97
Appendices Appendix 1: Wind Energy Table A1.1 Wind turbine standards Standard no. Description AGMA 6006-A03 Standard for Design and Specification of Gearboxes for Wind Turbines – Supersedes AGMA 921-A97 BSI BS EN 45510-5-3 Guide for Procurement of Power Station Equipment – Part 5–3: Wind Turbines BSI BS EN 50308 Wind turbines Protective measures Requirements for design, operation and maintenance BSI PD CLC/TR 50373 Wind turbines Electromagnetic compatibility BSI BS EN 61400-12 Wind Turbine Generator Systems – Part 12: Wind Turbine Power Perfomance Testing – IEC 61400-12: 1998; BSI PD IEC WT 01 IEC System for Conformity Testing and Certification of Wind Turbines – Rules and Procedures CSA F417-M91 CAN/CSA Wind Energy Conversion Systems (WECS) – Performance – General Instruction No 1 DIN EN 61400-25-4 (DRAFT) Wind turbines – Part 25-4: Communications for monitoring and control of wind power plants – Mapping to XML based communication profile (IEC 88/241/CDV:2005); German version prEN 61400-25-4:2005, text in English DS DS/EN 61400-12-1 Wind turbines – Part 12-1: Power performance measurements of electricity producing wind turbines DNV DNV-OS-J101 Design of Offshore Wind Turbine Structures – Incorporates Amendment: 10/2007 GOST R 51237 Nontraditional power engineering. Wind power engineering. Terms and definitions (continued) T.K. Ghosh and M.A. Prelas, Energy Resources and Systems: Volume 2: Renewable Resources, DOI 10.1007/978-94-007-1402-1, © Springer Science+Business Media B.V. 2011 631

Appendices - Springer978-94-007-1402-1/1.pdf · Appendices Appendix 1: Wind Energy Table A1.1 Wind turbine standards Standard no. Description AGMA 6006-A03 Standard for Design and

  • Upload
    lebao

  • View
    222

  • Download
    1

Embed Size (px)

Citation preview

Appendices

Appendix 1: Wind Energy

Table A1.1 Wind turbine standardsStandard no. Description

AGMA 6006-A03 Standard for Design and Specification of Gearboxes for WindTurbines – Supersedes AGMA 921-A97

BSI BS EN 45510-5-3 Guide for Procurement of Power Station Equipment – Part 5–3:Wind Turbines

BSI BS EN 50308 Wind turbines Protective measures Requirements for design,operation and maintenance

BSI PD CLC/TR 50373 Wind turbines Electromagnetic compatibilityBSI BS EN 61400-12 Wind Turbine Generator Systems – Part 12: Wind Turbine

Power Perfomance Testing – IEC 61400-12: 1998;BSI PD IEC WT 01 IEC System for Conformity Testing and Certification of Wind

Turbines – Rules and ProceduresCSA F417-M91 CAN/CSA Wind Energy Conversion Systems (WECS) – Performance –

General Instruction No 1DIN EN 61400-25-4 (DRAFT) Wind turbines – Part 25-4: Communications for

monitoring and control of wind power plants – Mapping toXML based communication profile (IEC88/241/CDV:2005); German version prEN61400-25-4:2005, text in English

DS DS/EN 61400-12-1 Wind turbines – Part 12-1: Power performance measurementsof electricity producing wind turbines

DNV DNV-OS-J101 Design of Offshore Wind Turbine Structures – IncorporatesAmendment: 10/2007

GOST R 51237 Nontraditional power engineering. Wind power engineering.Terms and definitions

(continued)

T.K. Ghosh and M.A. Prelas, Energy Resources and Systems: Volume 2:Renewable Resources, DOI 10.1007/978-94-007-1402-1,© Springer Science+Business Media B.V. 2011

631

632 Appendices

Table A1.1 (continued)

Standard no. Description

IEC 60050-415 International Electrotechnical Vocabulary – Part 415: WindTurbine Generator Systems

IEC 61400-1 Wind Turbine Safety and DesignIEC 61400-1 Ed2 Wind Turbine Safety and Design RevisionIEC 61400-2 Small Wind Turbine SafetyIEC 61400-12 Power PerformanceIEC 61400-11 Noise MeasurementIEC 61400-13 Mechanical Load MeasurementsIEC 61400-22 Wind Turbine CertificationIEC 61400-23 Blade Structural TestingIEC 61400-21 Power QualityIEEE 1547 IEEE Standard for Interconnecting Distributed Resources with

Electric Power Systems

AGMA American Gear Manufacturers Association, BSI British Standards Institution, CSA Cana-dian Standards Association, DIN Deutsches Institut fur Normung e.V, DS Danish StandardsAssociation, IEC International Electrotechnical Commission, IEEE Institute of Electrical andElectronics Engineers Inc.

Appendices 633

Fig. A1.1 Wind power density in California at 50 m

634 Appendices

28°Corpus Christi

ISLAND

PADREGULF OF MEXICO

MATAGORDA ISLAND

VictoriaGalveston

San Antonio

Port ArthurHouston

Laredo

Brownsville

0

0

100

100Kilometers

Miles

Austin

Waco

Fort WorthAbilene

Dallas

Wichita Falls

96° 95° 94°97°98°99°100°

34°

33°

31°

30°1

1 1

1 1 1

1 1 1 1

11111

1 1 1 1

1

1

1

11

1

1 1

11

1

22

2

2

2

2

2 222

2 2 2 2

22222

2 2

2 2

222

22

2

2 2 2

2

2

22

22

2 2

2 2

3

3

3

3

3

3

3

33

3

3

3

3333

3

3

3

29°

27°

26°

32°

28°

34°

33°

31°

30°

29°

27°

26°

32°

96° 95° 94°97°98°99°100°

Fig. A1.2 Average wind power map of East Texas

Appendices 635

Kilometers

Miles

Ridge Crest Estimates

DA

VIS

MT

NS

1

1

1

1

100°101°102°103°104°105°106°

36°

35°

34°

33°

32°

31°

30°

29°

28°

6

55

5

4

4

44

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

22

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

0

100

100

50

50

0

BIG BENDNAT’L PARK

Del Rio

El Paso

San Angelo

OdessaMidland

Lubbock

Amarillo

4

4

4

4

4

4

4

4

4 4

44

4 4

100°101°102°103°104°105°106°

36°

35°

34°

33°

31°

30°

29°

28°

32°

Fig. A1.3 Average wind power map of West Texas

636 Appendices

Fig

.A1.

4M

aps

ofm

ean

80-m

win

dsp

eeds

for

year

2000

for

Nor

thA

mer

ica

(Pri

nted

wit

hpe

rmis

sion

from

Arc

her

CL

,Jac

obso

nM

Z(2

005)

Eva

luat

ion

ofgl

obal

win

dpo

wer

.JG

eoph

ysR

es11

0:D

1211

0.do

i:10

.102

9/20

04JD

D00

5462

)

Appendices 637

Fig

.A1.

5M

aps

ofm

ean

80-m

win

dsp

eeds

for

year

2000

for

Sout

hA

mer

ica

(Pri

nted

wit

hpe

rmis

sion

from

Arc

her

CL

,Jac

obso

nM

Z(2

005)

Eva

luat

ion

ofgl

obal

win

dpo

wer

.JG

eoph

ysR

es11

0:D

1211

0.do

i:10

.102

9/20

04JD

D00

5462

)

638 Appendices

Fig

.A1.

6M

aps

ofm

ean

80-m

win

dsp

eeds

for

year

2000

for

Eur

ope

(Pri

nted

wit

hpe

rmis

sion

from

Arc

her

CL

,Ja

cobs

onM

Z(2

005)

Eva

luat

ion

ofgl

obal

win

dpo

wer

.JG

eoph

ysR

es11

0:D

1211

0.do

i:10

.102

9/20

04JD

D00

5462

)

Appendices 639

Fig

.A1.

7M

aps

ofm

ean

80-m

win

dsp

eeds

for

year

2000

for

Aus

tral

ia(P

rint

edw

ith

perm

issi

onfr

omA

rche

rC

L,J

acob

son

MZ

(200

5)E

valu

atio

nof

glob

alw

ind

pow

er.J

Geo

phys

Res

110:

D12

110.

doi:

10.1

029/

2004

JDD

0054

62)

640 Appendices

Fig

.A1.

8M

aps

ofm

ean

80-m

win

dsp

eeds

for

year

2000

for

Asi

a(P

rint

edw

ith

perm

issi

onfr

omA

rche

rC

L,J

acob

son

MZ

(200

5)E

valu

atio

nof

glob

alw

ind

pow

er.J

Geo

phys

Res

110:

D12

110.

doi:

10.1

029/

2004

JDD

0054

62)

Appendices 641

Fig. A1.9 Maps of mean 80-m wind speeds for year 2000 for Africa (Printed with permission fromArcher CL, Jacobson MZ (2005) Evaluation of global wind power. J Geophys Res 110:D12110.doi: 10.1029/2004JDD005462)

642 Appendices

Fig

.A1.

10W

ind

reso

urce

map

ofR

ussi

aat

50m

(Wit

hpe

rmis

sion

from

Tech

nica

lU

nive

rsit

yof

Den

mar

kN

ils

Kop

pels

All

eB

uild

ing-

403

Dk-

2800

Kgs

.Ly

ngby

Den

mar

k)

Appendices 643

Fig. A1.11 Wind resource map of France at 50 m (With permission from Technical University ofDenmark Nils Koppels Alle Building-403 Dk-2800 Kgs. Lyngby Denmark)

644 Appendices

Fig. A1.12 Wind resource map of Germany at 10 m (With permission from Technical Universityof Denmark Nils Koppels Alle Building-403 Dk-2800 Kgs. Lyngby Denmark)

Appendices 645

Fig. A1.13 Wind resource map of India at 50 m. Most of states are not mapped yet (Withpermission from Technical University of Denmark Nils Koppels Alle Building-403 Dk-2800 Kgs.Lyngby Denmark)

646 Appendices

Appendix 2: Solar Energy

kWh / sq. m

4.8 - 4.6

4.6 - 4.4

5.0 - 4.8

5.2 - 5.0

5.4 - 5.2

5.6 - 5.4

5.8 - 5.6

6.0 - 5.86.2 - 6.0

6.4 - 6.2

6.6 - 6.4

Fig. A2.1 Solar radiation on India (Courtesy of Sun@Home). http://www.sunathome.in/2010/06/overview-of-technologies-opportunities-and-challenges/. Accessed 25 Nov 2010

Appendices 647

Fig. A2.2 Solar resource map for China for 40 km solar concentrator (kWh/m2/day) GlobalEnergy Network Institute, San Diego, CA, USA

648 Appendices

Table A2.1 Use of solar energy in water and air collectors by various countries

Water collectors Air collectors

Country Unglazeda Glazed Evacuated tube Unglazeda Glazeda Total [MWth]

Albania – 34.95 0.17 – 35.12Australia 2,849.00 1,162.00 16.10 – – 4,027.10Austria 426.22 2,064.69 30.09 – – 2,521.00Barbados – 57.96 – – – 57.96Belgium 34.18 93.63 8.66 – – 136.46Brazil 68.21 2,511.25 0.25 – – 2,579.70Bulgaria – 19.32 – – – 19.32Canada 466.14 57.23 3.32 90.97 0.13 617.80China – 7,280.00 72,618.00 – – 79,898.00Cyprus – 556.32 0.67 – – 557.00Czech

