9
Journal of Glaciology, Vcl. 27, Nc. 95, 1981 APPLI CATION OF THE GRAVITY FLOW THEORY TO THE PERCOLATION OF MELT WATER THROUGH FIRN By W. AMBAcH, M. BLUMT HALER, and P. KIRCHLECH N ER (Institut fur Medizinische Physik, UniversiU it Inn sbruck, Mull erstrasse 44, A-602o Inn sbruck, Austri a) ABSTRACT. Application of the gravity fl ow theory to the percola ti on of melt wat er through the firn in the accumulati on area of a te mp erat e gl acier expl a ins the occ urr en ce of shock fronts in th e melt- wat er flux. The time of propagation of a shock front mov ing from the surf ace th rough the e ntir e firn was calculated und er vari ous assumptions. Va rious time input fun ctions of melt-water flux at the surf ace with consta nt total input volumes yield only slight differen ces in th e ti me of propagation of the shock fro nt at gr eater depths. The depe nd ence of the time of propagation of a shock fr ont on the input volume, on snow parameters, and on the total thi ckn ess of th e firn was calculated. An a pproximately lin ea r rela ti on was fo und to exi st between the time of propagation of a shock front movin g t hr ough the firn and th e total thic kn ess of th e fi rn. Th e dr ainage of melt water fr om th e firn a ft er th e su mme r abla ti on period is also quan titatively explained by th e grav ity fl ow th eory. All res ult s are in good agr eeme nt with ex pe rime nt al data. REsuME . Applica tion de la thtf orie de l'ecoulement gravitaire a la percolation de l' eau de ji/.J ion a trave rs le IlI !Ve. L'appli cati on de la theorie des ecoulement s grav ita ires a la percol"). tion des eau x de fusion a tr avers le neve dans la zo ne d 'accumul ation d'un glacier te mp ere, explique qu' il pui sse se produire des a-coups dans le flux d' ea u de fusion. Le temps de propagation d' un fro nt d'ecoul emen t dep uis la surf ace jusqu 'a la tota li te du neve a ete calc ule sous diff ere nt es hypotheses. Diff erents types de modul at ion dans le temps des apports d 'eau de fusion en s urf ace pour un a pp ort total consta nt ne provoque nt que de faibles va ri ations dans le temps de propagation du fr ont d 'ecoul ement aux plus gr a nd es profonde ur s. On a calcule comme nt le volume des app ort s, I'et at de la neige et l' e pai sse ur totale du neve, influait sur le te mps d e prop aga tion du front d' ecoule- me nt. On a tr ouve un e rel ation a peu pr es linea ire entre le te mps d e propagation du fro nt d' ecoul eme nt a tra vers le neve, et l' epaisseur totale de celui-ci. La vid an ge de I'eau d e fo nt e a partir du n eve a pres la periode d' abl a tion estivale est auss i e xpliquee qua ntit ati veme nt par la theo ri e de l'ecouleme nt gr a vit aire. Tous les r es ult ats sont en bon acco rd av ec les donnees ex pe riment ales. Z USAMMENFASSUNG . D ie Anwendung der gravity flow T heorie azif dw Sickerfluss des Schmelzwassers durch den Firnkor per. Di e Anwendu ng d er gravity flow T h eorie a uf den Sickerfluss des Schmelzwassers du rch den Firnko rp er d es Akkumulationsgebi et es eines te mp erierten Gletschers erklart das Auftr eten von Sch ock- fronten im Schmelzwasserfluss . Die La ufzeit einer Schockfro nt vo n der Oberfl ac he dur ch den ges amt en Firnkorp er wurd e unt er verschi edenen Ann a hmen berechn et. Bei gleich grossem Schmel zwasser volumen al s Input an der Ob erfl ac he und verschiedenen zeitlichen Inpu tfunktionen ergeben sich in gr osser er Ti efe nur geringe Unt ersc hiede fur die La ufzeit der Sch oc kfront. Die Abha ngigkeit der La ufze it der Schoc kfr ont vom Input vo lumen, von Schn eepa ra metern und vo n de r Gesamtmachti gkeit des Firnko rp ers wurd e berechnet . Zwischen der La uf zeit der Schockfront dur ch den Firnk orper und der Gesamtma chtigk eit d es Firns ergibt si ch eine ann ahernd linear e Beziehun g. Die Abn a hme d es Sch melzwasserflusses im Firnkorp er am End e der sommerlichen Ablationsperiode wur de ebenf alls die gr av ity fl ow Th eorie qu a ntitati v erklart. Alle Erge bni ss e sind mit exp erime nt ell en Daten in gut er Ubereins timmung. LIST OF SYMBOLS a m-I S-I d m k m 2 n q ljh qo, qmax l/h S t, to s S* , Si u m 3 /m 2 S U max m 3 /m 2 S z m cP cPo, cP24 Pi, pw kg/m3 constant: 5.47 X 10 6 m- I S- I for water at o oe me an grain size permeability at maximum saturation power (cf. Equation (I)) melt-water flow initial flow and maximum flow respectively saturation (water volume /pore volume) time and initial time respectively effective saturation and irredu cible saturation respectively water flux amplitude of sinusoidal input flux depth, positive in the direction of gravity porosity (pore volum e/ total volume) porosity at the surfa ce and at 24 m depth of firn resp e ctively density of ice a nd of water r es pec tively 67 Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

