j
11−∆tk s
Martin Schanz gCQM: Acoustics and Thermoelasticity 4 / 39
Time stepping formula
Solution at the discrete time tn
y (tn) =1
2πi
∫C
f̂ (s)xn (s)ds
=1
2πi
∫C
f̂ (s)∆tn1−∆tns
gn ds +1
2πi
∫C
f̂ (s)xn−1 (s)1−∆tns
ds
=f̂
(1
∆tn
)gn +
12πi
∫C
f̂ (s)xn−1 (s)1−∆tns
ds .
Recursion formula for the implicit Euler
y (tn) =1
2πi
∫C
f̂ (s)n
∑j=1
∆tjgjn
∏k=j
11−∆tk s
ds
= f̂
(1
∆tn
)gn +
n−1∑j=1
∆tjgj1
2πi
∫C
f̂ (s)n
∏k=j
11−∆tk s
ds
Complex integral is solved with a quadrature formula
Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39
Time stepping formula
Solution at the discrete time tn
y (tn) =1
2πi
∫C
f̂ (s)xn (s)ds
=1
2πi
∫C
f̂ (s)∆tn1−∆tns
gn ds +1
2πi
∫C
f̂ (s)xn−1 (s)1−∆tns
ds
=f̂
(1
∆tn
)gn +
12πi
∫C
f̂ (s)xn−1 (s)1−∆tns
ds .
Recursion formula for the implicit Euler
y (tn) =1
2πi
∫C
f̂ (s)n
∑j=1
∆tjgjn
∏k=j
11−∆tk s
ds
= f̂
(1
∆tn
)gn +
n−1∑j=1
∆tjgj1
2πi
∫C
f̂ (s)n
∏k=j
11−∆tk s
ds
Complex integral is solved with a quadrature formula
Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39
Time stepping formula
Solution at the discrete time tn
y (tn) =1
2πi
∫C
f̂ (s)xn (s)ds
=1
2πi
∫C
f̂ (s)∆tn1−∆tns
gn ds +1
2πi
∫C
f̂ (s)xn−1 (s)1−∆tns
ds
=f̂
(1
∆tn
)gn +
12πi
∫C
f̂ (s)xn−1 (s)1−∆tns
ds .
Recursion formula for the implicit Euler
y (tn) =1
2πi
∫C
f̂ (s)n
∑j=1
∆tjgjn
∏k=j
11−∆tk s
ds
= f̂
(1
∆tn
)gn +
n−1∑j=1
∆tjgj1
2πi
∫C
f̂ (s)n
∏k=j
11−∆tk s
ds
Complex integral is solved with a quadrature formula
Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39
Algorithm
First Euler step
y (t1) = f̂
(1
∆t1
)g1
with implicit assumption of zero initial condition
For all steps n = 2, . . . ,N the algorithm has two steps1 Update the solution vector xn−1 at all integration points s` with an implicit Euler step
xn−1 (s`) =xn−2 (s`)
1−∆tn−1s`+
∆tn−11−∆tn−1s`
gn−1
for ` = 1, . . . ,NQ with the number of integration points NQ .2 Compute the solution of the integral at the actual time step tn
y (tn) = f̂
(1
∆tn
)gn +
NQ
∑̀=1
ω`f̂ (s`)
1−∆tns`xn−1 (s`)
Essential parameter: NQ = N log(N), integration is dependent on q =∆tmax∆tmin
Martin Schanz gCQM: Acoustics and Thermoelasticity 6 / 39
Algorithm
First Euler step
y (t1) = f̂
(1
∆t1
)g1
with implicit assumption of zero initial condition
For all steps n = 2, . . . ,N the algorithm has two steps1 Update the solution vector xn−1 at all integration points s` with an implicit Euler step
xn−1 (s`) =xn−2 (s`)
1−∆tn−1s`+
∆tn−11−∆tn−1s`
gn−1
for ` = 1, . . . ,NQ with the number of integration points NQ .2 Compute the solution of the integral at the actual time step tn
y (tn) = f̂