Republic10.66 67.96 10.84 – – 89.47

Denmark 14.96 275.70 2.38 2.38 13.13 308.55Estonia – 1.03 – – – 1.03Finland 0.35 10.91 0.91 – – 12.17Francec 73.15 991.55 23.10 – – 1,087.80Germany 525.00 5,448.87 604.79 – – 6,578.65Greece – 2,496.34 4.76 – – 2,501.10Hungary 1.96 28.94 1.79 – – 32.69India – 1,505.00 – – 11.90 1,516.90Ireland – 19.36 5.54 – – 24.90Israel 16.94 3,455.83 – – – 3,472.77Italy 18.39 611.46 72.00 – – 701.86Japan – 4,777.20 88.95 304.06 8.76 5,178.96Jordan – 588.23 5.04 – – 593.27Latvia – 3.75 – – – 3.75Lithuania – 2.42 – – – 2.42Luxembourg – 13.23 – – – 13.23Macedonia – 13.35 0.14 – – 13.49Malta – 20.55 – – – 20.55Mexico 327.31 310.72 – – – 638.03Namibia – 4.19 0.13 – – 4.32Netherlands 240.47 230.65 – – – 471.12New Zealand 4.35 72.04 7.03 – – 83.42Norway 1.12 7.85 0.11 – 0.84 9.92Poland 0.91 138.51 25.71 2.10 1.75 168.98Portugal 0.42 193.23 3.83 – – 197.48Romania – 48.72 – – – 48.72Slovak

Republic– 61.81 6.94 – – 68.75

Slovenia – 81.07 0.81 – – 81.88South Africa 440.03 173.38 – – – 613.40Spain 2.10 814.92 31.92 – – 848.93Sweden 56.00 156.10 20.30 – – 232.40

(continued)

Appendices 649

Table A2.1 (continued)

Water collectors Air collectors

Country Unglazeda Glazed Evacuated tube Unglazeda Glazeda Total [MWth]

Switzerlandb 148.68 303.44 17.79 586.60 – 1,056.52Taiwan – 795.84 82.89 – – 878.74Thailand – 49.00 – – – 49.00Tunisia – 151.57 1.03 – – 152.60Turkey – 7,105.00 – – – 7,105.00United

Kingdom– 194.54 18.90 – – 213.44

United States 19,347.55 1,329.19 404.86 0.07 160.82 21,242.49Total 25,074.11 46,390.78 74,119.76 986.18 197.33 146,768.15

Source of data: Weiss W, Bergmann I, Stelzer R (2009) Solar heat worldwide: markets andcontribution to the energy supply 2007. International Energy Agency Solar Heating and CoolingProgramaIf no data is given: no reliable data base for this collector type availablebUnglazed air collectors in Switzerland: this is a very simple site-built system for hay dryingpurposescFrance: includes Overseas Departments

650 Appendices

Table A2.2 Bandgap energy of several common semiconductors

Material Symbol Band gap (eV) @ 302K

Silicon Si 1.11Selenium Se 1.74Germanium Ge 0.67Silicon carbide SiC 2.86Aluminium phosphide AlP 2.45Aluminium arsenide AlAs 2.16Aluminium antimonide AlSb 1.6Aluminium nitride AlN 6.3Diamond C 5.5Gallium(III) phosphide GaP 2.26Gallium(III) arsenide GaAs 1.43Gallium(III) nitride GaN 3.4Gallium(II) sulfide GaS 2.5Gallium antimonide GaSb 0.7Indium (III) antimonide InSb 0.17Indium(III) nitride InN 0.7Indium(III) phosphide InP 1.35Indium(III) arsenide InAs 0.36Zinc oxide ZnO 3.37Zinc sulfide ZnS 3.6Zinc selenide ZnSe 2.7Zinc telluride ZnTe 2.25Cadmium sulfide CdS 2.42Cadmium selenide CdSe 1.73Cadmium telluride CdTe 1.49Lead(II) sulfide PbS 0.37Lead(II) selenide PbSe 0.27Lead(II) telluride PbTe 0.29Copper(II) oxide CuO 1.2Copper(I) oxide Cu2O 2.1

Sources of data: Streetman BG, Banerjee S (2000) Solid state electronicdevices, 5th edn. Prentice Hall, Upper Saddle River; Wu J (2002)Unusual properties of the fundamental band gap of InN. Appl PhysLett 80:3967; Otfried M (1996) Semiconductor: basic data. Springer,New York; Elliot RJ (1961) Symmetry of excitons in Cu2O. Phys Rev124:340; Baumeister PW (1961) Optical absorption of cuprous oxide.Phys Rev 121:359–362; Kittel C (1986) Introduction to solid statephysics, 6th edn. John Wiley, New York, p 185

Appendices 651

Table A2.3 Physical characteristics of Si and the major WBG semiconductors

Property Si GaAs 6H-SiC 4H-SiC GaN Diamond

Bandgap, Eg(eV) 1:12 1:43 3:03 3:26 3:45 5:45

Dielectric constant, ©ar 11:9 13:1 9:66 10:1 9 5:5

Electric breakdownfield, Ec.kV=cm/

300 400 2;500 2;200 2;000 10;000

Electron mobility,n.cm2=Vs/

1;500 8;500 500 1;000 1;250 2;20080

Hole mobility,p.cm2=Vs/

600 400 101 115 850 850

Thermal conductivity, (W/cm K)

1:5 0:46 4:9 4:9 1:3 22

Saturated electrondrift velocity,vsat .107cm=s/

1 1 2 2 2:2 2:7

a© D ©r ©o, where ©o D 8:85 1014 F/cm

Table A2.4 Main figures of merit for WBG semiconductors compared with Si

Si GaAs 6H-SiC 4H-SiC GaN Diamond

JFM 1.0 1.8 277.8 215.1 215.1 81,000BFM 1.0 14.8 125.3 223.1 186.7 25,106FSFM 1.0 11.4 30.5 61.2 65.0 3,595BSFM 1.0 1.6 13.1 12.9 52.5 2,402FPFM 1.0 3.6 48.3 56.0 30.4 1,476FTFM 1.0 40.7 1,470.5 3,424.8 1,973.6 5,304,459BPFM 1.0 0.9 57.3 35.4 10.7 594BTFM 1.0 1.4 748.9 458.1 560.5 1,426,711

Source of data: Ozpineci B, Tolbert LM (2003) Comparison of wide-bandgap semiconductors forpower electronics applications. Oak Ridge National Laboratory. Report No. ORNL/TM-2003/257JFM Johnson’s figure of merit, a measure of the ultimate high-frequency capability of the material,BFM Baliga’s figure of merit, a measure of the specific on-resistance of the drift region of a verticalfield effect transistor (FET), FSFM FET switching speed figure of merit, BSFM Bipolar switchingspeed figure of merit, FPFM FET power-handling-capacity figure of merit, FTFM FET power-switching product, BPFM Bipolar power handling capacity figure of merit, BTFM Bipolar powerswitching product

652 Appendices

Tab

leA

2.5

Prop

erti

esof

som

ew

ide-

band

gap

II–V

Ico

mpo

und

sem

icon

duct

ors

Mat

eria

lpro

pert

yZ

nSZ

nOZ

nSe

ZnT

eC

dSC

dSe

CdT

e

Mel

ting

poin

t(K

)20

38(W

Z,1

50at

m)

2248

1797

1513

2023

(WZ

,100

atm

)16

2313

70(Z

B)

Ene

rgy

gap

Egat

300K

(eV

)(Z

B*/

WZ

*)3.

68=3.

911

–=3.

42.

71=–

2.39

42.

50=2.

50–=

1.75

11.

475

dEg=dT

.10

4

eV/K

)Z

B/W

Z4.

6=8.

5–=

9.5

4.0=

–5.

5=–

–=5.

2–=

4.6

5.4=

Stru

ctur

eZ

B=W

ZW

ZZ

B=W

ZZ

BW

ZW

ZZ

BB

ond

leng

th(

m)

2.34

2(W

Z)

1.97

7(W

Z)

2.45

4(Z

B)

2.63

6(Z

B)

2.53

0(Z

B)

2.63

0(Z

B)

2.80

6(Z

B)

Lat

tice

cons

tant

(ZB

)a

0

at30

0K

(nm

)0.

541

–0.

567

0.61

00.

582

0.60

80.

648

ZB

near

est-

neig

hbor

dist

.at3

00K

(nm

)0.

234

–0.

246

0.26

40.

252

0.26

30.

281

ZB

dens

ity

at30

0K

(g/c

m3)

4.11

–5.

265.

654.

875.

655

5.86

Lat

tice

cons

tant

(WZ

)at

300

K(n

m)

a0

Db

00.

3811

0.32

495

0.39

80.

427

0.41

350.

430

–c 0

0.62

340.

5206

90.

653

0.69

90.

6749

0.70

2–

c 0=a

01.

636

1.60

21.

641

1.63

71.

632

1.63

3–

WZ

dens

ity

at30

0K

(g/c

m3)

3.98

5.60

6–

–4.

825.

81–

Sym

met

ryZ

B=W

ZC

6me=

F43m

–=C

6me

–=F4

3m–=

F43m

C6m

e=F4

3mC

6me=

F43m

–=–

Ele

ctro

naf

finit

y,

(eV

)4.

093.

534.

794.

954.

28St

able

phas

e(s)

at30

0K

ZB

&W

ZW

ZZ

BZ

BZ

B&

WZ

ZB

&W

ZZ

BSo

lid–

soli

dph

ase

tran

siti

onte

mpe

ratu

re(K

)

1293

–16

98–

–40

312

73(?

)

Hea

tof

crys

tall

izat

ion

H

LS

(kJ/

mol

)44

6252

5658

4557 (c

onti

nued

)

Appendices 653

Tab

leA

2.5

(con

tinu

ed)

Mat

eria

lpro

pert

yZ

nSZ

nOZ

nSe

ZnT

eC

dSC

dSe

CdT

e

Hea

tcap

acit

yC

P(c

al/m

olK

)11

.09.

612

.411

.913

.211

.8–

Ioni

city

(%)

6262

6361

6970

72E

quil

ibri

umpr

essu

reat

c.m

.p.

(atm

)3.

7–

1.0

1.9

3.8

1.0

0.7

Min

imum

pres

sure

atm

.p.(

atm

)2.

87.

820.

530.

642.

20.

4–0.

50.

23Sp

ecifi

che

atca

paci

ty(J

/gK

)0.

469

–0.

339

0.16

0.47

0.49

0.21

The

rmal

cond

uctiv

ity

(Wcm

1K

1)

0.27

0.6

0.19

0.18

0.2

0.09

0.01

The

rmo-

opti

calc

offic

ient

(dn

=dT

)(

D10:6

m

)4.

7–

6.1

––

–11

.0

Ele

ctro

opti

calc

oeffi

cien

tr 4

1(m

/V)

(D

10:6

m

)2

10

12

–2:2

10

12

4:0

10

12.r

41

Dr 5

2D

r 63/

––

6.8

10–

12

Lin

ear

expa

nsio

nco

effic

ient

,(1

0

6K

1)

ZB

/WZ

–/6.

92.

9/7.

27.

6/–

8.0/

–3.

0/4.

53.

0/7.

35.

1/–

Pois

son

rati

o0.

270.

280.

41D

iele

ctri

cco

nsta

nt,e

oD

e 18.

6/5.

28.

65/4

.09.

2/5.

89.

3/6.

98.

6/5.

39.

5/6.

22.

27/–

Ref

ract

ive

inde

xZ

B/W

Z2.

