of 54 /54
Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution Quadrature in Acoustics and Thermoelasticity Martin Schanz joint work with Relindis Rott and Stefan Sauter Space-Time Methods for PDEs Special Semester on Computational Methods in Science and Engineering RICAM, Linz, Austria, November 10, 2016 > www.mech.tugraz.at

Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz University of Technology Institute of Applied Mechanics Application of generalized Convolution

  • Author
    others

  • View
    0

  • Download
    0

Embed Size (px)

Text of Application of generalized Convolution Quadrature in Acoustics … · 2016-11-10 · Graz...

  • Graz University of TechnologyInstitute of Applied Mechanics

    Application of generalized Convolution Quadraturein Acoustics and Thermoelasticity

    Martin Schanz

    joint work with Relindis Rott and Stefan Sauter

    Space-Time Methods for PDEsSpecial Semester on Computational Methods in Science and EngineeringRICAM, Linz, Austria, November 10, 2016

    > www.mech.tugraz.at

  • Content

    1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

    2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

    3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

    Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39

  • Content

    1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

    2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

    3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

    Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39

  • Content

    1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

    2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

    3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

    Martin Schanz gCQM: Acoustics and Thermoelasticity 2 / 39

  • Content

    1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

    2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

    3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

    Martin Schanz gCQM: Acoustics and Thermoelasticity 3 / 39

  • Convolution integral

    Convolution integral with the Laplace transformed function f̂ (s)

    y (t) = (f ∗g)(t) =(f̂ (∂t )g

    )(t) =

    t∫0

    f (t− τ)g (τ)dτ

    =1

    2πi

    ∫C

    f̂ (s)

    t∫0

    es(t−τ)g (τ)dτ

    ︸ ︷︷ ︸x (t,s)

    ds

    Integral is equivalent to solution of ODE

    ∂∂t

    x (t,s) = sx (t,s) + g (t) with x (t = 0,s) = 0

    Implicit Euler for ODE , [0,T ] = [0, t1, t2, . . . , tN ], variable time steps∆ti , i = 1,2, . . . ,N

    xn (s) =xn−1 (s)1−∆tns

    +∆tn

    1−∆tnsgn =

    n

    ∑j=1

    ∆tjgjn

    ∏k=j

    11−∆tk s

    Martin Schanz gCQM: Acoustics and Thermoelasticity 4 / 39

  • Convolution integral

    Convolution integral with the Laplace transformed function f̂ (s)

    y (t) = (f ∗g)(t) =(f̂ (∂t )g

    )(t) =

    t∫0

    f (t− τ)g (τ)dτ

    =1

    2πi

    ∫C

    f̂ (s)

    t∫0

    es(t−τ)g (τ)dτ

    ︸ ︷︷ ︸x (t,s)

    ds

    Integral is equivalent to solution of ODE

    ∂∂t

    x (t,s) = sx (t,s) + g (t) with x (t = 0,s) = 0

    Implicit Euler for ODE , [0,T ] = [0, t1, t2, . . . , tN ], variable time steps∆ti , i = 1,2, . . . ,N

    xn (s) =xn−1 (s)1−∆tns

    +∆tn

    1−∆tnsgn =

    n

    ∑j=1

    ∆tjgjn

    ∏k=j

    11−∆tk s

    Martin Schanz gCQM: Acoustics and Thermoelasticity 4 / 39

  • Time stepping formula

    Solution at the discrete time tn

    y (tn) =1

    2πi

    ∫C

    f̂ (s)xn (s)ds

    =1

    2πi

    ∫C

    f̂ (s)∆tn1−∆tns

    gn ds +1

    2πi

    ∫C

    f̂ (s)xn−1 (s)1−∆tns

    ds

    =f̂

    (1

    ∆tn

    )gn +

    12πi

    ∫C

    f̂ (s)xn−1 (s)1−∆tns

    ds .