(1
∆tn
)gn +
NQ
∑̀=1
ω`f̂ (s`)
1−∆tns`xn−1 (s`)
Essential parameter: NQ = N log(N), integration is dependent on q =∆tmax∆tmin
Martin Schanz gCQM: Acoustics and Thermoelasticity 6 / 39
Numerical integration
Integration weights and points
s` = γ(σ`) ω` =4K(k2)
2πiγ′ (σ`)
for N = 25,T = 5, tn =(
nN
)αT ,α = 1.5
Martin Schanz gCQM: Acoustics and Thermoelasticity 7 / 39
Content
1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm
2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples
3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example
Martin Schanz gCQM: Acoustics and Thermoelasticity 8 / 39
Absorbing boundary conditions
Materials with absorbing surfaces
Mechanical modell: Coupling of porousmaterial layer at the boundary
Simpler mechanical model: Impedance boundary condition
Z =p
v ·nspecific impedance
Z (x)ρc
= α(x) = cosθ1−√
1−αS (x)1 +√
1−αS (x)
with density ρ, wave velocity c, and absorption coefficient αS = f (ω)
Martin Schanz gCQM: Acoustics and Thermoelasticity 9 / 39
Absorbing boundary conditions
Materials with absorbing surfaces
Mechanical modell: Coupling of porousmaterial layer at the boundary
Simpler mechanical model: Impedance boundary condition
Z =p
v ·nspecific impedance
Z (x)ρc
= α(x) = cosθ1−√
1−αS (x)1 +√
1−αS (x)
with density ρ, wave velocity c, and absorption coefficient αS = f (ω)
Martin Schanz gCQM: Acoustics and Thermoelasticity 9 / 39
Problem setting
Bounded Lipschitz domain Ω− ⊂ R3 with boundary Γ := ∂ΩΩ+ := R3\Ω− is its unbounded complement.Linear acoustics for the pressure p
∂tt p− c2∆p = 0 in Ωσ×R>0,p (x ,0) = ∂t p (x ,0) = 0 in Ωσ,
γσ1 (p)−σαc
γσ0 (∂t p)= f (x , t) on Γ×R>0
with σ ∈ {+,−}, wave velocity c, and α absorption coefficient
Martin Schanz gCQM: Acoustics and Thermoelasticity 10 / 39
Integral equation
Single layer ansatz for the density
−(
σϕ2−K′ ∗ϕ
)−σα
c(V ∗ ϕ̇) = f a.e. in Γ×R>0
Retarded potentials
(V ∗ϕ)(x , t) =∫Γ
ϕ(
y , t− ‖x−y‖c)
4π‖x− y‖ dΓy
(K′ ∗ϕ
)(x , t) =
14π
∫Γ
〈n (x) ,y− x〉‖x− y‖2
ϕ(
y , t− ‖x−y‖c)
‖x− y‖ +ϕ̇(
y , t− ‖x−y‖c)
c
dΓySingle layer potential for the pressure
p (x , t) = (S ∗ϕ)(x , t) :=∫Γ
ϕ(
y , t− ‖x−y‖c)
4π‖x− y‖ dΓy ∀(x , t) ∈ Ωσ×R>0
Martin Schanz gCQM: Acoustics and Thermoelasticity 11 / 39
Integral equation
Single layer ansatz for the density
−(
σϕ2−K′ ∗ϕ
)−σα
c(V ∗ ϕ̇) = f a.e. in Γ×R>0
Retarded potentials
(V ∗ϕ)(x , t) =∫Γ
ϕ(
y , t− ‖x−y‖c)
4π‖x− y‖ dΓy
(K′ ∗ϕ
)(x , t) =
14π
∫Γ
〈n (x) ,y− x〉‖x− y‖2
ϕ(
y , t− ‖x−y‖c)
‖x− y‖ +ϕ̇(
y , t− ‖x−y‖c)
c
dΓySingle layer potential for the pressure
p (x , t) = (S ∗ϕ)(x , t) :=∫Γ
ϕ(