368/

2.37

8–/

2.02

92.

5/–

2.72

/––/

2.52

92.

5/–

2.72

/–A

bsor

ptio

nco

eff.

(inc

ludi

ngtw

osu

rfac

es)

.D

10:6

m

/.cm

1/

0.

15–

1–2

10

3–

0.0

07

0.00

150

.003

Ele

ctro

nef

fect

ive

mas

s(m

=m

0)

–0.4

0–0

.27

0.21

0.2

0.21

0.13

0.11

Hol

eef

fect

ive

mas

sm

dos=

m0

––

0.6

circ

a0.

20.

80.

450.

35E

lect

ron

Hal

lmob

ilit

y(3

00)

Kfo

rn

Dlo

wis

h(c

m2=V

s)16

512

550

034

034

065

010

50

Hol

eH

allm

obil

ity

at30

0K

for

pD

low

ish

(cm

2/V

s)5

–30

100

340

–10

0

Exc

iton

bind

ing

ener

gy(m

eV)

3660

2110

30.5

1512

(con

tinu

ed)

654 Appendices

Tab

leA

2.5

(con

tinu

ed)

Mat

eria

lpro

pert

yZ

nSZ

nOZ

nSe

ZnT

eC

dSC

dSe

CdT

e

Ave

rage

phon

onen

ergy

(meV

)Z

B/W

Z16

.1/1

7.1

–15

.1/–

10.8

/––/

13.9

18.9

/25.

45.

8/–

Ela

stic

cons

tant

(101

0N

/m2)

C11

1.01

˙0.

05–

8.10

˙0.

520.

72˙

0.01

––

5.57

C12

0.64

˙0.

05–

4.88

˙0.

490.

48˙

0.00

2–

–3.

84C

44

0.42

˙0.

04–

4.41

˙0.

130.

31˙

0.00

2–

–2.

095

Kno

opha

rdne

ss(N

/cm

2)

0.18

0.5

0.15

0.13

––

0.10

You

ng’s

mod

ulus

10.8

Mps

i–

10.2

Mps

i–

45G

Pa5

10

11

dyne

/cm

23.

71

011

dyne

/cm

2

Sour

ce:1

6.W

ide-

band

gap

II-V

Ise

mic

ondu

ctor

s:G

row

than

dpr

oper

ties

.w

ww

.spr

inge

r.com

/cda

/con

tent

/doc

umen

t/..

./97

8038

7260

594-

c3.p

df?.

..

Appendices 655

Tab

leA

2.6

Con

firm

edte

rres

tria

lce

llan

dsu

bmod

ule

effic

ienc

ies

mea

sure

dun

der

the

glob

alA

M1.

5sp

ectr

um(1

,000

W/m

2)

at25

ıC

(IE

C60

904-

3:20

08,

AST

MG

-173

-03

glob

al)

Sili

con

Cla

ssifi

cati

ona

Effi

c.b(%

)A

reac (c

m2)

Voc

(V)

J sc(

mA

/cm

2)

FFd(%

)Te

stce

nter

e(a

ndda

te)

Ref

eren

ce

Si(c

ryst

alli

ne)

25.0

˙0.

54.

00(d

a)0.

706

42.7

82.8

Sand

ia(3

/99)

f[1

]Si

(mul

ticr

ysta

llin

e)20

.4˙

0.5

1.00

2(a

p)0.

664

38.0

80.9

NR

EL

(5/0

4)f

[2]

Si(t

hin

film

tran

sfer

)16

.7˙

0.4

4.01

7(a

p)0.

645

33.0

78.2

FhG

-ISE

(7/0

1)f

[3]

Si(t

hin

film

subm

odul

e)10

.5˙

0.3

94.0

(ap)

0.49

2g29

.7g

72.1

FhG

-ISE

(8/0

7)f

[4]

III-

VC

ells

GaA

s(c

ryst

alli

ne)

26.4

˙0.

81.

006

(t)

1.03

029

.886

.0Fh

G-I

SE(3

/10)

Frau

nhof

erIS

EG

aAs

(thi

nfil

m)

26.1

˙0.

81.

001

(ap)

1.04

529

.684

.6Fh

G-I

SE(7

/08)

f[5

]G

aAs

(mul

ticr

ysta

llin

e)18

.4˙

0.5

4.01

1(t

)0.

994

23.2

79.7

NR

EL

(11/

95)f

[6]

InP

(cry

stal

line

)22

.1˙

0.7

4.02

(t)

0.87

829

.585

.4N

RE

L(4

/90)

f[7

]

Thi

nfil

mch

alco

geni

deC

IGS

(cel

l)19

.4˙

0.6h

0.99

4(a

p)0.

716

33.7

80.3

NR

EL

(1/0

8)f

[8]

CIG

S(s

ubm

odul

e)16

.7˙

0.4

16.0

(ap)

0.66

1g33

.6g

75.1

FhG

-ISE

(3/0

0)f

[9]

CdT

e(c

ell)

16.7

˙0.

5h1.

032

(ap)

0.84

526

.175

.5N

RE

L(9

/01)

f[1

0]

Am

orph

ous/

nano

crys

tall

ine

SiSi

(am

orph

ous)

10.1

˙0.

3i1.

036

(ap)

0.88

616

.75

67.0

NR

EL

(7/0

9)[1

1]Si

(nan

ocry

stal

line

)10

.1˙

0.2j

1.19

9(a

p)0.

539

24.4

76.6

JQA

(12/

97)

[12]

Phot

oche

mic

alD

yese

nsit

ized

10.4

˙0.

3k1.

004

(ap)

0.72

922

.065

.2A

IST

(8/0

5)f

[13]

Dye

sens

itiz

ed(s

ubm

odul

e)9.

0.4k

17.1

9(a

p)0.

712g

19.4

g66

.4A

IST

(2/1

0)[1

4]

Org

anic

Org

anic

poly

mer

5.15

˙0.

3k1.

021

(ap)

0.87

69.

3962

.5N

RE

L(1

2/06

)f[1

5]O

rgan

ic(s

ubm

odul

e)3.

0.3k

208.

4(a

p)8.

620

0.84

748

.3N

RE

L(7

/09)

[16]

(con

tinu

ed)

656 Appendices

Tab

leA

2.6

(con

tinu

ed)

Sili

con

Cla

ssifi

cati

ona

Effi

c.b(%

)A

reac (

cm2)

Voc

(V)

J sc(

mA

/cm

2)

FFd(%

)Te

stce

nter

e(a

ndda

te)

Ref

eren

ce

Mul

tiju

ncti

onde

vice

sG

aInP

/GaA

s/G

e32

.0˙

1.5j

3.98

9(t

)2.

622

14.3

785

.0N

RE

L(1

/03)

Spec

trol

ab(m

onol

ithi

c)G

aInP

/GaA

s30

.3j

4.0

(t)

2.48

814

.22

85.6

JQA

(4/9

6)[1

7]G

aAs/

CIS

(thi

nfil

m)

25.8

˙1.

3j4.

00(t

)–

––

NR

EL

(11/

89)

[18]

a-Si

/c-

Si(t

hin

subm

odul

e)jl

11.7

˙0.

4jl14

.23

(ap)

5.46

22.

9971

.3A

IST

(9/0

4)[1

9]O

rgan

ic(2

-cel

ltan

dem

)6.

0.2k

1.98

91.

589

6.18

61.9

FhG

-ISE

(7/0

9)[2

0]a C

IGS

CuI

nGaS

e2,a

-Sia

mor

phou

ssi

licon

/hyd

roge

nal

loy

bE

ffic.

Def

ficie

ncy

c (ap

)D

aper

ture

area

;(t)

Dto

tala

rea;

(da)

Dde

sign

ated

illu

min

atio

nar

eadF

Ffil

lfac

tor

e FhG

-ISE

Frau

nhof

erIn

stit

utfu

rSo

lare

Ene

rgie

syst

eme,

JQA

Japa

nQ

uali

tyA

ssur

ance

,A

IST

Japa

nese

Nat

iona

lIns

titut

eof

Adv

ance

dIn

dust

rial

Scie

nce

and

Tech

nolo

gyf R

ecal

ibra

ted

from

orig

inal

mea

sure

men

tgR

epor

ted

ona

‘per

cell

’ba

sis

hN

otm

easu

red

atan

exte

rnal

labo

rato

ryi L

ight

soak

edat

Oer

like

npr

ior

tote

stin

gat

NR

EL

(100

0h,

1su

n,50

8C)

j Mea

sure

dun

der

IEC

6090

4-3

Ed.

1:19

89re

fere

nce

spec

trum

kSt

abil

ity

noti

nves

tiga

ted.

Ref

eren

ces

[28]

and

[29]

revi

ewth

est

abil

ity

ofsi

mil

arde

vice

sl S

tabi

lized

by17

4h,

1su

nill

umin

atio

naf

ter

20h,

5su

nill

umin

atio

nat

asa

mpl

ete

mpe

ratu

reof

508C

1.Z

hao

J,W

ang

A,G

reen

MA

,Fer

razz

aF

(199

8)N

ovel

19.8

%ef

ficie

nt‘h

oney

com

b’te

xtur

edm

ulti

crys

tall

ine

and

24.4

%m

onoc

ryst

alli

nesi

lico

nso

lar

cell

s.A

pplP

hys

Let

t73:

1991

–199

32.

Schu

ltzO

,Glu

nzSW

,Wil

leke

GP

(200

4)M

ulti

crys

tall

ine

sili

con

sola

rce

lls

exce

edin

g20

%ef

ficie

ncy.

Prog

Phot

ovol

tRes

App

l12:

553–

558

3.B

ergm

ann

RB

,Rin

keT

J,B

erge

C,S

chm

idtJ

,Wer

ner

JH(2

001)

Adv

ance

sin

mon

ocry

stal

line

Sith

in-fi

lmso

lar

cells

byla

yer

tran

sfer

.In:

Tech

nica

lDig

est,

PVSE

C-1

2,Ju

ne20

01,C

hefj

uIs

land

,Kor

ea,p

p11

–15

4.K

eeve

rsM

J,Y

oung

TL

,Sch

uber

tU

,Gre

enM

A(2

007)

10%

effic

ient

CSG

min

imod

ules

.In:

22nd

Eur

opea

nPh

otov

olta

icSo

lar

Ene

rgy

Con

fere

nce,

Mil

an,

Sept

2007

5.B

auhu

isG

J,M

ulde

rP,

Hav

erK

amp

EJ,

Hui

jben

JCC

M,

Sche

rmer

JJ(2

009)

26.1

%th

in-fi

lmG

aAs

sola

rce

llus

ing

epit

axia

lli

ft-o

ff.

Sola

rE

nerg

yM

ater

Sola

rC

ells

93:1

488–

1491

.

(con

tinu

ed)

Appendices 657

Tab

leA

2.6

(con

tinu

ed)

6.V

enka

tasu

bram

ania

nR

,O’Q

uinn

BC

,H

ills

JS,

Shar

psPR

,Tim

mon

sM

L,H

utch

byJA

,Fi

eld

H,A

hren

kiel

A,K

eyes

B(1

997)

18.2

%(A

M1.

5)ef

ficie

ntG

aAs

sola

rce

llon

opti

cal-

grad

epo

lycr

ysta

llin

eG

esu

bstr

ate.