Journal of Glaciology, Vcl. 27, Nc. 95, 1981

APPLI CATION OF THE GRAVITY FLOW THEORY TO THE PERCOLATION OF MELT WATER THROUGH FIRN

By W. AMBAc H , M . BLU MT HALER, and P. KIRCHLECHN ER

(Institut fur Medizinische Physik, UniversiUit Innsbruck, Mullerstrasse 44, A-602o Innsbruck, Austria)

ABSTRACT. Application of the gravity flow theory to the percola tion of melt water through the firn in the accumulation area of a temperate glacier expla ins the occurrence of shock fronts in the melt-water flux. The time of p ropagation of a shock front moving from the surface through the entire firn was calcula ted under various assumptions. Various time input functions of melt-wa ter flux at the surface with constant tota l input volumes yield only slight differences in the time of propaga tion of the shock front at greater depths. The dep endence of the time of propagation of a shock front on the input volume, on snow pa rameters, and on the total thickness of the firn was calcula ted. An a pproximately linear relation was found to exist between the time of propagation of a shock front moving through the firn a nd the total thickness of the fi rn . The dra inage of melt water from the firn after the su mmer ablation period is a lso quantita ti vel y explained by the gravity flow theory. All results are in good agreem ent with experimental data.

REsuME. Application de la thtforie de l'ecoulement gravitaire a la percolation de l' eau de ji/.Jion a travers le IlI!Ve. L'application de la theorie d es ecoulements gravita ires a la percol"). tion des eau x de fusio n a travers le neve da ns la zone d 'accumula tion d'un glacier tempere, explique qu ' il puisse se produire des a -coups da ns le flux d'eau de fusion. Le tem ps d e propagation d'un front d 'ecoulement depuis la surface jusqu'a la totalite du neve a ete calcule sous differentes hypotheses. Differen ts types de modulation dans le temps des apports d 'eau de fusion en surface pour un apport total consta nt ne provoquent que de faibles varia tions da ns le temps de propagation du front d 'ecoulement a ux plus gra ndes profondeurs. On a calcule comment le volume des apports, I'eta t de la neige et l' epaisseur totale du neve, influait sur le temps de propagation du front d'ecoule­ment. On a trouve une rela tion a peu pres lineaire entre le temps d e propagation du front d' ecoulement a travers le n eve, et l' epaisseur totale de celui-ci. L a vidange de I'eau d e fonte a partir du neve apres la periode d'abla tion estivale est aussi expliquee quantita ti vem ent par la theorie de l'ecoulement gra vita ire. T ous les resulta ts sont en bon accord avec les donnees experimentales.