y , t− ‖x−y‖c)
4π‖x− y‖ dΓy ∀(x , t) ∈ Ωσ×R>0
Martin Schanz gCQM: Acoustics and Thermoelasticity 11 / 39
Solution for the unit ball
Geometry is the unit ball
Right hand side of the impedance boundary condition is
f (x , t) := f (t)Yn,m
Spherical harmonics are eigenfunctions of the boundary integral operators
ẐY mn = λ(Z)n
(sc
)Y mn for Z ∈
{V,K,K′,W
}It holds
λ(V)n (s) =−sjn (is)h(1)n (is) λ(K′)
n (s) =12− is2jn (is)∂h(1)n (is)
with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h
(1)n denoting their
first derivatives
Analytical transformation yields time domain solution
Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39
Solution for the unit ball
Geometry is the unit ball
Right hand side of the impedance boundary condition is
f (x , t) := f (t)Yn,m
Spherical harmonics are eigenfunctions of the boundary integral operators
ẐY mn = λ(Z)n
(sc
)Y mn for Z ∈
{V,K,K′,W
}It holds
λ(V)n (s) =−sjn (is)h(1)n (is) λ(K′)
n (s) =12− is2jn (is)∂h(1)n (is)
with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h
(1)n denoting their
first derivatives
Analytical transformation yields time domain solution
Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39
Solution for the unit ball
Geometry is the unit ball
Right hand side of the impedance boundary condition is
f (x , t) := f (t)Yn,m
Spherical harmonics are eigenfunctions of the boundary integral operators
ẐY mn = λ(Z)n
(sc
)Y mn for Z ∈
{V,K,K′,W
}It holds
λ(V)n (s) =−sjn (is)h(1)n (is) λ(K′)
n (s) =12− is2jn (is)∂h(1)n (is)
with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h
(1)n denoting their
first derivatives
Analytical transformation yields time domain solution
Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39
Solution in time domain
Solution for σ = +1, i.e., outer space, and n = 0Load function f (t) = (ct)υ e−ct
Density function
ϕ+ (t) =− 21 + α
bct/2c∑̀=0
((ct−2`)υ e−(ct−2`)
− (1 + α)υ
αυ+1γ(
υ + 1,α
1 + α(ct−2`)
)e−
ct−2`1+α
)with the incomplete Gamma function γ(a,z) :=
∫ z0 t
a−1e−t dt
Pressure solution
p+ (r , t) =− (1 + α)υ
2√
παυ+1γ(
υ + 1,α
1 + ατ+)
e−τ
1+α
r.
with r > 1, we define τ := ct− (r −1) and (τ)+ := max{0,τ}
Martin Schanz gCQM: Acoustics and Thermoelasticity 13 / 39
Solution in time domain
Solution for σ = +1, i.e., outer space, and n = 0Load function f (t) = (ct)υ e−ct
Density function
ϕ+ (t) =− 21 + α
bct/2c∑̀=0
((ct−2`)υ e−(ct−2`)
− (1 + α)υ
αυ+1γ(
υ + 1,α
1 + α(ct−2`)
)e−
ct−2`1+α
)with the incomplete Gamma function γ(a,z) :=
∫ z0 t
a−1e−t dt
Pressure solution
p+ (r , t) =− (1 + α)υ
2√
παυ+1γ(
υ + 1,α
1 + ατ+)
e−τ
1+α
r.