In:

Con

fere

nce

Rec

ord,

25th

IEE

EPh

otov

olta

icSp

ecia

list

sC

onfe

renc

e,W

ashi

ngto

n,M

ay19

97,p

p31

–36

7.K

eavn

eyC

J,H

aven

VE

,V

erno

nSM

(199

0)E

mitt

erst

ruct

ures

inM

OC

VD

InP

sola

rce

lls.

In:

Con

fere

nce

Rec

ord,

21st

IEE

EPh

otov

olta

icSp

ecia

lists

Con

fere

nce,

Kis

sim

imee

,May

1990

,pp

141–

144

8.R

epin

sI,

Con

trer

asM

,Rom

ero

Y,Y

anY

,Met

zger

W,L

iJ,J

ohns

ton

S,E

gaas

B,D

eHar

tC,S

char

fJ,

McC

andl

ess

BE

,Nou

fiR

(200

8)C

hara

cter

izat

ion

of19

.9%

-effi

cien

tCIG

Sab

sorb

ers.

In:3

3th

IEE

EPh

otov

olta

ics

Spec

iali

sts

Con

fere

nce

Rec

ord,

2008

9.K

essl

erJ,

Bod

egar

dM

,H

edst

rom

J,St

olt

L(2

000)

New

wor

ldre

cord

Cu

(In,

Ga)

Se2

base

dm

ini-

mod

ule:

16.6

%.

In:

Proc

eedi

ngs

of16

thE

urop

ean

Phot

ovol

taic

Sola

rE

nerg

yC

onfe

renc

e,G

lasg

ow,2

000,

pp20

57–2

060

10.

Wu

X,K

eane

JC,D

here

RG

,DeH

art

C,D

uda

A,G

esse

rtTA

,Ash

erS,

Lev

iD

H,S

held

onP

(200

1)16

.5%

-ef

ficie

ntC

dS/C

dTe

poly

crys

talli

neth

in-fi

lmso

lar

cell

.In:

Proc

eedi

ngs

of17

thE

urop

ean

Phot

ovol

taic

Sola

rE

nerg

yC

onfe

renc

e,M

unic

h,22

–26

Oct

2001

,pp

995–

1000

11.

Ben

agli

S,B

orre

llo

D,V

alla

t-Sa

uvai

nE

,Mei

erJ,

Kro

llU

,Hot

zelJ

etal

.(20

09)

Hig

h-ef

ficie

ncy

amor

phou

ssi

licon

devi

ces

onL

PCV

D-Z

NO

TC

Opr

epar

edin

indu

stri

alK

AI-

MR

&D

reac

tor.

In:2

4th

Eur

opea

nPh

otov

olta

icSo

lar

Ene

rgy

Con

fere

nce,

Ham

burg

,Sep

t200

912

.Y

amam

oto

K,T

oshi

miM

,Suz

ukiT

,Taw

ada

Y,O

kam

oto

T,N

akaj

ima

A(1

998)

Thi

nfil

mpo

ly-S

isol

arce

llon

glas

ssu

bstr

ate

fabr

icat

edat

low

tem

pera

ture

.In

:MR

SSp

ring

Mee

ting

,Apr

il19

98,S

anFr

anci

sco

13.

Chi

baY

,Is

lam

A,

Kak

utan

iK

,K

omiy

aR

,K

oide

N,

Han

L(2

005)

Hig

hef

ficie

ncy

dye

sens

itize

dso

lar

cells

.In

:Te

chni

cal

Dig

est,

15th

Inte

rnat

iona

lPh

otov

olta

icSc

ienc

ean

dE

ngin

eeri

ngC

onfe

renc

e,Sh

angh

ai,O

ct20

05,p

p66

5–66

614

.M

oroo

kaM

,N

oda

K(2

008)

Dev

elop

men

tof

dye-

sens

itize

dso

lar

cells

and

next

gene

ratio

nen

ergy

devi

ces.

In:

88th

Spri

ngM

eetin

gof

The

Che

mic

alSo

ciet

yof

Japa

n,To

kyo,

26M

ar20

0815

.Se

eht

tp:/

/ww

w.k

onar

ka.c

om16

.Se

eht

tp:/

/ww

w.s

olar

mer

.com

17.

Ohm

oriM

,Tak

amot

oT,

Iked

aE

,Kur

ita

H(1

996)

Hig

hef

ficie

ncy

InG

aP/G

aAs

tand

emso

lar

cell

s.In

:Tec

hica

lDig

est,

Inte

rnat

iona

lPV

SEC

-9,M

yasa

ki,

Japa

n,N

ov19

96,p

p52

5–52

818

.M

itch

ellK

,Ebe

rspa

cher

C,E

rmer

J,Pi

erD

(198

8)Si

ngle

and

tand

emju

ncti

onC

uInS

e2ce

llan

dm

odul

ete

chno

logy

.In:

Con

fere

nce

Rec

ord,

20th

IEE

EPh

otov

olta

icSp

ecia

list

sC

onfe

renc

e,L

asV

egas

,Sep

t198

8,pp

1384

–138

919

.Y

oshi

miM

,Sas

akiT

,Saw

ada

T,Su

ezak

iT,M

egur

oT,

Mat

suda

T,Sa

nto

K,W

adan

oK

,Ich

ikaw

aM

,Nak

ajim

aA

,Yam

amot

oK

(200

3)H

igh

effic

ienc

yth

infil

msi

licon

hybr

idso

lar

cell

mod

ule

onIm

2-cl

ass

larg

ear

easu

bstr

ate.

In:C

onfe

renc

eR

ecor

d,3r

dW

orld

Con

fere

nce

onPh

otov

olta

icE

nerg

yC

onve

rsio

n,O

saka

,May

2003

,pp

1566

–156

920

.Se

eht

tp:/

/ww

w.h

elia

tek.

com

658 Appendices

Tab

leA

2.7

Con

firm

edte

rres

tria

lmod

ule

effic

ienc

ies

mea

sure

dun

der

the

glob

alA

M1.

5sp

ectr

um(1

,000

W/m

2)

ata

cell

tem

pera

ture

of25

ıC

(IE

C60

904-

3:20

08,A

STM

G-1

73-0

3gl

obal

)

Cla

ssifi

cati

ona

Effi

c.b(%

)A

reac

(cm

2)

Voc

(V)

J sc

(mA

/cm

2)

FFd

(%)

Test

cent

ere

(and

date

)R

efer

ence

Si(c

ryst

alli

ne)

22.9

˙0.

677

8(d

a)5.

603.

9780

.3Sa

ndia

(9/9

6)e

[1]

Si(l

arge

crys

tall

ine)

21.4

˙0.

615

780

(ap)

68.6

6.29

378

.4N

RE

L(1

0/09

)K

yoce

raSi

(mul

ticr

ysta

llin

e)17

.3˙

0.5

1275

3(a

p)33

.68.

6376

.1A

IST

(x/1

0)[2

]Si

(thi

n-fil

mpo

lycr

ysta

llin

e)8.

0.2

661

(ap)

25.0

0.32

068

.0Sa

ndia

(7/0

2)e

[3]

CIG

S13

.8˙

0.5

9762

(ap)

26.3

47.

167

71.2

NR

EL

(4/1

0)[4

]C

IGSS

(Cd

free

)13

.5˙

0.7

3459

(ap)

31.2

2.18

68.9

NR

EL

(8/0

2)e

[5]

CdT

e10

.9˙

0.5

4874

(ap)

26.2

13.

2462

.3N

RE

L(4

/00)

e[6

]a-

Si/a

-SiG

e/a-

SiG

e(t

ande

m)f

10.4

˙0.

5g90

5(a

p)4.

353

3.28

566

.0N

RE

L(1

0/98

)e[7

]a C

IGSS

1 =4C

uInG

aSSe

;a-S

i1 =4am

orph

ous

sili

con/

hydr

ogen

allo

y;a-

SiG

e1= 4

amor

phou

ssi

lico

n/ge

rman

ium

/hyd

roge

nal

loy

bE

ffic.

1 =4ef

ficie

ncy

c (ap

)1= 4

aper

ture

area

;(da

)1= 4

desi

gnat

edil

lum

inat

ion

area

dFF

1 =4fil

lfac

toe R

ecal

ibra

ted

from

orig

inal

mea

sure

men

tf L

ight

soak

edat

NR

EL

for

1000

hat

508C

,nom

inal

ly1-

sun

illu

min

atio

ngM

easu

red

unde

rIE

C60

904-

3E

d.1:

1989

refe

renc

esp

ectr

um

1.Z

hao

J,W

ang

A,Y

unF,

Zha

ngG

,Roc

heD

M,W

enha

mSR

,Gre

enM

A(1

997)

20,0

00PE

RL

silic

once

llsfo

rth

e‘1

996

Wor

ldSo

lar

Cha

lleng

e’so

lar

car

race

.Pro

gPh

otov

oltR

esA

ppl5

:269

–276

2.Sw

anso

nR

M(2

009)

Sola

rce

lls

atth

ecu

sp.I

n:Pr

esen

ted

at19

thIn

tern

atio

nal

Phot

ovol

taic

Scie

nce

and

Eng

inee

ring

Con

fere

nce,

Kor

ea,N

ov20

093.

Bas

ore

PA(2

002)

Pilo

tpro

duct

ion

ofth

in-fi

lmcr

ysta

lline

silic

onon

glas

sm

odul

es.I

n:C

onfe

renc

eR

ecor

d,29

thIE

EE

Phot

ovol

taic

Spec

ialis

tsC

onfe

renc

e,N

ewO

rlea

ns,M

ay20

02,p

p49

–52

4.Se

e:ht

tp:/

/ww

w.m

iaso

le.c

om5.

Tana

kaY

,A

kem

aN

,M

oris

hita

T,O

kum

ura

D,

Kus

hiya

K(2

001)

Impr

ovem

ent

ofV

ocup

war

dof

600m

V/c

ell

wit

hC

IGS-

base

dab

sorb

erpr

epar

edby

Sele

niza

tion

/Sul

furi

zati

on.I

n:C

onfe

renc

ePr

ocee

ding

s,17

thE

CPh

otov

olta

icSo

lar

Ene

rgy

Con

fere

nce,

Mun

ich,

Oct

2001

,pp

989–

994

6.C

unni

ngha

mD

,D

avie

sK

,G

ram

mon

dL

,M

opas

E,

O’C

onno

rN

,R

ubci

chM

,Sa

degh

iM

,Sk

inne

rD

,T

rum

bly

T(2

000)

Lar

gear

eaA

poll

oTM

mod

ule

perf

orm

ance

and

reli

abil

ity.

In:C

onfe

renc

eR

ecor

d,28

thIE

EE

Phot

ovol

taic

Spec

ialis

tsC

onfe

renc

e,A

lask

a,Se

pt20

00,p

p13

–18

7.Y

ang

J,B

aner

jee

A,G

latf

elte

rT,

Hof

fman

K,X

uX

,Guh

aS

(199

4)Pr

ogre

ssin

trip

le-j

unct

ion

amor

phou

ssi

lico

nba

sed

allo

yso

lar

cells

and

mod

ules

usin

ghy

drog

endi

luti

on.I

n:C

onfe

renc

eR

ecor

d,1s

tWor

ldC

onfe

renc

eon

Phot

ovol

taic

Ene

rgy

Con

vers

ion,

Haw

aii,

Dec

1994

,pp

380–

385

Appendices 659

Appendix 3: Hydropower

Table A3.1 Entrance losscoefficient (k1) for varioustypes of entrances

Entrance type k1

Protruding 0.75Sharp edge 0.50Well rounded 0.01

Table A3.2 Abruptcontraction losscoefficient (k2)

Ratio of downstream to upstreamflow area, A2/A1 k2

0.60 0.130.40 0.280.20 0.380.05 0.45

A1 upstream flow area, A2 downstreamflow area

Table A3.3 Values of bendloss coefficient (kB )

Smoothbends

Mitredbends

r/D kB kB

1.0 0.40 20ı 0.062.0 0.27 40ı 0.213.0 0.20 60ı 0.50

90ı 1.10

Table A3.4 Values of valveloss coefficient (kv)

Gate valve Butterfly valve

Position kv t/D kv

Fully open 2.3 0.1 0.1Half open 4.3 0.2 0.3Quarter open 10.0 0.3 0.75

t thickness of the butterfly, D pipe diameter

Table A3.5 Gradualexpansion losscoefficient (kge)

kge

A2=A1 20ı 15ı 10ı

3.0 0.4 0.30 0.22.5 0.3 0.25 0.152.0 0.2 0.15 0.121.5 0.15 0.1 0.08

660 Appendices

Fig

.A3.