    Recursion formula for the implicit Euler

    y (tn) =1

    2πi

    ∫C

    f̂ (s)n

    ∑j=1

    ∆tjgjn

    ∏k=j

    11−∆tk s

    ds

    = f̂

    (1

    ∆tn

    )gn +

    n−1∑j=1

    ∆tjgj1

    2πi

    ∫C

    f̂ (s)n

    ∏k=j

    11−∆tk s

    ds

    Complex integral is solved with a quadrature formula

    Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39

  • Time stepping formula

    Solution at the discrete time tn

    y (tn) =1

    2πi

    ∫C

    f̂ (s)xn (s)ds

    =1

    2πi

    ∫C

    f̂ (s)∆tn1−∆tns

    gn ds +1

    2πi

    ∫C

    f̂ (s)xn−1 (s)1−∆tns

    ds

    =f̂

    (1

    ∆tn

    )gn +

    12πi

    ∫C

    f̂ (s)xn−1 (s)1−∆tns

    ds .

    Recursion formula for the implicit Euler

    y (tn) =1

    2πi

    ∫C

    f̂ (s)n

    ∑j=1

    ∆tjgjn

    ∏k=j

    11−∆tk s

    ds

    = f̂

    (1

    ∆tn

    )gn +

    n−1∑j=1

    ∆tjgj1

    2πi

    ∫C

    f̂ (s)n

    ∏k=j

    11−∆tk s

    ds

    Complex integral is solved with a quadrature formula

    Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39

  • Time stepping formula

    Solution at the discrete time tn

    y (tn) =1

    2πi

    ∫C

    f̂ (s)xn (s)ds

    =1

    2πi

    ∫C

    f̂ (s)∆tn1−∆tns

    gn ds +1

    2πi

    ∫C

    f̂ (s)xn−1 (s)1−∆tns

    ds

    =f̂

    (1

    ∆tn

    )gn +

    12πi

    ∫C

    f̂ (s)xn−1 (s)1−∆tns

    ds .

    Recursion formula for the implicit Euler

    y (tn) =1

    2πi

    ∫C

    f̂ (s)n

    ∑j=1

    ∆tjgjn

    ∏k=j

    11−∆tk s

    ds

    = f̂

    (1

    ∆tn

    )gn +

    n−1∑j=1

    ∆tjgj1

    2πi

    ∫C

    f̂ (s)n

    ∏k=j

    11−∆tk s

    ds

    Complex integral is solved with a quadrature formula

    Martin Schanz gCQM: Acoustics and Thermoelasticity 5 / 39

  • Algorithm

    First Euler step

    y (t1) = f̂

    (1

    ∆t1

    )g1

    with implicit assumption of zero initial condition

    For all steps n = 2, . . . ,N the algorithm has two steps1 Update the solution vector xn−1 at all integration points s` with an implicit Euler step

    xn−1 (s`) =xn−2 (s`)

    1−∆tn−1s`+

    ∆tn−11−∆tn−1s`

    gn−1

    for ` = 1, . . . ,NQ with the number of integration points NQ .2 Compute the solution of the integral at the actual time step tn

    y (tn) = f̂

    (1

    ∆tn

    )gn +

    NQ

    ∑̀=1

    ω`f̂ (s`)

    1−∆tns`xn−1 (s`)

    Essential parameter: NQ = N log(N), integration is dependent on q =∆tmax∆tmin

    Martin Schanz gCQM: Acoustics and Thermoelasticity 6 / 39

  • Algorithm

    First Euler step

    y (t1) = f̂

    (1

    ∆t1

    )g1

    with implicit assumption of zero initial condition

    For all steps n = 2, . . . ,N the algorithm has two steps1 Update the solution vector xn−1 at all integration points s` with an implicit Euler step

    xn−1 (s`) =xn−2 (s`)

    1−∆tn−1s`+

    ∆tn−11−∆tn−1s`

    gn−1

    for ` = 1, . . . ,NQ with the number of integration points NQ .2 Compute the solution of the integral at the actual time step tn

    y (tn) = f̂

    (1

    ∆tn

    )gn +

    NQ

    ∑̀=1

    ω`f̂ (s`)

    1−∆tns`xn−1 (s`)

    Essential parameter: NQ = N log(N), integration is dependent on q =∆tmax∆tmin

    Martin Schanz gCQM: Acoustics and Thermoelasticity 6 / 39

  • Numerical integration

    Integration weights and points

    s` = γ(σ`) ω` =4K(k2)