ZUSAMMENFASSUNG. D ie Anwendung der gravity flow T heorie azif dw Sickerfluss des Schmelzwassers durch den Firnkorper. Die Anwendung der gravity flow T h eorie a uf den Sickerfluss des Schm elzwassers durch den Firnkorper des Akkumula tionsgebietes eines temperierten Gletsch ers erklart das Auftreten von Schock­fronten im Schmelzwasserfluss. Die Laufzeit ein er Schockfront von der Oberflache durch den gesamten Firnkorper wurde unter verschiedenen Annahmen berechnet. Bei gleich grossem Schmelzwasservolumen als Input a n der Oberflache und verschiedenen zeitlich en Inputfunkti one n ergeben sich in grosser er Tiefe nur geringe Unterschiede fu r d ie La ufzeit der Schockfront. Die Abha ngigkeit der Laufzeit d er Schockfront vom Inputvolumen, von Schneep a rametern und von der Gesamtmachtig keit des Firnkorpers wurde berechnet . Zwisch en d er Laufzeit der Sch ockfront durch d en Firnkorper und d er Gesamtmachtigkeit des Firns ergibt sich eine annahernd lineare Beziehung. Die Abnahme des Schmelzwasserflusses im Firnkorper am Ende der sommerlichen Ablationsperiode wurde ebenfa lls dur~h die gravity flow Theorie qua ntitativ erklart. Alle Ergebnisse sind mit experimentellen Daten in gut er U bereinstimmung.

LIST OF SYMBOLS

a m-I S-I d m k m 2

n q l jh

qo, qmax l /h S

t, to s S* , Si

u m 3/m 2 S Umax m 3/m2 S

z m cP

cPo, cP24 Pi, pw kg/m3

constant: 5.47 X 106 m - I S- I for water at ooe mea n grain size permeability at maximum saturation power (cf. Equation ( I )) melt-water flow initial flow and maximum flow respectively saturation (water volume/pore volume) time and initial time respectively effective saturation and irreducible saturation respectively water flux amplitude of sinusoidal input flux depth, positive in the direction of gravity porosity (pore volume/ total volume) porosity a t the surface and at 24 m depth of firn respectively density of ice and of wa ter respectively

67

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 2: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

68 JOURNAL OF GLACIOLOGY

I. INTRODUCTION

The gravity flow theory was applied by Colbeck and Davidson (1973) and by Denoth and others ( 1979[b]) for describing the percolation of melt water through homogeneous snow. In this theory it is assumed that percolation through snow is caused by gravity alone. Phenomena due to capillary forces are neglected (Colbeck, 1971 ).

Gravity flow theory is based on Darcy's law. It is furthermore assumed that the relative permeability of the water phase is related to the saturation by a power law. * The flux u then depends on the effective saturation S* as follows:

u = akS*n, (I)

where a is a constant and k (mz) is the permeability at maximum saturation. The power n probably depends on the stage of metamorphosis (Denoth and others, 1979[a], Cb]). Between the saturation S, the irreducible saturation Si, and the effective saturation S*, the relation is

S-Si S*--­- I-Si'

This relation combines with the continuity equation to give

ou ou n(ak) I / nu1n- Il / n -+cfo( I -Si) - = 0

OZ ot'

where z is the depth, positive in direction of gravity, t the time, and cfo the porosity. In the present paper, the formulation of gravity flow theory according to Colbeck and

Davidson (1973) and Denoth and others (I979[b]), is applied to the percolation of melt water through firn in the accumulation area of a temperate glacier with non-uniform porosity. Thus a linear depth profile of porosity is assumed, inhomogeneities of firn are, however, neglected. Gravity flow theory is applied for the following analyses:

the propagation of the shock front for various histories of melt-water input at the surface, the influence of snow parameters on the propagation of the shock front, and the drainage of melt water from the firn after the summer ablation period.