1T

heM

oody

char

t

Appendices 661

Appendix 4: Geothermal Energy

Fig. A4.1 Temperature range for geothermal energy for use in industry

662 Appendices

Tab

leA

4.1

Ali

stof

indu

stri

esw

here

geot

herm

alen

ergy

iscu

rren

tly

used

App

lica

tion

Cou

ntry

Des

crip

tion

Prod

ucti

onst

eam

orw

ater

flow

rate

Ass

ocia

ted

pow

er(M

W)

Woo

dan

dpa

per

indu

stry

Pulp

and

pape

rN

ewZ

eala

ndK

awer

auPr

oces

sing

and

asm

alla

mou

ntof

elec

tric

pow

erge

nera

tion

.Kra

ftpr

oces

sus

ed.G

eoth

erm

alen

ergy

deliv

ered

tom

ills

by0.

60m

illi

onlb

/hof

200

and

100

psig

stea

m,w

hich

are

obta

ined

byfla

shin

gth

ew

etst

eam

ata

cent

ralfl

ash

plan

t

245

ton/

hof

wet

stea

m52

9ıF

rese

rvoi

rte

mp

100–

125

Tim

ber

dryi

ngJa

pan

Yuz

awa

The

faci

lity

cons

ists

ofa

vacu

umdr

yer

and

aba

rkbo

iler

47.6

ton/

hho

twat

erw

ith

200ı

Fin

let

and

176ı

Fou

tlet

tem

p

1.0

Tim

ber

dryi

ngTa

iwan

Tatu

nT

heca

paci

tyof

the

kiln

is1,

400

ft3an

dca

npr

oduc

e8,

500

ft3of

kiln

drie

dlu

mbe

r/m

onth

0.5

ton/

h14

0ıF

inki

lnM

inin

gD

iato

mac

eous

eart

hpl

ant

Icel

and

Nam

afja

llPr

oduc

tion

of28

,000

tons

/yea

rdr

ied

diat

omac

eous

eart

hre

cove

red

byw

etm

inin

gte

chni

ques

.Dre

dgin

gof

Lak

eM

yvat

nis

done

only

inth

esu

mm

erw

hile

plan

trun

sth

roug

hout

the

year

24to

n/h

ofst

eam

at35

6ıF

16

Hea

ple

achi

ngU

SAN

evad

aTw

ogo

ldm

inin

gop

erat

ions

use

geot

herm

alflu

ids

inhe

atex

chan

gers

tohe

atcy

anid

eso

luti

ons

1,10

0gp

mof

hot

wat

erat

180

To24

0ıF

17.5

Che

mic

als

Salt

plan

tIc

elan

dR

ecry

stal

lizi

ngof

coar

sesa

ltin

tofiv

egr

ain

min

eral

salt

used

inba

thin

g(S

aga

Salt

).It

prev

ious

lypr

oduc

ed8,

000

tons

/yea

rof

salt

for

the

fish

Proc

essi

ngin

dust

ry

356ı

Fat

145

psi

25

(con

tinu

ed)

Appendices 663

Tab

leA

4.1

(con

tinu

ed)

App

lica

tion

Cou

ntry

Des

crip

tion

Prod

ucti

onst

eam

orw

ater

flow

rate

Ass

ocia

ted

pow

er(M

W)

Bor

icac

idIt

aly

Lar

dere

llo

Geo

ther

mal

stea

mus

edfo

rpr

oces

sing

impo

rted

ore

30to

n/h

ofst

eam

15–1

9

Wat

erw

aste

USA

–Sa

nB

erna

rdin

o,C

alif

orni

a

Slud

gedi

gest

erhe

atin

g15

5gp

mof

hot

wat

erat

145ı

F0.

5

Agr

icul

ture

prod

uct

dryi

ngV

eget

able

USA

Bra

dyH

otSp

ring

s,N

evad

a

Geo

ther

mal

Food

Proc

esso

rspr

oduc

edr

ied

onio

nsus

ing

hotw

ater

coil

sfr

oman

85to

5%m

oist

ure

cont

entu

sing

aco

ntin

uous

thro

ugh-

circ

ulat

ion

conv

eyor

drye

r.Pr

oduc

tion

rate

is10

,000

lb/h

offr

esh

onio

ns,r

esul

ting

in1,

800

lb/h

ofdr

ied

prod

uctf

or6

mo/

year

500

gpm

ofho

tw

ater

at32

5ıF

6

USA

San

Em

idio

Des

ert,

Nev

ada

Inte

grat

edIn

gred

ient

spr

oduc

edr

ied

onio

nsan

dga

rlic

.Pro

duct

ion

rate

is14

mill

ions

lbs.

Per

year

900

gpm

266ı

F14

Alf

alfa

dryi

ngN

ewZ

eala

nd,

Bro

adla

nds

Taup

oL

ucer

neli

mit

ed(N

Z)

uses

geot

herm

alst

eam

and

hotw

ater

asth

ehe

atso

urce

for

the

dryi

ngof

alfa

lfa

(luc

erne

)in

to“D

e-H

I”,

prod

uced

from

the

fibro

uspa

rtof

the

plan

t,an

d“L

PC”

(luc

erne

prot

ein

conc

entr

ate)

whi

chis

ahi

gh-p

rote

inPr

oduc

tpro

duce

dfr

omex

trac

ted

juic

e.It

prod

uces

3,00

0to

ns/y

ear

ofdr

ied

De-

Hia

nd20

0to

ns/y

ear

ofL

PC.I

nad

diti

on,3

5,00

0cu

bic

feet

ofdr

ied

fenc

epo

sts,

Pole

san

dsw

anti

mbe

rpr

oduc

tsar

epr

oduc

edpe

rm

onth

40to

n/h

ofst

eam

at34

7ıF

12

(con

tinu

ed)

664 Appendices

Tab

leA

4.1

(con

tinu

ed)

App

lica

tion

Cou

ntry

Des

crip

tion

Prod

ucti

onst

eam

orw

ater

flow

rate

Ass

ocia

ted

pow

er(M

W)

Mus

hroo

mgr

owin

gU

SAV

ale,

Ore

gon

Ore

gon

Tra

ilM

ushr

oom

spr

oduc

es2,

500

ton

ofw

hite

butt

onm

ushr

oom

san

nual

ly.

Geo

ther

mal

fluid

sar

eus

edfo

rso

ilco

mpo

stin

gan

dsp

ace

heat

ing

and

cool

ing

275

gpm

ofho

tw

ater

at23

5ıF

4.0

1.W

ilson

RD

(197

4)U

seof

geot

herm

alen

ergy

atTa

sman

Pulp

and

Pape

rC

ompa

nyL

imite

d,N

ewZ

eala

nd.I

n:L

iena

uPJ

,IW

Lun

d(e

ds)

Mul

tipu

rpos

eus

eof

geot

herm

alen

ergy

.Ore

gon

Inst

itut

eof

Tech

nolo

gy,K

lam

ath

Fall

s2.

Car

ter

AC

,Hot

son

GW

(199

2)In

dust

rial

use

ofge

othe

rmal

ener

gyat

the

Tasm

anPu

lp&

Pape

rC

o.,L

td’s

Mill

,Kaw

eran

,New

Zea

land

.In:

Geo

ther

mic

s,vo

l21,

No

5/6.

Perg

amon

Pres

s,N

Y,p

p68

9–70

0H

otso

nG

W(1

995)

Uti

liza

tion

ofge

othe

rmal

ener

gyin

aP

ulp

and

Pape

rM

ill.

In:

Proc

eedi

ngs

ofth

eW

orld

Geo

ther

mal

Con

gres

s,Fl

oren

ce,

Ital

y,In

tern

atio

nalG

eoth

erm

alA

ssoc

iati

on,p

p23

57–2

360

3.H

orii

S(1

985)

Dir

ect

heat

upda

teof

Japa

n.In

:In

tern

atio

nal

Sym

posi

umon

Geo

ther

mal

Ene

rgy,

Inte

rnat

iona

lV

olum

e,G

eoth

erm

alR

esou

rces

Cou

ncil

,D

avis

,pp

107–

112

4.C

hin

(197

6)G

eoth

erm

alen

ergy

inTa

iwan

,Rep

ubli

cof

Chi

na.M

inin

gR

esea

rch

&Se

rvic

eO

rgan

izat

ion,

ITR

I,Ta

ipei

,Tai

wan

5.R

agna

rsso

nA

(199

6)G

eoth

erm

alen

ergy

inIc

elan

d.G

eo-H

eatC

ente

rQ

uart

erly

Bul

leti

nK

lam

ath

Fall

s,O

R17

(4):

1–6

6.T

rexl

erD

T,Fl

ynn

T,H

endr

ixJL

(199

0)Pr

elim

inar

yre

sult

sof

colu

mn

leac

hex

peri

men

tsat

two

gold

min

esus

ing

geot

herm

alflu

ids.

In:1

990

Inte

rnat

iona

lSy

mpo

sium

onG

eoth

erm

alE

nerg

y,G

RC

Tra

nsac

tion

s,H

awai

ivol

14,p

p35

1–35

87.

Kri

stja

nsso

nI

(199

2)C

omm

erci

alpr

oduc

tion

ofsa

ltfr

omge

othe

rmal

brin

eat

Rey

kjan

es,I

cela

nd.G

eoth

erm

ics

21(5

/6):

765–

771

8.L

inda

lB

(197

3)In

dust

rial

and

othe

rap

plic

atio

nsof

geot

herm

alen

ergy

.In

:G

eoth

erm

alen

ergy

:re

view

ofre

sear

chan

dde

velo

pmen

t(L

CN

o.72

-971

38,

UN

ESC

O),

pp13

5–14

89.

Rac

ine

WC

(198

1)Fe

asib

ilit

yof

geot

herm

alhe

atus

ein

the

san

bern

ardi

nom

unic

ipal

was

tew

ater

trea

tmen

tpl

ant.

Mun

icip

alW

ater

Dep

artm

ent,

San

Ber

nard

ino

10.

Lun

dJW

(199

4)G

eoth

erm

alve

geta

ble

dehy

drat

ion

atB

rady

’sH

otSp

ring

s,N

evad

a.G

eo-H

eatC

ente

rQ

uart

erly

Bul

leti

n,K

lam

ath

Fall

s,O

R15

(4):

22–2

311

.L

und

JW,L

iena

uPJ

(199

4)O

nion

dehy

drat

ion.