    2πiγ′ (σ`)

    for N = 25,T = 5, tn =(

    nN

    )αT ,α = 1.5

    Martin Schanz gCQM: Acoustics and Thermoelasticity 7 / 39

  • Content

    1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

    2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

    3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

    Martin Schanz gCQM: Acoustics and Thermoelasticity 8 / 39

  • Absorbing boundary conditions

    Materials with absorbing surfaces

    Mechanical modell: Coupling of porousmaterial layer at the boundary

    Simpler mechanical model: Impedance boundary condition

    Z =p

    v ·nspecific impedance

    Z (x)ρc

    = α(x) = cosθ1−√

    1−αS (x)1 +√

    1−αS (x)

    with density ρ, wave velocity c, and absorption coefficient αS = f (ω)

    Martin Schanz gCQM: Acoustics and Thermoelasticity 9 / 39

  • Absorbing boundary conditions

    Materials with absorbing surfaces

    Mechanical modell: Coupling of porousmaterial layer at the boundary

    Simpler mechanical model: Impedance boundary condition

    Z =p

    v ·nspecific impedance

    Z (x)ρc

    = α(x) = cosθ1−√

    1−αS (x)1 +√

    1−αS (x)

    with density ρ, wave velocity c, and absorption coefficient αS = f (ω)

    Martin Schanz gCQM: Acoustics and Thermoelasticity 9 / 39

  • Problem setting

    Bounded Lipschitz domain Ω− ⊂ R3 with boundary Γ := ∂ΩΩ+ := R3\Ω− is its unbounded complement.Linear acoustics for the pressure p

    ∂tt p− c2∆p = 0 in Ωσ×R>0,p (x ,0) = ∂t p (x ,0) = 0 in Ωσ,

    γσ1 (p)−σαc

    γσ0 (∂t p)= f (x , t) on Γ×R>0

    with σ ∈ {+,−}, wave velocity c, and α absorption coefficient

    Martin Schanz gCQM: Acoustics and Thermoelasticity 10 / 39

  • Integral equation

    Single layer ansatz for the density

    −(

    σϕ2−K′ ∗ϕ

    )−σα

    c(V ∗ ϕ̇) = f a.e. in Γ×R>0

    Retarded potentials

    (V ∗ϕ)(x , t) =∫Γ

    ϕ(

    y , t− ‖x−y‖c)

    4π‖x− y‖ dΓy

    (K′ ∗ϕ

    )(x , t) =

    14π

    ∫Γ

    〈n (x) ,y− x〉‖x− y‖2

    ϕ(

    y , t− ‖x−y‖c)

    ‖x− y‖ +ϕ̇(

    y , t− ‖x−y‖c)

    c

    dΓySingle layer potential for the pressure

    p (x , t) = (S ∗ϕ)(x , t) :=∫Γ

    ϕ(

    y , t− ‖x−y‖c)

    4π‖x− y‖ dΓy ∀(x , t) ∈ Ωσ×R>0

    Martin Schanz gCQM: Acoustics and Thermoelasticity 11 / 39

  • Integral equation

    Single layer ansatz for the density

    −(

    σϕ2−K′ ∗ϕ

    )−σα

    c(V ∗ ϕ̇) = f a.e. in Γ×R>0

    Retarded potentials

    (V ∗ϕ)(x , t) =∫Γ

    ϕ(

    y , t− ‖x−y‖c)

    4π‖x− y‖ dΓy

    (K′ ∗ϕ

    )(x , t) =

    14π

    ∫Γ

    〈n (x) ,y− x〉‖x− y‖2

    ϕ(

    y , t− ‖x−y‖c)

    ‖x− y‖ +ϕ̇(

    y , t− ‖x−y‖c)

    c

    dΓySingle layer potential for the pressure

    p (x , t) = (S ∗ϕ)(x , t) :=∫Γ

    ϕ(

    y , t− ‖x−y‖c)