2. ANALYSIS OF THE SHOCK FRONT BY MEANS OF THE GRAVITY FLOW THEORY

The formation of a shock front in the percolation of melt water may be explained qualita­tively in the following simple manner: the percolation velocity of melt water increases with increasing flux. Larger fluxes that occur at a later time may thus catch up with smaller, earlier fluxes. The confluence may cause a sudden increase in the melt-water flux, which is called a shock front.

Figure 1 gives an example: two positive half-waves of a sinusoidal function each of 12 h duration (dashed curve) are assumed for the melt-water input at the surface. The resulting melt-water flux at a depth of 24 m is shown versus time (solid curve). After 77 hand 101 h, sudden increases of melt-water flux occur which represent the shock fronts. This variation of the melt-water flux, was calculated by means of the gravity flow theory assuming a linear depth profile of porosi ty. The analysis was made by means of the method of characteris tics as applied to differential equation (2).

• This relation is attributed in the hydrological literature to S. F. Aver'yanov in a paper in Russian entitled "Concerning the permeability of subsurface soils in the case of incomplete saturation", In zhenernyy Sbornik, Tom 7, 1950, but we have been unable to see the original paper. A briefer account appeared in Aver'yanov (1949)'

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 3: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

MELT-WATER PERCOLATION

~

~r---------r--------.r-------~---------.----------, Me <D I

~

11)

cl

input

~ Umax

flux at 24m

o~--~--~~------~~------~--------~--------~

o 25 50 75 100 I (h)

69

Fig. I. Calculated melt-water flux at 24 mjirn depth (solid curve) and time function of the melt-water input flux at the surface (dashed curve ). The calculation was based on the following assumptions,' amplitude of the melt water input flux, Umax = I X 10- 6 mJ /m2 s, mean values of snow parameters in accordance with Figure 2, curve B, linear porosity profile from </>0 = 0·5 at the surface to </> = O. I at the lower boundary of the firn and n = 3 for the power in Equation (I).

2. I. Dependence oj the propagation of the shock front on the input function

The propagation of the shock front has been calculated for the following variations with time of the melt-water input at the surface under otherwise constant conditions:

a sinusoidal input function (positive half-wave), a semicircular input function, and a triangular, non-symmetric input function.

It was furthermore assumed that the total daily volume of the melt water is constant irres­pective of the input function. According to Figure I, the shock front at a depth of 24 m is observed after about 77 h. The times at which the shock fronts occur with various input functions may differ by up to 3 h. The following values of snow parameters were used for the analysis:

amplitude of the sinusoidal input flux porosity at the surface and at 24 m depth, with a linear decrease

between mean irreducible saturation mean grain size power in Equation (I)

cPo = 0·5, cP24 = 0.1

Si = 0.03

d = 1.3 X 10-3 m n=3

The permeability at maXImum saturation k was calculated following the method of Shimizu (1970):

k = 0.077d2exP [-7.8(I-cP)pi/Pw],

where Pi is the density of ice and pw the density of water.

2.2. Dependence of the propagation of the shock front on the amount if melt-water percolation and on the snow structure

The time it takes to propagate a shock front through the entire firn depends on the amount of melt-water flux at the surface and on the snow parameters. First, the time of propagation was calculated for a total firn thickness of 24 m. This depth was chosen, because theoretical results should be directly comparable with experimental data.

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 4: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

JOURNAL OF GLAC1OLOGY

Figure 2 shows the calculated relation between the time of propagation of the shock front and the assumed amplitude of the melt-water flux at the surface. The amplitude of the melt­water flux at the surface ( urnax) given on the vertical axis, corresponds to the amplitude of a positive half-wave of a sinusoidal input function having 12 h duration. The curves A and c are valid for possible limiting values of the snow parameters; curve B holds for mean values. For this analysis, the firn was assumed to have a total thickness of 24 m with a linear profile of porosity with depth. Snow parameters are the grain size d and irreducible saturation Si. The numerical data can be read directly from Figure 2, which shows, for example, that an amplitude of the melt-water input flux of Urnax = I X 10-6 m 3/m 2 s and the given limiting values of the snow parameters (curves A and c) may give between 55 and 93 h as the time of propagation for a shock front from the surface down to 24 m firn depth. The assumed melt­water flux corresponds to a net ablation rate of 2.4 g/cm2 d.