Geo

-Hea

tCen

ter

Qua

rter

lyB

ulle

tin,

Kla

mat

hFa

lls,

OR

15(4

):15

–18

12.

Pirr

itN

,Dun

stal

lM

(199

5)D

ryin

gof

fibro

uscr

ops

usin

gge

othe

rmal

stea

man

dho

tw

ater

atth

eTa

upo

Luc

erne

Com

pany

.In

:Pr

ocee

ding

ofth

eW

orld

Geo

ther

mal

Con

gres

s,Fl

oren

ce,I

taly

,Int

erna

tion

alG

eoth

erm

alA

ssoc

iati

on,p

p22

39–2

344

13.

Rut

ten

P(1

986)

Sum

mar

yof

proc

ess

–m

ushr

oom

prod

ucti

on.O

rego

nT

rail

Mus

hroo

mC

ompa

ny,V

ale,

OR

Appendices 665

App

endi

x5:

Oce

anE

nerg

y

Tab

leA

5.1

Var

ious

ocea

nen

ergy

proj

ects

arou

ndth

ew

orld

Com

pany

Tech

nolo

gyC

ount

ryY

ear

star

ted

Stag

e

Pela

mis

wav

epo

wer

Att

enua

tor

U.K

.19

98C

omm

erci

alW

ave

star

ener

gyA

tten

uato

rD

enm

ark

2000

Pilo

tA

WS

ocea

nen

ergy

Poin

tabs

orbe

rU

.K.

2004

Pre-

com

mer

cial

Wav

edr

agon

Ove

rtop

per

Den

mar

k19

87C

omm

erci

alW

aveG

enO

scil

lati

ngw

ater

colu

mn

U.K

.19

90C

omm

erci

alO

cean

linx

Osc

illa

ting

wat

erco

lum

nA

ustr

alia

1997

Com

mer

cial

Sync

Wav

een

ergy

Poin

tabs

orbe

rC

anad

a20

04Pr

otot

ype

WA

VE

ener

gyO

vert

oppe

rN

orw

ay20

04Pi

lot

Seab

ased

Poin

tabs

orbe

rSw

eden

2003

Pilo

tO

ffsh

ore

Wav

eE

nerg

yO

scill

atin

gw

ater

colu

mn

U.K

.20

01Pr

otot

ype

OR

EC

onO

scil

lati

ngw

ater

colu

mn

U.K

.20

02Pr

otot

ype

SeaP

ower

Paci

ficO

scill

atin

gw

ave

surg

eco

nver

ter

Aus

tral

ia19

99Pi

lot

Oce

anpo

wer

tech

nolo

gies

Poin

tabs

orbe

rU

.S19

94C

omm

erci

alFi

nave

rare

new

able

sPo

inta

bsor

ber

Can

ada

2006

Pre-

com

mer

cial

Oce

anw

ave

mas

ter

Att

enua

tor

U.K

.20

02Pr

otot

ype

Wav

een

ergy

tech

nolo

gies

Poin

tabs

orbe

rC

anad

a20

04Pi

lot

Wav

eBob

Poin

tabs

orbe

rIr

elan

d19

99Pr

e-co

mm

erci

alFr

ed.O

lsen

Poin

tabs

orbe

rN

orw

ay20

04(1

848)

aPr

e-co

mm

erci

alC

-Wav

eA

tten

uato

rU

.K.

2002

Prot

otyp

eS.

D.E

.ene

rgy

Term

inat

orIs

rael

1998

Com

mer

cial

(con

tinu

ed)

666 Appendices

Tab

leA

5.1

(con

tinu

ed)

Com

pany

Tech

nolo

gyC

ount

ryY

ear

star

ted

Stag

e

Tri

dent

ener

gyPo

inta

bsor

ber

U.K

.20

03Pr

otot

ype

Oce

anN

avit

asPo

inta

bsor

ber

U.K

.20

06Pr

otot

ype

Aqu

amar

ine

pow

erO

scil

lati

ngw

ave

surg

eco

nver

ter

U.K

.20

07Pr

otot

ype

Bio

Pow

ersy

stem

sO

scill

atin

gw

ave

surg

eco

nver

ter

Aus

tral

ia20

06Pr

e-pi

lot

Sour

ce:

Gre

ente

chM

edia

and

the

Prom

ethe

usIn

stit

ute

for

Sust

aina

ble

Dev

elop

men

ta Fr

edO

lsen

isa

ship

ping

com

pany

star

ted

in18

48.I

tent

ered

into

wav

een

ergy

busi

ness

in20

04

Appendices 667

Tidal Energy Projects & Companies

Table A5.2 Existing large tidal power plants

Country Site Installed power (MW) Basin area (km2) Mean tide (m)

France La Rance 240 22 8.55Russia Kislaya Guba 0.4 1.1 2.3Canada Annapolis 18 15 6.4China Jiangxia 3.9 1.4 5.08

Source: www.gcktechnology.com

Table A5.3 Tidal stream resources

Location Total (TWh/year) Extractable (TWh/year) Economic (TWh/year)

UK 90 18 12

Europe (excluding UK) 90 17 ?Others worldwide 600 120? ?

Source: Black & Vetch-for Carbon Trust-2004–5

Table A5.4 Tidal barrage projects and proposals

Country Location Power MW Energy TWh/year

France La Rance 240 0.5Canada Bay of Fundy – Cumberland Basin 1400 3.3China Various 1000 2.5Russia Mezan Bay and Tugur 28000 31.0Korea Siwha and Garolim 740 1.4India Kambhat 1800 3.9Australia Secure Bay and Cape Keraudren 600 1.1Argentina San Jose/Nuevo 600 1.8UK Severn and Mersey 9300 18.5

Source: http://www.raeng.org.uk/policy/reports/pdf/energy 2100/David Lindley.pdf

668 Appendices

Fig

.A5.

1O

cean

ener

gypo

tent

ial

arou

ndth

ew

orld

(Cou

rtes

yof

Em

ergi

ngen

ergy

rese

arch

(Oct

ober

2010

)G

loba

loc

ean

ener

gym

arke

tsan

dst

rate

gies

:20

10–2

030.

ww

w.e

mer

ging

-ene

rgy.

com

.Acc

esse

d11

/20/

2010

)

Appendices 669

Fig

.A5.

2O

cean

ener

gyde

velo

pmen

tro

adm

apfo

rE

urop

e

670 Appendices

Appendix 6: Bioenergy

Table A6.1 Estimated Bagasse potential (Data at 2005)

Bagasse potential availability

At 50% humidity (thousand tonnes) Dry matter (thousand tonnes)

Benin 16 8Burkina Faso 130 65Burundi 75 37Cameroon 388 194Chad 114 57Congo (Brazzaville) 206 103Congo (Democratic Rep.) 196 98Cote d’Ivoire 473 236Egypt (Arab Rep.) 3,912 1,956Ethiopia 1,125 562Gabon 68 34Guinea 82 41Kenya 1,733 866Madagascar 89 44Malawi 864 432Mali 114 57Mauritius 1,708 854Morocco 191 95Mozambique 865 433Niger 33 16Senegal 293 147Sierra Leone 20 10Somalia 49 24South Africa 8,174 4,087Sudan 2,373 1,186Swaziland 2,128 1,064Tanzania 908 454Uganda 636 318Zambia 808 404Zimbabwe 1.401 700Total Africa 29,169 14,584

Barbados 130 65Belize 331 166Costa Rica 1,299 649Cuba 4,238 2,119Dominican Republic 1,549 774El Salvador 2,062 1,031

(continued)

Appendices 671

Table A6.1 (continued)

Bagasse potential availability

At 50% humidity (thousand tonnes) Dry matter (thousand tonnes)

Honduras 1,174 587Jamaica 411 205Mexico 18,319 9,159Nicaragua 1,532 766Panama 513 256St. Christopher-Nevis 65 33Trinidad & Tobago 108 54United States of America 9,029 4,514Total North America 47,330 23,665

Argentina 7,058 3,529Bolivia 1,304 652Brazil 91,720 45,860Colombia 8,747 4,374Ecuador 1,532 766Guyana 802 401Paraguay 381 191Peru 2,264 1,132Suriname 16 8Uruguay 20 10Venezuela 2,249 1,125Total South America 116,095 58,047

Azerbaijan 6 3Bangladesh 391 196China 29,839 14,920India 49,604 24,802Indonesia 7,938 3,969Japan 423 212Malaysia 261 130Myanmar (Burma) 489 245Nepal 424 212Pakistan 9,215 4,607Philippines 7,119 3,559Sri Lanka 196 98Taiwan, China 147 73Thailand 14,960 7,480Vietnam 2,851 1,426Total Asia 123,861 61,931Unspecified 968 484Total Europe 968 484Iran (Islamic Rep.) 1,206 603Total Middle East 1,206 603

(continued)

672 Appendices

Table A6.1 (continued)

Bagasse potential availability

At 50% humidity (thousand tonnes) Dry matter (thousand tonnes)

Australia 17,581 8,791Fiji 997 499Papua New Guinea 143 72Western Samoa 7 3Total Oceania 18,729 9,364Total world 337,357 168,679

Notes:1.Bagasse potential availability based on production of cane sugar published in the I.S.O. SugarYearbook 2005 , International Sugar Organization2.Bagasse potential availability conversion factor from United Nations Energy Statistics Yearbook2004 (assumes a yield of 3.26 tonnes of fuel bagasse at 50% humidity per tonne of cane sugarproduced)

Table A6.2 ASTM D6751 specification for B100 biodiesel fuel

Test method Limits Units

Flash point, closed cup ASTM D93 93 min ıCWater and sediment ASTM D2709 0.05 max % volumeKinematic viscosity 40ıC ASTM D445 1.9–6.0 mm2/sSulfated ash ASTM D874 0.02 max % mass

SulfurS 15 grade ASTM D5453 0.0015 max % massS 500 grade ASTM D5453 0.05 max % mass

Copper strip corrosion ASTM D130 No 3 max

Alcohol content (one of the following must be met)Methanol content EN 14110 0.20 max % volume

Flash point, closed cup D93 130 min ıCCetane number ASTM D613 47 minCloud point ASTM D2500 Report to customer ıCCarbon residue ASTM D4530 0.05 max % massAcid number ASTM D664 0.50 max mg KOH/gFree glycerin ASTM D6584 0.02 % massTotal glycerin ASTM D6584 0.24 % massPhosphorus ASTM D4951 10 max ppmVacuum distillation end point ASTM D1160 360ıC max ıCOxidatione stability EN 14112 3 min hoursCalcium and Magnesium

(combined)EN 14538 5 max ppm

Source: American Society for Testing and Materials, Standard Specification for Biodiesel Fuel(B100) Blend Stock for Distillate Fuels, Designation D6751-07 (2007)

Appendices 673

Table A6.3 Comparison of certain key parameters for B100 biodiesel fuel with conventionalpetroleum based diesel fuel

Fuel property Diesel Biodiesel Units

Fuel standard ASTM D975 ASTM D6751Lower heating value 129,050 118,170 Btu/galKinematic viscosity @ 40ıC 1.3–4.1 1.9–6.0 mm2/sSpecific gravity @ 60ıC 0.85 0.88 kg/lDensity 7.079 7.328 lb/galWater and sediment 0.05 max 0.05 max % volumeCarbon 87 77 wt. %Hydrogen 13 12 wt. %Oxygen 0 11Sulfur 0.0015 0.0–0.0024 wt. %Boiling point 180–340 315–350 ıCFlash point 60–80 130–170 ıCCloud point 15 to 5 3 to 12 ıCPour point 35 to 15 15 to 10 ıCCetane number 40–55 47–65Lubricity SLBOCLE 2,000–5,000 >7,000 gramsLubricity HFRR 300–600 <300 microns