    4π‖x− y‖ dΓy ∀(x , t) ∈ Ωσ×R>0

    Martin Schanz gCQM: Acoustics and Thermoelasticity 11 / 39

  • Solution for the unit ball

    Geometry is the unit ball

    Right hand side of the impedance boundary condition is

    f (x , t) := f (t)Yn,m

    Spherical harmonics are eigenfunctions of the boundary integral operators

    ẐY mn = λ(Z)n

    (sc

    )Y mn for Z ∈

    {V,K,K′,W

    }It holds

    λ(V)n (s) =−sjn (is)h(1)n (is) λ(K′)

    n (s) =12− is2jn (is)∂h(1)n (is)

    with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h

    (1)n denoting their

    first derivatives

    Analytical transformation yields time domain solution

    Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39

  • Solution for the unit ball

    Geometry is the unit ball

    Right hand side of the impedance boundary condition is

    f (x , t) := f (t)Yn,m

    Spherical harmonics are eigenfunctions of the boundary integral operators

    ẐY mn = λ(Z)n

    (sc

    )Y mn for Z ∈

    {V,K,K′,W

    }It holds

    λ(V)n (s) =−sjn (is)h(1)n (is) λ(K′)

    n (s) =12− is2jn (is)∂h(1)n (is)

    with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h

    (1)n denoting their

    first derivatives

    Analytical transformation yields time domain solution

    Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39

  • Solution for the unit ball

    Geometry is the unit ball

    Right hand side of the impedance boundary condition is

    f (x , t) := f (t)Yn,m

    Spherical harmonics are eigenfunctions of the boundary integral operators

    ẐY mn = λ(Z)n

    (sc

    )Y mn for Z ∈

    {V,K,K′,W

    }It holds

    λ(V)n (s) =−sjn (is)h(1)n (is) λ(K′)

    n (s) =12− is2jn (is)∂h(1)n (is)

    with the spherical Bessel and Hankel functions jn, h(1)n and ∂jn, ∂h

    (1)n denoting their

    first derivatives

    Analytical transformation yields time domain solution

    Martin Schanz gCQM: Acoustics and Thermoelasticity 12 / 39

  • Solution in time domain

    Solution for σ = +1, i.e., outer space, and n = 0Load function f (t) = (ct)υ e−ct

    Density function

    ϕ+ (t) =− 21 + α

    bct/2c∑̀=0

    ((ct−2`)υ e−(ct−2`)

    − (1 + α)υ

    αυ+1γ(

    υ + 1,α

    1 + α(ct−2`)

    )e−

    ct−2`1+α

    )with the incomplete Gamma function γ(a,z) :=

    ∫ z0 t

    a−1e−t dt

    Pressure solution

    p+ (r , t) =− (1 + α)υ

    2√

    παυ+1γ(

    υ + 1,α

    1 + ατ+)

    e−τ

    1+α

    r.

    with r > 1, we define τ := ct− (r −1) and (τ)+ := max{0,τ}

    Martin Schanz gCQM: Acoustics and Thermoelasticity 13 / 39

  • Solution in time domain

    Solution for σ = +1, i.e., outer space, and n = 0Load function f (t) = (ct)υ e−ct

    Density function

    ϕ+ (t) =− 21 + α

    bct/2c∑̀=0

    ((ct−2`)υ e−(ct−2`)

    − (1 + α)υ

    αυ+1γ(

    υ + 1,α

    1 + α(ct−2`)

    )e−

    ct−2`1+α

    )with the incomplete Gamma function γ(a,z) :=

    ∫ z0 t

    a−1e−t dt

    Pressure solution

    p+ (r , t) =− (1 + α)υ

    2√

    παυ+1γ(

    υ + 1,α

    1 + ατ+)

    e−τ

    1+α

    r.

    with r > 1, we define τ := ct− (r −1) and (τ)+ := max{0,τ}

    Martin Schanz gCQM: Acoustics and Thermoelasticity 13 / 39

  • Discretization

    Spatial discretization: Linear continuous shape functions on linear trianglesTemporal discretization: gCQM with time grading

    tn = T( n

    N

    )χ, n = 0, . . . ,N with grading exponent χ = 1/υ

    Meshes of the unit sphere

    h1 = 0.393m h2 = 0.196m h3 = 0.098m h3 = 0.049m

    Material data: Air (c = 343.41 m/s)Load function: f (t) = (ct)υ e−ct with υ = 12Observation time T = 0.002915905s and β = c∆t/hError in time

    errrel =

    √N

    ∑n=0

    ∆tn (u (tn)−uh (tn))2/√

    N

    ∑n=0

    ∆tn (u (tn))2 eoc = log2

    (errh

    errh+1

    )Martin Schanz gCQM: Acoustics and Thermoelasticity 14 / 39

  • Solution density

    0 0.2 0.4 0.6 0.8 1 1.2·10−2

    −0.2

    0

    0.2

    0.4

    0.6

    time t [s]

    dens

    ityϕ+

    α = 0α = 0.25α = 0.5α = 1analytic α = 0.25analytic α = 0.5analytic α = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 15 / 39