with r > 1, we define τ := ct− (r −1) and (τ)+ := max{0,τ}
Martin Schanz gCQM: Acoustics and Thermoelasticity 13 / 39
Discretization
Spatial discretization: Linear continuous shape functions on linear trianglesTemporal discretization: gCQM with time grading
tn = T( n
N
)χ, n = 0, . . . ,N with grading exponent χ = 1/υ
Meshes of the unit sphere
h1 = 0.393m h2 = 0.196m h3 = 0.098m h3 = 0.049m
Material data: Air (c = 343.41 m/s)Load function: f (t) = (ct)υ e−ct with υ = 12Observation time T = 0.002915905s and β = c∆t/hError in time
errrel =
√N
∑n=0
∆tn (u (tn)−uh (tn))2/√
N
∑n=0
∆tn (u (tn))2 eoc = log2
(errh
errh+1
)Martin Schanz gCQM: Acoustics and Thermoelasticity 14 / 39
Solution density
0 0.2 0.4 0.6 0.8 1 1.2·10−2
−0.2
0
0.2
0.4
0.6
time t [s]
dens
ityϕ+
α = 0α = 0.25α = 0.5α = 1analytic α = 0.25analytic α = 0.5analytic α = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 15 / 39
Solution pressure
0 0.2 0.4 0.6 0.8 1 1.2·10−2
0
0.05
0.1
0.15
time t [s]
pres
sure
u+[N/m
2 ]
α = 0α = 0.25α = 0.5α = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 16 / 39
Relative density error: mesh size
10−1.2 10−1 10−0.8 10−0.6 10−0.4
10−2.5
10−2
10−1.5
mesh size h
err re
l
∆tvar ,β = 0.125∆tconst ,β = 0.125∆tvar ,β = 0.0625∆tconst ,β = 0.0625eoc = 0.5eoc = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 17 / 39
Relative pressure error: mesh size
10−1.2 10−1 10−0.8 10−0.6 10−0.4
10−2
10−1
mesh size h
err re
l
∆tvar ,β = 0.25∆tconst ,β = 0.25∆tvar ,β = 0.125∆tconst ,β = 0.125∆tvar ,β = 0.0625∆tconst ,β = 0.0625eoc = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 18 / 39
Relative density error: time step
10−5 10−4
10−2.5
10−2
10−1.5
time step size ∆t
err re
l
mesh 2, ∆tconstmesh 2, ∆tvarmesh 3, ∆tconstmesh 3, ∆tvarmesh 4, ∆tconstmesh 4, ∆tvareoc = 0.5eoc = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 19 / 39
Relative pressure error: time step
10−5 10−4
10−2
10−1
time step size ∆t
err re
l
mesh 2, ∆tconstmesh 2, ∆tvarmesh 3, ∆tconstmesh 3, ∆tvarmesh 4, ∆tconstmesh 4, ∆tvareoc = 2eoc = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 20 / 39
Problem description
Atrium at University of Zurich (Irchel campus)
Mesh: 7100 elementsTime interval [0,T = 0.15s] with grading
tn =
(n +
(n−1)2N
)∆tconst with ∆tconst = 0.00037s ⇒ N = 405, Ngraded = 248
Martin Schanz gCQM: Acoustics and Thermoelasticity 21 / 39
Sound pressure field
t ≈ 0.028 s
α = 0.1 α = 0.5 α = 1
t ≈ 0.064 s
Martin Schanz gCQM: Acoustics and Thermoelasticity 22 / 39
Sound pressure level
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16−30
−20
−10
0
10
20
30
time t [s]
soun
dpr
essu
rele
velu
[dB
]α = 0.1α = 0.5α = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 23 / 39
Content
1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm
2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples
3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example
Martin Schanz gCQM: Acoustics and Thermoelasticity 24 / 39
Uncoupled thermoelasticity
Governing equations for temperature θ(x, t) and displacement u(x, t)
κ θ,jj (x, t)− θ̇(x, t) = 0µ ui,jj (x, t) + (λ + µ)uj,ij (x, t)− (3λ + 2µ)α θ,i (x, t) = 0
κ thermal diffusivity, α thermal expansion coefficient, λ,µ Lamé constantsBoundary integral formulation