Table A6.4 Comparison of biofuel properties with the standard diesel

Property Diesel B2 B5 B10

Heat value (MJ kg1) 45.91 45.165 45.135 44.78Cloud point (ıC) – 13.4 13.7 13.6Density @ 15ıC (kg litre1) 0.84 0.8441 0.8452 0.8497Total sulfur (mass %) – 0.2 0.194 0.178Viscosity @ 40ıC (cSt) 3.6 4.0 4.1 4.9Carbon residue (wt. %) <0.1 <0.1 <0.1 <0.1Ash content (mass %) 0.001 0.003 0.004 0.004Flash point (ıC) 98.0 81.1 81.1 83.1Pour point (ıC) 15.0 9.0 9.0 9.0Initial boiling point (ıC) 228 197.3 197.3 200.010% vol. recovered (ıC) 258 242.2 243.2 246.250% vol. recovered (ıC) 298 290.5 293. 1,298.770% vol. recovered (ıC) 325 317.6 322.3 331.090% vol. recovered (ıC) 376 360.8 364.3 356.8Final boiling point (ıC) 400 379.4 367.5 357.5Final recovery (vol. %) – 99.1 98.5 98.5Residue (vol. %) – 0.5 1.0 1.0Loss (vol. %) – 0.4 0.5 0.5

Source: U.S. Department of Energy, Biodiesel Handling and Use Guidelines (2nd Edition, March2006)

674 Appendices

Table A6.5 Final blend fuel requirements (at point of delivery)

Requirements

Performance characteristics D1 D2 Test procedure

Flash point, ıC, min. 38 52 ASTM D93Water and sediment,

vol %, max.0.05 0.05 ASTM D2709 or D1796

Physical distillation,T90, ıC, max.

343 343 ASTM D86

Kinematic viscosity,cSt at 40ıC

1.3 4.1 1.9 4.1 ASTM D445

Ash, mass%, max. 0.01 0.01 ASTM D482Sulfur, wt%, max. Perregulation PerregulationCopper strip corrosion rating,

max.No. 3 No. 3 ASTM D130

Cetane number, min. 43 43 ASTM D613Cloud pointa Per footnote Per footnote ASTM D2500Ramsbottom carbon residue on

10% distillation residue,wt%, max.

0.15 0.35 ASTM D524

Lubricity, HFRR at 60ıC,micron, max.

460 460 ASTM D6079

Acid number, mg KOH/g, max. 0.3 0.3 ASTM D664Phosphorus, wt%, max. 0.001 0.001 ASTM D4951Total Glycerin N/AAlkali metals (Na C K), ppm,

max.Nd Nd EN14108

Alkaline metals (Mg C Ca),ppm max.

Nd Nd EN14108

Blend fraction, vol. %b C=2% C=2% EN14078Thermo-oxidative Stability,

insolubles, mg/100 mL,max.

10 10 Modified ASTM D2274c

Oxidation stability, inductiontime, hours, minimum

6 6 EN14112 (Rancimat)

Source: Engine Manufacturing Association (2006) Test specification for biodiesel fuel.www.enginemanufacturers.comNotes: A blend of petroleum diesel fuel meeting ASTM D975 and 100% (neat) biodiesel fuelmeeting either ASTM 6751 or EN 14214, where the biodiesel content of the blended fuel is nomore than 20% biodiesel by volume (B20), shall meet the requirements identified in Table A6.5 atthe point of delivery of the fuel to the end userD1 and D2 Blends – Both Number 1 and Number 2 petroleum diesel fuel (“D1” and “D2”) may beblended with biodiesel for a variety of reasons, including the need for lower temperature operation.D1 and D2 may be blendedaThe maximum cloud point temperature shall be equal to or lower than the tenth percentileminimum ambient temperature in the geographical area and seasonal timeframe as defined byASTM D975bBlend fractions refers to the variation in volume percent of B100 in diesel fuel claimedcUse glass fiber filter

Appendices 675

Table A6.6 European Norm pr EN 15376/Bio-ethanol (low blends E5, E10, E15, E20 etc)

Properties Units Min. Max. Test methods

Ethanol (incl. highersaturated alcohols)

% wt. 98, 70 – EC/2870/2000method I

Higher saturatedmonoalcohols (C3-C5)

% wt. – 2.0 EC/2870/2000method III

Methanol % wt. – 1.0 EC/2870/2000method III

Water content % wt. – 0.3 EN 15489Inorganic chloride content mg/l – 20.0 EN 15484Copper mg/kg – 0.1 EN 15488Total acidity (as acetic acid

CH3COOH)% wt. – 0.007 EN 15491

Appearance (to bedetermined at ambienttemperature or 15ıCwhichever is higher)

– Clear andbright

Clear andbright

Visual inspection

Phosphorous mg/l – 0.5 EN 15487Involatile material mg/100 ml – 10.0 EC/2870/2000

method IISulfur content mg/kg – 10.0 EN 15485, EN

15486

Source: http://www.fuel4life-biofuels.com

Table A6.7 European Norm CWA (EN) 15293/Bioethanol (high blends E75, E85, and up)a

Properties Units Min. Max. Test methods

Research octanenumber RON

95.0 – EN ISO 5164

Motor octane numberMON

85.0 – EN ISO 5163

Oxidation stability Minutes 360 – EN ISO 7536pHe 6.5 9.0 ASTM D 6423Higher saturated

monoalcohols(C3-C8)

% wt. – 2.0 EN 1601EN 13132

Methanol % wt. – 1.0 EN 1601EN 13132

Ethers (5 or more Catoms)

% wt. – 5.2 EN 1601EN 13132

Water content % wt. 0.3 0.3 ASTM E 1064Inorganic chloride

contentmg/l 1.0 1.0 EN ISO 6227

Copper strip corrosion(3 h at 50ı)

rating Class 1 Class 1 EN ISO 2160

(continued)

676 Appendices

Table A6.7 (continued)

Properties Units Min. Max. Test methods

Total acidity (as aceticacid CH3COOH)

% wtmg/l

0.005(40)

0.005(40)

ASTM D 1613

Appearance (to bedetermined atambienttemperature or 15ı

whichever ishigher)

– Clear andbright

Clear andbright

Visual inspection

Phosphorous mg/l Not detectable Not detectable ASTM D 3231Involatile material mg/100 ml – 5.0 EN ISO 6246Sulfur content mg/kg – 20ı EN ISO 20846

EN ISO 20884

Source: http://www.fuel4life-biofuels.comaIn concept (January 2010)

Table A6.8 Approximateheat values for commonfirewood species in Virginia.Based on air-dried, standard(40 40 80) cords

Species Btu/cord

Black locust 26,500,000Hickory 25,400,000Hophornbeam 24,700,000Beech 21,800,000Hard maple 21,800,000Red oak 21,700,000Yellow birch 21,300,000Yellow pine 20,500,000White ash 20,000,000White oak 19,200,000Soft maple 19,100,000Black cherry 18,500,000White birch 18,200,000Sweetgum 18,100,000Elm 17,700,000Yellow poplar 15,900,000Hemlock 15,000,000Red spruce 15,000,000Fir 13,500,000White pine 13,300,000Basswood 12,600,000

Appendices 677

Tab

leA

6.9

Bio

mas

sst

ock

info

rest

and

othe

rw

oode

dla

nd20

05

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Ang

ola

7,60

52,

053

1,07

610

,734

––

––

Bot

swan

a22

855

––

665

159

––

Com

oros

1n.

s.n.

s.2

––

––

Ken

ya53

613

374

743

––

––

Les

otho

––

––

n.s.

n.s.

n.s.

1M

adag

asca

r4,

778

1,48

138

26,

641

––

––

Mal

awi

260

62–

––

––

–M

auri

tius

62

19

2n.

s.n.

s.2

May

otte

––

––

––

––

Moz

ambi

que

978

235

170

1,38

21,

728

829

358

2,91

5N

amib

ia36

498

6552

723

162

4133

5Se

yche

lles

61

––

––

––

Sout

hA

fric

a1,

302

346

231

1,87

81,

242

596

257

2,09

5Sw

azil

and

389

––

72

––

Uga

nda

218

5939

315

126

219

Uni

ted

Rep

ubli

cof

Tanz

ania

3,63

687

363

15,

140

248

119

5141

8

Zam

bia

1,82

149

232

42,

636

6116

1188

Zim

babw

e84

322

615

01,

219

––

––

Alg

eria

183

44–

––

––

– (con

tinu

ed)

678 Appendices

Tab

leA

6.9

(con

tinu

ed)

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Bur

kina

Faso

469

127

108

704

––

––

Cha

d371

100

––

114

55–

–D

jibo

uti

1n.

s.–

––

––

–E

gypt

11

32

16n.

s.n.

s.n.

s.1

Eth

iopi

a396

107

7057

336

517

576

616

Lib

yan

Ara

bJa

mah

iriy

a11

22

153

11

4

Mal

i390

94

––

514

123

––

Mau

rita

nia

10

3–

––

––

–M

oroc

co368

112

––

n.s.

n.s.

––

Nig

er20

5–

–19

5–

–So

mal

ia624

150

108

881

––

––

Suda

n2;2

35

827

337

3,39

8–

––

–T

unis

ia15

5–

–0

n.s.

––

Wes

tern

Saha

ra29

22

––

––

––

Cam

eroo

n2;6

79

1;1

25

387

4,19

1–

––

–C

ape

Ver

de12

4–

––

––

–C

entr

alA

fric

anR

epub

lic

4;5

19

1;0

85

414

6,01

8–

––

Con

go8;3

56

2;0

05

––

882

212

––

Cot

ed’

Ivoi

re3;6

49

365

442

4,45

6–

––

–D

emoc

rati

cR

epub

lic

ofth

eC

ongo

37;3

76

8;9

70

2,43

248

,778

––

–– (c

onti

nued

)

Appendices 679

Tab

leA

6.9

(con

tinu

ed)

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Equ

ator

ial

Gui

nea

186

45

30

261

––

––

Gab

on5;9

71

1;3

14

392

7;6

77

––

––

Gam

bia

53

13

976

105

217

Gha

na726

267

139

1;1

32

––

––

Gui

nea

1;0

26

246

122

1;3

94

––

––

Gui

nea-

Bis

sau

98

24

38

160

––

––

Lib

eria

731

175

127

1;0

33

––

––

Nig

eria

2;2

61

543

392

3;1

95

––

––

Rw

anda

75

13

n.s.