  • Solution pressure

    0 0.2 0.4 0.6 0.8 1 1.2·10−2

    0

    0.05

    0.1

    0.15

    time t [s]

    pres

    sure

    u+[N/m

    2 ]

    α = 0α = 0.25α = 0.5α = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 16 / 39

  • Relative density error: mesh size

    10−1.2 10−1 10−0.8 10−0.6 10−0.4

    10−2.5

    10−2

    10−1.5

    mesh size h

    err re

    l

    ∆tvar ,β = 0.125∆tconst ,β = 0.125∆tvar ,β = 0.0625∆tconst ,β = 0.0625eoc = 0.5eoc = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 17 / 39

  • Relative pressure error: mesh size

    10−1.2 10−1 10−0.8 10−0.6 10−0.4

    10−2

    10−1

    mesh size h

    err re

    l

    ∆tvar ,β = 0.25∆tconst ,β = 0.25∆tvar ,β = 0.125∆tconst ,β = 0.125∆tvar ,β = 0.0625∆tconst ,β = 0.0625eoc = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 18 / 39

  • Relative density error: time step

    10−5 10−4

    10−2.5

    10−2

    10−1.5

    time step size ∆t

    err re

    l

    mesh 2, ∆tconstmesh 2, ∆tvarmesh 3, ∆tconstmesh 3, ∆tvarmesh 4, ∆tconstmesh 4, ∆tvareoc = 0.5eoc = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 19 / 39

  • Relative pressure error: time step

    10−5 10−4

    10−2

    10−1

    time step size ∆t

    err re

    l

    mesh 2, ∆tconstmesh 2, ∆tvarmesh 3, ∆tconstmesh 3, ∆tvarmesh 4, ∆tconstmesh 4, ∆tvareoc = 2eoc = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 20 / 39

  • Problem description

    Atrium at University of Zurich (Irchel campus)

    Mesh: 7100 elementsTime interval [0,T = 0.15s] with grading

    tn =

    (n +

    (n−1)2N

    )∆tconst with ∆tconst = 0.00037s ⇒ N = 405, Ngraded = 248

    Martin Schanz gCQM: Acoustics and Thermoelasticity 21 / 39

  • Sound pressure field

    t ≈ 0.028 s

    α = 0.1 α = 0.5 α = 1

    t ≈ 0.064 s

    Martin Schanz gCQM: Acoustics and Thermoelasticity 22 / 39

  • Sound pressure level

    0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16−30

    −20

    −10

    0

    10

    20

    30

    time t [s]

    soun

    dpr

    essu

    rele

    velu

    [dB

    ]α = 0.1α = 0.5α = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 23 / 39

  • Content

    1 Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

    2 Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

    3 Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example

    Martin Schanz gCQM: Acoustics and Thermoelasticity 24 / 39

  • Uncoupled thermoelasticity

    Governing equations for temperature θ(x, t) and displacement u(x, t)

    κ θ,jj (x, t)− θ̇(x, t) = 0µ ui,jj (x, t) + (λ + µ)uj,ij (x, t)− (3λ + 2µ)α θ,i (x, t) = 0

    κ thermal diffusivity, α thermal expansion coefficient, λ,µ Lamé constantsBoundary integral formulation

    c (y)θ(y, t) =∫Γ

    {[Θ∗q](x,y, t)− [Q ∗θ](x,y, t)}dΓ

    cij (y)uj (y, t) =∫Γ

    {Uij (x,y)tj (x, t)−Tij (x,y) uj (x, t)

    + [Gi ∗q](x,y, t)− [Fi ∗θ](x,y, t)}dΓwith

    Θ(x,y, t) and Q(x,y, t) kernels of the heat equationUij (x,y) and Tij (x,y) kernels from elastostaticsGi (x,y, t) and Fi (x,y, t) kernels for the one sided coupling

    Martin Schanz gCQM: Acoustics and Thermoelasticity 25 / 39

  • Uncoupled thermoelasticity

    Governing equations for temperature θ(x, t) and displacement u(x, t)