(/)

NE Si ;:..... d(mm)

E A 2,0 0 ,08

)( B 1,3 0,03 E C 1,0 0,02 ~

o 50 100 150 At(hJ Fig. 2. Dependence of the time of propagation of the shock front down to 24 m firn depth on the amplitude qf the melt-water flux

at the surface (positive part of a sine function with a duration of input of 12 h ) . The calculation was based on the following assumptions: Linear porosity profile from rPo = 0.5 at the surface to rP = O. I at the lower boundary of the ./irn and n = 3 for the power in Equation (I). Curve B holds for mean values of the snow parameters in the firn, curves A and c give possible limiting values.

2·3. Dependence of the propagation of the shock front on the total firn thickness

Figure 3 gives the time of propaga tion of a shock fron t through the firn as a function of the total thickness of the firn. The curve expresses an approximately linear relation, which means that the mean velocity of propagation of the shock front is approximately independent of the total thickness of the firn . Figure 3, for example, shows that the propagation of a shock fron t from the surface down to the lower boundary of the firn, i.e. 20 m, takes 64 h . Hence the mean rate of propagation of a shock front in the firn is 0.3 I m /h, and this value is approxi­mately independent of the total thickness of the firn.

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 5: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

MELT - WATER PERCOLATION

The relation given in Figure 3 was calculated under the following assumptions:

Linear porosity profile having the values rPo = 0.5 at the surface and rP = 0.1 at the lower boundary of the firn, independent of the total firn thickness.

Amplitude of the melt-water input flux at the surface Urn• x = I X 10-6 m 3/m2 shaving the shape of the positive half-wave of a sine function.

Mean snow parameters in accordance with curve B of Figure 2.

For the accumulation area of a temperate glacier with local differences in the total thickness of firn, the time lag between snow melt at the surface and inflow of the shock front into the water table at the lower boundary of the firn may be read for any value of total firn thickness from Figure 3.

, , , \ , ,

4 -6 3 2 Umax = 1·10 m/m 5

6 d 1,3 mm

8 Si 0,03

10

12

14

16

18

20

22

24m

0 10 20 30 40 50 60 70 At (h)

Fig. 3. Propagation time of the shock front as dependent on the total thickness of the firn layer for mean values of snow parameters (Fig. 2, curve B) andfor an amplitude of the melt-water flux at the suiface Urnax = I X ro- 6 m3/m2 s. The porosity is assumed to decrease linearly from </>0 = 0.5 at the surface to </> = O. I at the lower boundary of the firn. n = 3 was taken for the power in Equation (I).

3. COMPARISON BETWEEN GRAVITY FLOW THEORY AND EXPERIMENTAL DATA

In former experimental studies a time lag of 50- 100 h was found between the maxima of snow melt at the surface resulting from weather conditions and the corresponding maxima of melt-water flux at the lower boundary of the firn at 24 m depth (Ambach and others, 1978; H. Behrens and others, in press). These observed time lags, reviewed in Table I, are in good agreement with the time of propagation of a shock front through the firn calculated by means of the gravity flow theory. Figure 2 shows the time of propagation of the shock front to be 77 h for a total firn thickness of 24 m and for an amplitude of a melt-water flux at the surface of Urna" = I X 10-6 m 3/m2 s, in accordance with a net ablation rate of 2.4 g/cm2 d, and for

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 6: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