c (y)θ(y, t) =∫Γ
{[Θ∗q](x,y, t)− [Q ∗θ](x,y, t)}dΓ
cij (y)uj (y, t) =∫Γ
{Uij (x,y)tj (x, t)−Tij (x,y) uj (x, t)
+ [Gi ∗q](x,y, t)− [Fi ∗θ](x,y, t)}dΓwith
Θ(x,y, t) and Q(x,y, t) kernels of the heat equationUij (x,y) and Tij (x,y) kernels from elastostaticsGi (x,y, t) and Fi (x,y, t) kernels for the one sided coupling
Martin Schanz gCQM: Acoustics and Thermoelasticity 25 / 39
Uncoupled thermoelasticity
Governing equations for temperature θ(x, t) and displacement u(x, t)
κ θ,jj (x, t)− θ̇(x, t) = 0µ ui,jj (x, t) + (λ + µ)uj,ij (x, t)− (3λ + 2µ)α θ,i (x, t) = 0
κ thermal diffusivity, α thermal expansion coefficient, λ,µ Lamé constantsBoundary integral formulation
c (y)θ(y, t) =∫Γ
{[Θ∗q](x,y, t)− [Q ∗θ](x,y, t)}dΓ
cij (y)uj (y, t) =∫Γ
{Uij (x,y)tj (x, t)−Tij (x,y) uj (x, t)
+ [Gi ∗q](x,y, t)− [Fi ∗θ](x,y, t)}dΓwith
Θ(x,y, t) and Q(x,y, t) kernels of the heat equationUij (x,y) and Tij (x,y) kernels from elastostaticsGi (x,y, t) and Fi (x,y, t) kernels for the one sided coupling
Martin Schanz gCQM: Acoustics and Thermoelasticity 25 / 39
Boundary element formulation
Spatial discretisation on some mesh
θ(x, t) =ND
∑k=1
ψk (x) θk (t) q(x, t) =NN
∑k=1
χk (x) qk (t)
uj (x, t) =ND
∑k=1
ψk (x) uki (t) tj (x, t) =NN
∑k=1
χk (x) tkj (t)
Semi-discrete BEM
Cθθθ(t) = [ΘΘΘ∗q](t)− [Q∗θθθ](t)Ceu(t) = Ut(t)−Tu(t) + [G∗q](t)− [F∗θθθ](t)
Temporal discretisation with gCQMto solve the thermal equationto perform the convolution of known data for the coupling terms
[G∗q](t) [F∗θθθ](t)
Martin Schanz gCQM: Acoustics and Thermoelasticity 26 / 39
Boundary element formulation
Spatial discretisation on some mesh
θ(x, t) =ND
∑k=1
ψk (x) θk (t) q(x, t) =NN
∑k=1
χk (x) qk (t)
uj (x, t) =ND
∑k=1
ψk (x) uki (t) tj (x, t) =NN
∑k=1
χk (x) tkj (t)
Semi-discrete BEM
Cθθθ(t) = [ΘΘΘ∗q](t)− [Q∗θθθ](t)Ceu(t) = Ut(t)−Tu(t) + [G∗q](t)− [F∗θθθ](t)
Temporal discretisation with gCQMto solve the thermal equationto perform the convolution of known data for the coupling terms
[G∗q](t) [F∗θθθ](t)
Martin Schanz gCQM: Acoustics and Thermoelasticity 26 / 39
Problem setting
Cube under restrictive boundary conditions to enforce a 1-d solution
q = 0
q = 0
q = 0
θ(t > 0) = 1
x
y or z
• •
Material data:α = 1 κ = 1λ = 0 µ = 0.5
Time discretisation:constant tn = n∆t
increasing tn =
(n +
(n−1)2N
)∆t
graded tn = N∆t( n
N
)2Spatial discretisations
Mesh 1 Mesh 2 Mesh 3
Martin Schanz gCQM: Acoustics and Thermoelasticity 27 / 39
Temperature solution: gCQM, graded
0 1 2 3 4
0
0.2
0.4
0.6
0.8
1
time t [s]
tem
pera
ture
θ[K
]
mesh 1mesh 2mesh 3analytic
Martin Schanz gCQM: Acoustics and Thermoelasticity 28 / 39
Displacement solution: gCQM, graded
0 1 2 3 4
0
0.2
0.4
0.6
0.8
1
time t [s]
disp
lace
men
tux[m
]
mesh 1mesh 2mesh 3analytic
Martin Schanz gCQM: Acoustics and Thermoelasticity 29 / 39
Temperature solution: error, mesh 2
0 1 2 3 4
0
0.5
1
1.5
·10−2
time t [s]
err a
bs
mesh 2, constantmesh 2, gradedmesh 2, increasing
Martin Schanz gCQM: Acoustics and Thermoelasticity 30 / 39
Temperature solution: error, mesh 3
0 1 2 3 4
0
0.2
0.4
0.6
0.8
1
·10−2
time t [s]
err a
bs
mesh 3, constantmesh 3, gradedmesh 3, increasing
Martin Schanz gCQM: Acoustics and Thermoelasticity 31 / 39
Displacement solution: error, mesh 2