    κ θ,jj (x, t)− θ̇(x, t) = 0µ ui,jj (x, t) + (λ + µ)uj,ij (x, t)− (3λ + 2µ)α θ,i (x, t) = 0

    κ thermal diffusivity, α thermal expansion coefficient, λ,µ Lamé constantsBoundary integral formulation

    c (y)θ(y, t) =∫Γ

    {[Θ∗q](x,y, t)− [Q ∗θ](x,y, t)}dΓ

    cij (y)uj (y, t) =∫Γ

    {Uij (x,y)tj (x, t)−Tij (x,y) uj (x, t)

    + [Gi ∗q](x,y, t)− [Fi ∗θ](x,y, t)}dΓwith

    Θ(x,y, t) and Q(x,y, t) kernels of the heat equationUij (x,y) and Tij (x,y) kernels from elastostaticsGi (x,y, t) and Fi (x,y, t) kernels for the one sided coupling

    Martin Schanz gCQM: Acoustics and Thermoelasticity 25 / 39

  • Boundary element formulation

    Spatial discretisation on some mesh

    θ(x, t) =ND

    ∑k=1

    ψk (x) θk (t) q(x, t) =NN

    ∑k=1

    χk (x) qk (t)

    uj (x, t) =ND

    ∑k=1

    ψk (x) uki (t) tj (x, t) =NN

    ∑k=1

    χk (x) tkj (t)

    Semi-discrete BEM

    Cθθθ(t) = [ΘΘΘ∗q](t)− [Q∗θθθ](t)Ceu(t) = Ut(t)−Tu(t) + [G∗q](t)− [F∗θθθ](t)

    Temporal discretisation with gCQMto solve the thermal equationto perform the convolution of known data for the coupling terms

    [G∗q](t) [F∗θθθ](t)

    Martin Schanz gCQM: Acoustics and Thermoelasticity 26 / 39

  • Boundary element formulation

    Spatial discretisation on some mesh

    θ(x, t) =ND

    ∑k=1

    ψk (x) θk (t) q(x, t) =NN

    ∑k=1

    χk (x) qk (t)

    uj (x, t) =ND

    ∑k=1

    ψk (x) uki (t) tj (x, t) =NN

    ∑k=1

    χk (x) tkj (t)

    Semi-discrete BEM

    Cθθθ(t) = [ΘΘΘ∗q](t)− [Q∗θθθ](t)Ceu(t) = Ut(t)−Tu(t) + [G∗q](t)− [F∗θθθ](t)

    Temporal discretisation with gCQMto solve the thermal equationto perform the convolution of known data for the coupling terms

    [G∗q](t) [F∗θθθ](t)

    Martin Schanz gCQM: Acoustics and Thermoelasticity 26 / 39

  • Problem setting

    Cube under restrictive boundary conditions to enforce a 1-d solution

    q = 0

    q = 0

    q = 0

    θ(t > 0) = 1

    x

    y or z

    • •

    Material data:α = 1 κ = 1λ = 0 µ = 0.5

    Time discretisation:constant tn = n∆t

    increasing tn =

    (n +

    (n−1)2N

    )∆t

    graded tn = N∆t( n

    N

    )2Spatial discretisations

    Mesh 1 Mesh 2 Mesh 3

    Martin Schanz gCQM: Acoustics and Thermoelasticity 27 / 39

  • Temperature solution: gCQM, graded

    0 1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    time t [s]

    tem

    pera

    ture

    θ[K

    ]

    mesh 1mesh 2mesh 3analytic

    Martin Schanz gCQM: Acoustics and Thermoelasticity 28 / 39

  • Displacement solution: gCQM, graded

    0 1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    time t [s]

    disp

    lace

    men

    tux[m

    ]

    mesh 1mesh 2mesh 3analytic

    Martin Schanz gCQM: Acoustics and Thermoelasticity 29 / 39

  • Temperature solution: error, mesh 2

    0 1 2 3 4

    0

    0.5

    1

    1.5

    ·10−2

    time t [s]

    err a

    bs

    mesh 2, constantmesh 2, gradedmesh 2, increasing

    Martin Schanz gCQM: Acoustics and Thermoelasticity 30 / 39

  • Temperature solution: error, mesh 3

    0 1 2 3 4

    0

    0.2

    0.4

    0.6

    0.8

    1

    ·10−2

    time t [s]