JOURNAL OF GLACIOLOGY

mean values of snow parameters (Fig. 2, curve E). A ±50% change in amplitude of the melt-water input at the surface causes the time of propagation to change from 60 to 120 h. These times of propagation correspond to mean velocities of propagation of the shock front between 0.4 and 0.2 m /h. The result compares with data given by other authors on the percolation velocities of mel t water through the firn of a glacier: 0.1 m /h (Krimmel and others, 1973),0.12 m /h (Vallon and others, 1976),0.22 m /h (Sharp, [1952]) and 0.35 m /h (Ambach and others, 1978). Furthermore, measurements in natural snow cover show similar results: 0.07-0.18 m /h (Fujino, 1968), 0.04-0.22 m /h (Kobayashi, 1973), and 0.30-0.66 m/h (Wakahama, 1968). *

TABLE I. TIME LAG 6.t BETWEEN THE MAXIMUM SNOW

MELT AT THE SURFACE AND THE MAXIMUM MELT­

WATER INFLOW qmax AT 24 m FIRN DEPTH IN THE

ACCUMULATION AREA OF KESSELWANDFERNER IN 1975 AND 1977 (Ambach and others, 1978, fig. 2 and Behrens and others, in press, fig. 4). As THE

EVALUATION WAS BASED ON DAILY MEAN VALUES, THE RESOLUTION FOR THE TIME LAG !:1t IS ONE DAY

Date !:1t qmax d l/h

23 July 1975 3 13 5 August 1975 2 34 14 August 1975 4 18 21 August 1975 2 16

17 September 1975 3 IQ

28 September 1975 5 6 25 July 1977 2 13

7 August 1977 4 9 18 August 1977 4 7 30 August 1977 4 10

During a period of strong ablation, diurnal fluctuations of the melt-water flux in 24 m firn depth have been observed in the form of shock fronts in the accumulation areas ofKessel­wandferner (Ambach and others, 1978, fig. 3d). These results are also in agreement with gravity flow theory. Figure 4 compares theoretical and experimental results. In these calculations, the amplitude of the melt-water input flux at the surface was again assumed to be Umax = 1 X 10- 6 m 3/m 2 s and again mean values of the snow parameters (Fig. 2, curve E)

were used. Furthermore the melt-water input flux at the surface was assumed to be periodic over several days. The daily variations of the calculated melt-water flux and the occurrence of the shock front are in satisfactory agreement with the measured results. Here, however, it must be remembered that the maximum values of melt-water flux at a firn depth of 24 m correspond to the melt-water input at the surface with a time lag of 3 d. This displacement is due to the time of shock-front propagation.

Another feature confirming the applicability of the gravity flow theory to the calculation of melt-water flux in the accumulation area of an Alpine glacier is shown in Figure 5. It describes the drainage of melt water through the firn after the summer ablation period, being measured as inflow into the impermeable part of a 30 m deep pit (Ambach and others, 1978, fig. 2, first half of October). The decrease in the melt-water inflow can be described by the relation:

• These measurements were carried out using tracers and the data give mean particle velocities v. From

theoretical considerations, in general v < ddz I ,where dd

Z I is the velocity of propagation of the shock front for t u t 1L

a constant flux u.

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 7: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

MELT-WATER PERCOLATION 73

40

30

20~-L----~----~----~--~~--~-----L----~

4.8 5.8 6.8 7.8 8.8 9 .8 10.8.1975 Fig. 4. Diurnal variations of the melt-water flux at 24 m depth calculated for mean values of the snow parameters (Fig. 2, curve B) andfor an amplitude of the melt-water flux at the surface ofumax = I X IO- 6 m3/m> s. The snow melt is assumed to be periodic over several days (positive half-wave of a sine function of I2 h duration ). Furthermore, a linear porosity profile was assumed from </>0 = 0.5 at the surface to </> = O. I at the lower boundary of the firn and n = 3 for the power in Equation (I) . The plotted dots are data obtainedfrom continuous records (Ambach and others, I978, fig· 3d).