0 1 2 3 4
0
0.5
1
1.5
·10−2
time t [s]
err a
bs
mesh 2, constantmesh 2, gradedmesh 2, increasing
Martin Schanz gCQM: Acoustics and Thermoelasticity 32 / 39
Displacement solution: error, mesh 3
0 1 2 3 4
1
2
3
4·10−3
time t [s]
err a
bs
mesh 3, constantmesh 3, gradedmesh 3, increasing
Martin Schanz gCQM: Acoustics and Thermoelasticity 33 / 39
Temperature error L2 mesh 3
10−1.8 10−1.6 10−1.4 10−1.2 10−1
10−5
10−4
time step size ∆t
err re
lmesh 3, constmesh 3, gradedmesh 3, increasingeoc = 2eoc = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 34 / 39
Temperature error Lmax mesh 3
10−1.8 10−1.6 10−1.4 10−1.2 10−1
10−2.5
10−2
10−1.5
time step size ∆t
err a
bsmesh 3, constmesh 3, gradedmesh 3, increasingeoc = 0.7eoc = 1
Martin Schanz gCQM: Acoustics and Thermoelasticity 35 / 39
Displacement error L2 mesh 3
10−1.8 10−1.6 10−1.4 10−1.2 10−110−3
10−2
time step size ∆t
err re
l
mesh 3, constmesh 3, gradedmesh 3, increasingeoc = 1.2
Martin Schanz gCQM: Acoustics and Thermoelasticity 36 / 39
Displacement error Lmax mesh 3
10−1.8 10−1.6 10−1.4 10−1.2 10−1
10−3
10−2
time step size ∆t
err a
bs
mesh 3, constmesh 3, gradedmesh 3, increasingeoc = 0.5eoc = 1.3
Martin Schanz gCQM: Acoustics and Thermoelasticity 37 / 39
Conclusions
Indirect BE formulation in time domain for absorbing BC in acoustics
Direct BE formulation for uncoupled thermoelasticity
Time discretisation with generalized Convolution Quadrature Method
Expected rate of convergence in time
Application to real world problems possible
Fast methods to compress matrices is to be done
Fast method only for matrix-vector products
Possible extension to variable space-time formulation
Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39
Conclusions
Indirect BE formulation in time domain for absorbing BC in acoustics
Direct BE formulation for uncoupled thermoelasticity
Time discretisation with generalized Convolution Quadrature Method
Expected rate of convergence in time
Application to real world problems possible
Fast methods to compress matrices is to be done
Fast method only for matrix-vector products
Possible extension to variable space-time formulation
Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39
Conclusions
Indirect BE formulation in time domain for absorbing BC in acoustics
Direct BE formulation for uncoupled thermoelasticity
Time discretisation with generalized Convolution Quadrature Method
Expected rate of convergence in time
Application to real world problems possible
Fast methods to compress matrices is to be done
Fast method only for matrix-vector products
Possible extension to variable space-time formulation
Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39
Graz University of TechnologyInstitute of Applied Mechanics
Application of generalized Convolution Quadraturein Acoustics and Thermoelasticity
Martin Schanz
joint work with Relindis Rott and Stefan Sauter
Space-Time Methods for PDEsSpecial Semester on Computational Methods in Science and EngineeringRICAM, Linz, Austria, November 10, 2016
> www.mech.tugraz.at
Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm
Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples
Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example