    err a

    bs

    mesh 3, constantmesh 3, gradedmesh 3, increasing

    Martin Schanz gCQM: Acoustics and Thermoelasticity 31 / 39

  • Displacement solution: error, mesh 2

    0 1 2 3 4

    0

    0.5

    1

    1.5

    ·10−2

    time t [s]

    err a

    bs

    mesh 2, constantmesh 2, gradedmesh 2, increasing

    Martin Schanz gCQM: Acoustics and Thermoelasticity 32 / 39

  • Displacement solution: error, mesh 3

    0 1 2 3 4

    1

    2

    3

    4·10−3

    time t [s]

    err a

    bs

    mesh 3, constantmesh 3, gradedmesh 3, increasing

    Martin Schanz gCQM: Acoustics and Thermoelasticity 33 / 39

  • Temperature error L2 mesh 3

    10−1.8 10−1.6 10−1.4 10−1.2 10−1

    10−5

    10−4

    time step size ∆t

    err re

    lmesh 3, constmesh 3, gradedmesh 3, increasingeoc = 2eoc = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 34 / 39

  • Temperature error Lmax mesh 3

    10−1.8 10−1.6 10−1.4 10−1.2 10−1

    10−2.5

    10−2

    10−1.5

    time step size ∆t

    err a

    bsmesh 3, constmesh 3, gradedmesh 3, increasingeoc = 0.7eoc = 1

    Martin Schanz gCQM: Acoustics and Thermoelasticity 35 / 39

  • Displacement error L2 mesh 3

    10−1.8 10−1.6 10−1.4 10−1.2 10−110−3

    10−2

    time step size ∆t

    err re

    l

    mesh 3, constmesh 3, gradedmesh 3, increasingeoc = 1.2

    Martin Schanz gCQM: Acoustics and Thermoelasticity 36 / 39

  • Displacement error Lmax mesh 3

    10−1.8 10−1.6 10−1.4 10−1.2 10−1

    10−3

    10−2

    time step size ∆t

    err a

    bs

    mesh 3, constmesh 3, gradedmesh 3, increasingeoc = 0.5eoc = 1.3

    Martin Schanz gCQM: Acoustics and Thermoelasticity 37 / 39

  • Conclusions

    Indirect BE formulation in time domain for absorbing BC in acoustics

    Direct BE formulation for uncoupled thermoelasticity

    Time discretisation with generalized Convolution Quadrature Method

    Expected rate of convergence in time

    Application to real world problems possible

    Fast methods to compress matrices is to be done

    Fast method only for matrix-vector products

    Possible extension to variable space-time formulation

    Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39

  • Conclusions

    Indirect BE formulation in time domain for absorbing BC in acoustics

    Direct BE formulation for uncoupled thermoelasticity

    Time discretisation with generalized Convolution Quadrature Method

    Expected rate of convergence in time

    Application to real world problems possible

    Fast methods to compress matrices is to be done

    Fast method only for matrix-vector products

    Possible extension to variable space-time formulation

    Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39

  • Conclusions

    Indirect BE formulation in time domain for absorbing BC in acoustics

    Direct BE formulation for uncoupled thermoelasticity

    Time discretisation with generalized Convolution Quadrature Method

    Expected rate of convergence in time

    Application to real world problems possible

    Fast methods to compress matrices is to be done

    Fast method only for matrix-vector products

    Possible extension to variable space-time formulation

    Martin Schanz gCQM: Acoustics and Thermoelasticity 38 / 39

  • Graz University of TechnologyInstitute of Applied Mechanics

    Application of generalized Convolution Quadraturein Acoustics and Thermoelasticity

    Martin Schanz

    joint work with Relindis Rott and Stefan Sauter

    Space-Time Methods for PDEsSpecial Semester on Computational Methods in Science and EngineeringRICAM, Linz, Austria, November 10, 2016

    > www.mech.tugraz.at

    Generalized convolution quadrature method (gCQM)Quadrature formulaAlgorithm

    Acoustics: Absorbing boundary conditionsBoundary element formulationAnalytical solutionNumerical examples

    Thermoelasticity: Uncoupled formulationBoundary element formulationNumerical example