I

\ 2 • -\

'.~. • • . ... .. . -

••• e---. • ~ • •

10.10. 20.10. 1.11. 10.11. 1975 Fig. 5. Drainage of the melt-lJ.,ater fluxfrom the firn of Kesselwandferner (Ot :r.tal Alps) after the summer ablation period I975. The gravity flow theory (solid curve ) was applied for the calculation. The data are daily means of the melt-water flux determined from continuous records (Ambach and others, I978, fig. 2, period: first half of October).

The above relation follows from the gravity flow theory used so far (see Appendix). In Equation (3), q is the melt-water flow (expressed as volume flux in m 3/s) at the lower boundary of the firn, t the time, and qo and to are constants. The parameter n (n> I) is the power in the relation between the relative permeability and saturation (cf. Equation (I)) . The parameters n and to were determined by a least-square calculation. The calculated melt-water inflow and the values measured are shown in Figure 5. The most important result is that by optimization the power n becomes n = 2.8. Experiments made by Colbeck and Davidson (1973) on homogenized snow yielded a mean value of n = 3. Furthermore,

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 8: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

74 JOURNAL OF GLACIOLOGY

extended experiments by Denoth and others (1979[a], [b] ), on homogenized snow, showed n to vary between 1.4 and 4.6. It was found that this value probably depends on the snow structure, varying with the stage of metamorphosis.

MS. received 27 July I979 and in revised form 5 October I979

APPENDIX

DERIVATION OF THE RELATION FOR THE DRAINAGE OF MELT WATER FROM FIRN AFTER THE

ABLATION PERIOD

The conditions assumed are

(a) The differential equation for the melt-water flux in the snow is given by Equation (2)

OU ou n(ak) , /nu (n-I) /n az+ 4>(I-Sl) ot = o.

(b) We assume a linear porosity profile in the firn

4>(z ) = 4>o-cz

with z = 0 at the surface and c the gradient of porosity. (c) The permeability is calculated according to Shimizu (1970)

k = 0.077d2 exp [-7.8(1 -4» Pl/pw],

For the assumed porosity profile the permeability also depends on z:

k(z) = f3 exp [y(4)o-cz)],

where f3 = 6.0 X IO-sd2(m2) and y = 7· 15. For the characteristics of the differential equation we find:

After integration

dz I - n(af3 )I1n exp [y(4)o-cz )/n] u(n-I)/n dt u - (I-Sl)(4>o-CZ) .

n I-SI t-to = - exp [-y4>o/n]{exp [ycz/n](4)o-cz+ n/ y )-4>o-n/ y}-( (3 )' 1 u(l-n) /n, yc n a n

where t = to for z = o. Hence to is the starting time of a certain u value at the surface which is given by the input function. The starting time of the fluxes considered for drainage of the melt water from the firn after an ablation period lies immediately at the end of the last input. The starting time to is assumed to be constant for all u values, as the time of propagation of these u values are significantly longer than the differences between the start times. Thus the above equation is valid for all u values at constant to, and for a given depth z:

u = K (t-to)n/(l-n) .

The inflow into a reservoir is obtained by multiplying by the catchment area. Hence

q = qo(t-to)n/(l-n),

where K and qo are constants.

REFERENCES

Ambach, W ., and others. 1978. Untersuchungen der Wassertafel am Kesselwandferner (Otztaler A1pen) an einem 30 Meter tiefen Firnschacht, von W. Ambach [and 9 others]. Zeitschriftfur Gletscherkunde und Glazialgeologie, Bd. 14, Ht. I, p. 61-71.

Aver-'yanov, S. F. 1949. Zavisimost' vodopropitsayemosti pochvo-gruntov ot soderzhaniya v nikh vozdukha [Dependence of permeability of subsurface soils on their air content]. Doklady Akademii Nauk SSSR, Tom 69, No. 2, p. 141-44.

Behrens, H., and others. In press. Neue Ergebnisse zur Beweguns_ des Schmelzwassers im Firnkorper des Akkumu­lationsgebietes eines Alpengletschers (Kesselwandferner-Otztaler A1pen), von H. Behrens [and 7 others]. Zeitschrift fur Gletscherkunde und Glazialgeologie.

Colbeck, S. C. 1971. One-dimensional water flow through snow. V.S. Cold Regions Research and Engineering Laboratory. Research Report 296.

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.

Page 9: APPLI CATION OF THE GRAVITY FLOW THEORY TO THE …€¦ · dans la zone d'accumulation d'un glacier tempere, explique qu'il puisse se produire des a-coups dans le flux d'eau de fusion

MELT-WATER PERCOLATION 75 Colbeck, S. c., and Davidson, G. 1973. Water percolation through homogeneous snow. (In [International

Hydrological Decade.] The role oJ snow and ice in hydrology. Proceedings oJ the Banff symposia, September 1972. Paris, UNESCO; Geneva, WMO; Budapest, IAHS, Vo!. I, p. 242-57. ([Publication No. 107 de l'Association Internationale d'Hydrologie Scientifique.] ))

Denoth, A., and others. 1979[a]. Some experimental data on water percolation through homogeneous snow, [by] A. Denoth, W. Seidenbusch, M. B1umthaler, P. Kirchlechner. (In Col beck, S. C., and Ray, M., ed. Proceedings oJ a meeting on modeling oJ snow cover runoff, 26-28 September 1978, [held in] Hanover, New Hampshire . H anover, N.H., U.S. Cold Regions R esearch and Engineering Laboratory, p. 253-56.)

Denoth, A., and others. 1979[b]. Study of water drainage from columns of snow, [by] A. Denoth [and 5 others). U.S. Cold Regions Research and Engineering Laboratory. R eport 79-1.

Fujino, K. 1968. Sekisetsu naibu de no yiisetsu-sui no ryiika sokudo no sokutei. I [Measurement of flowing down speed of melt water in a snow cover. I]. Teion-kagaku: Low Temperature Science, Ser. A, [No.] 26, p.87- loo.

Kobayashi, D. 1973. Sekisetsuchii no yiisetsusui no himaku ryiika sokudo. I [Flow-down speed of melt water in snow cover. I]. Teion-kagaku: Low Temperature Science, Ser. A, [ 0.] 31, p. 135-42.

Krimmel, R. M., and others. 1973. Water flow through a temperate glacier, [by] R. M. Krimmel, W. V. Tangborn, and M. F. Meier. (In [International Hydrological Decade.] The role oJ snow and ice in hydrology. Proceedings oJ the Banff symposia, September 1972. Paris, UNESCO; Geneva, WMO; Budapest, IAHS, p. 401-16. ([Publica­tion No. 107 de l'Association Internationale d'Hydrologie Scientifique.]))

Sharp, R. P. [1952.] Meltwater behavior in firn on upper Seward Glacier, St Elias Mountains, Canada. Union Geodisique et Geophysique Intemationale. Association Intemationale d'Hydrologie Scientijique. Assemblee generale de Bruxelles, 1951. Tom. I, p. 246-53. (Publication No. 32 de l'Association Internationale d'Hydrologie. )

Shimizu, H. 1970. Air permeability of deposited snow. ContributionsJrom the Institute of Low Temperature Science, Ser. A, No. 22.

Vallon, M., and others. 1976. Study of an ice core to the bedrock in the accumulation zone of an Alpine glacier, by M. Vallon, J.-R. Petit, and B. Fabre. Journal oJGlaciology, Vo!. 17, No. 75, p. 13-27.

Wakahama, G. 1968. Sekisetsu-nai ni okeru yiisetsu-sui no ido. Ill. Suiro ryiika sokudo himaku ryiika sokudo [Infiltration of melt water into snow cover. Ill. Flowing down speed of melt water in a snow cover]. T eion­kagaku: Low Temperature Science, Ser. A, [No.] 26, p. 77-86.

Downloaded from https://www.cambridge.org/core. 02 May 2021 at 05:22:06, subject to the Cambridge Core terms of use.