88

173

121

Sain

tHel

ena

––

––

––

––

Sao

Tom

ean

dPr

inci

pe6

30

10

––

––

Sene

gal

566

175

28

769

3812

252

Chi

na9;2

71

2;9

20

1;8

36

14;0

27

577

219

138

934

Dem

ocra

tic

Peop

le’s

Rep

ubli

cof

Kor

ea

340

125

68

532

––

––

Japa

n3;0

52

733

––

––

––

Mon

goli

a870

278

230

1;3

78

1n.

s.n.

s.1

Rep

ubli

cof

Kor

ea383

132

57

572

––

––

Ban

glad

esh

51

12

770

––

––

Bhu

tan

503

187

76

766

––

–– (c

onti

nued

)

680 Appendices

Tab

leA

6.9

(con

tinu

ed)

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Bru

nei

Dar

ussa

lam

63

15

987

––

––

Cam

bodi

a1;9

04

628

279

2,81

1–

––

–In

dia

4;0

93

1;0

85

570

5,74

8–

––

–In

done

sia

8;8

67

2;9

26

1,29

713

,090

––

––

Lao

Peop

le’s

Dem

ocra

tic

Rep

ubli

c

2;3

42

632

327

3,30

178

2111

110

Mal

aysi

a5;6

61

1;3

59

1,05

38,

073

––

––

Mal

dive

s–

––

––

––

–M

yanm

ar5;1

09

1;2

26

697

7,03

2–

––

–N

epal

718

251

145

1,11

463

2213

98Pa

kist

an381

135

5757

3–

––

–Ph

ilip

pine

s1;5

66

376

214

2,15

6–

––

–Si

ngap

ore

––

––

––

––

SriL

anka

64

15

988

––

––

Tha

ilan

d1;1

29

305

158

1,59

2–

––

–V

ietN

am1;8

93

455

258

2,60

6–

––

–A

fgha

nist

an9

41

14–

––

–A

rmen

ia27

95

411

n.s.

n.s.

1A

zerb

aija

n99

17

––

––

––

Cyp

rus

41

––

––

––

Geo

rgia

334

86

5947

9–

––

– (con

tinu

ed)

Appendices 681

Tab

leA

6.9

(con

tinu

ed)

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Iran

(Isl

amic

Rep

ubli

cof

)516

153

9476

3–

––

Jord

an3

11

5–

––

–K

azak

hsta

n211

63

3831

210

32

14K

yrgy

zsta

n17

8–

––

––

–L

eban

on3

1–

–n.

s.n.

s.–

–Sa

udiA

rabi

a28

75

4020

555

3629

7Ta

jiki

stan

42

n.s.

61

n.s.

––

Tur

key

1;4

00

233

––

––

––

Tur

kmen

ista

n17

17

540

––

––

Uni

ted

Ara

bE

mir

ates

23

10

538

n.s.

n.s.

n.s.

n.s.

Uzb

ekis

tan

17

74

28–

––

–Y

emen

73

112

188

430

Alb

ania

78

25

2913

28

2310

41A

ustr

ia773

––

––

––

–B

elar

us828

251

216

1,29

5–

––

–B

elgi

um104

26

313

3–

––

–B

osni

aan

dH

erze

govi

na275

76

––

––

––

Bul

gari

a395

132

––

––

––

Cro

atia

304

80

5443

9–

––

–C

zech

Rep

ubli

c612

113

3676

10

00

0D

enm

ark

40

12

––

––

––

Est

onia

259

75

1635

13

1n.

s.4

(con

tinu

ed)

682 Appendices

Tab

leA

6.9

(con

tinu

ed)

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Finl

and

1;3

51

281

351,

666

31

n.s.

4Fr

ance

1;8

50

602

––

––

––

Ger

man

y2;0

20

585

542,

659

––

––

Gre

ece

98

19

––

––

––

Hun

gary

257

83

n.s.

340

––

––

Icel

and

3n.

s.n.

s.3

1n.

s.n.

s.2

Irel

and

33

7n.

s.40

––

––

Ital

y1;0

43

230

159

1,43

188

3712

137

Lat

via

357

105

947

1–

––

–L

iech

tens

tein

1n.

s.–

––

––

–L

ithu

ania

210

48

2127

91

n.s.

n.s.

2L

uxem

bour

g17

2–

––

––

–M

alta

n.s.

n.s.

––

––

––

Mol

dova

,R

epub

lic

of24

2–

–1

1–

Net

herl

ands

43

92

540

00

0N

orw

ay587

103

3772

737

45

46Po

land

1;3

79

412

131,

804

––

––

Port

ugal

146

82

––

85

––

Rom

ania

904

229

181

1,31

4–

––

–R

ussi

anFe

dera

tion

51;5

74

12;8

46

24,3

9688

,815

450

300

750

1,50

0

Serb

ia242

70

4435

6–

––

– (con

tinu

ed)

Appendices 683

Tab

leA

6.9

(con

tinu

ed)

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Slov

akia

334

73

32

438

––

––

Slov

enia

229

65

48

342

2n.

s.n.

s.3

Spai

n661

210

––

1n.

s.–

–Sw

eden

1;8

10

530

670

3;0

10

329

1455

Swit

zerl

and

248

60

8316

––

––

The

form

erY

ugos

lav

Rep

ubli

cof

Mac

edon

ia

33

8–

––

––

Ukr

aine

1;1

99

290

208

1;6

98

––

––

Uni

ted

Kin

gdom

190

34

3227

10

01

Cub

a569

171

49

789

––

––

Dom

inic

anR

epub

lic

132

32

24

188

––

––

Hai

ti12

52

19

––

––

Jam

aica

55

13

876

348

547

Puer

toR

ico

35

7–

––

––

–T

rini

dad

and

Toba

go38

94

51

––

––

Bel

ize

94

24

18

137

1n.

s.n.

s.1

Cos

taR

ica

224

161

42

427

––

––

Gua

tem

ala

755

241

149

1;1

45

––

––

Nic

arag

ua1;1

54

278

158

1;5

90

––

–– (c

onti

nued

)

684 Appendices

Tab

leA

6.9

(con

tinu

ed)

Fore

stO

ther

woo

ded

land

Cou

ntry

/are

aA

bove

-gro

und

biom

ass

(Mt)

Bel

ow-g

roun

dbi

omas

s(M

t)D

ead

woo

d(M

t)To

tal(

Mt)

Abo

ve-g

roun

dbi

omas

s(M

t)B

elow

-gro

und

biom

ass

(Mt)

Dea

dw

ood

(Mt)

Tota

l(M

t)

Pana

ma

980

258

136

1,37

491

3814

144

Uni

ted

Stat

esof

Am

eric

a31

,653

6,27

65,

350

43,2

79–

––

Am

eric

anSa

moa

31

––

––

––

Aus

tral

ia12

,929

5,58

14,

909

23,4

19–

––

–N

auru

––

––

––

––

New

Cal

edon

ia11

828

1316

0–

––

–A

rgen

tina

3,82

499

351

65,

333

––

––

Bol

ivia

7,82

82,

740

1,16

311

,731

––

––

Bra

zil

79,2

1922

,017

6,35

910

7,59

5–

––

–C

hile

3,24

364

973

94,

631

––

––

Col

ombi

a11

,945

4,18

02,

419

18,5

443,

453

1,20

969

95,

361

Guy

ana

2,82

461

937

83,

821

––

––

Suri

nam

e8,

016

3,36

71,

252

12,6

35–

––

Appendices 685

Tab

leA

6.10

Var

ious

chem

ical

and

phys

ical

prop

erti

esof

diff

eren

toi

lsas

pote

ntia

lfee

dsto

ckfo

rbi

ofue

l

Fat

Var

iety

orpr

oces

sing

Vis

cosi

ty,

mm

2/s

,40ı

CA

STM

-D44

5,A

STM

-D88

Den

sity

,kg

/L,1

5.6ı

CA

STM

-D12

98D

ensi

ty,

kg/L

25

ıC

Surf

ace

tens

ion,

dyne

s/cm

AST

M-D

971

Net

calo

rific

valu

e,M

J/kg

Gro

ssca

lori

ficva

lue,

MJ/

kgA

STM

-D27

0

Cet

ane

AST

M-D

613,

AST

M-D

976

Soyb

ean

Alk

ali-

refin

ed0.

922

38.9

Sunfl

ower

Cru

de0.

918

39.6

Sunfl

ower

Deg

umm

ed0.

9239

.3Su

nflow

erD

ewax

ed0.

9238

.8So

ybea

nD

egum

med

0.91

839

Soyb

ean

Cru

de0.

921

38.8

Ric

ebra

n0.

935

38.9

5230

Soyb

ean

Deg

umm

ed51

.7So

ybea

nSa

lad

oil

Soyb

ean

Onc

e-re

fined

Cor

n0.

915

37.6

Cot

tons

eed

Cru

de0.

912

39.6

4848

.1O

pium

popp

y0.

921

38.9

2R

apes

eed

0.91

437

.62

37.6

Soyb

ean

Cru

de0.

914

39.6

2337

.9Su

nflow

erC

rude

0.91

839

.525

37.1

Cas

tor

39.5

Hon

ne33

.058

Jatr

opha

39.7

7440

–45

Kar

anja

37.1

Mah

ua30

.248

45N

eem

39.3

9947

Oliv

ePa

lm36

.553

42(c

onti

nued

)

686 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Var

iety

orpr

oces

sing

Vis

cosi

ty,

mm

2/s

,40ı

CA

STM

-D44

5,A

STM

-D88

Den

sity

,kg

/L,1

5.6ı

CA

STM

-D12

98D

ensi

ty,

kg/L

25

ıC

Surf

ace

tens

ion,

dyne

s/cm

AST

M-D

971

Net

calo

rific

valu

e,M

J/kg

Gro

ssca

lori

ficva

lue,

MJ/

kgA

STM

-D27

0

Cet

ane

AST

M-D

613,

AST

M-D

976

Can

ola

390.

9239

.721

Cot

tons

eed

71.9

0.92

343

.957

Nee

m14

0.3

0.92

241

.64

Pean

ut56

.80.

918

38.7

940

.1R

apes

eed

510.

9139

.923

Saffl

ower

Lin

olei

c32

.30.

9339

.542

Saffl

ower

Ole

ic42

.10.

9239

.165

Soyb

ean

44.6

0.92

340

.935

.4St

illi

ngia

400.

9139

.124

Sunfl

ower

34.9

0.92

39.4

86Ta

llow

seed

350.

882

39.1

93R

esta

uran

tgr

ease

Proc

esse

dm

ixed

wit

hun

proc

esse

dR

esta

uran

tgr

ease

Proc

esse

d

Res

taur

ant

grea

seB

oile

d

Res

taur

ant

grea

seU

npro

cess

ed

Res

taur

ant

grea

seU

npro

cess

ed

Res

taur

ant

grea

seU

npro

cess

ed

(con

tinu

ed)

Appendices 687

Tab

leA

6.10

(con

tinu

ed)

Fat

Var

iety

orpr

oces

sing

Vis

cosi

ty,

mm

2/s

,40ı

CA

STM

-D44

5,A

STM

-D88

Den

sity

,kg

/L,1

5.6ı

CA

STM

-D12

98D

ensi

ty,

kg/L

25

ıC

Surf

ace

tens

ion,

dyne

s/cm

AST

M-D

971

Net

calo

rific

valu

e,M

J/kg

Gro

ssca

lori

ficva

lue,

MJ/

kgA

STM

-D27

0

Cet

ane

AST

M-D

613,

AST

M-D

976

Res

taur

ant

grea

seU

npro

cess

ed

Res

taur

ant

grea

seU

npro

cess

ed

Res

taur

ant

grea

seSo

lids

and

free

wat

erre

mov

edPa

lmoi

l38

.23

0.91

02@

2036

.543

39.0

4742

Cot

tons

eed

33.7

39.4

433

.7C

ram

be53

.240

.62

Lin

seed

2839

.33

Saffl

ower

31.6

39.5

242

Wal

nut

36.8

39.5

633

.6Su

nflow

er34

.439

.57

36.7

Bee

chnu

t38

39.8

238

.2C

orn

35.1

39.6

437

.5So

ybea

n33

.139

.63

38.1

Popp

y42

.439

.59

36.7

Rap

esee

d37

.339

.73

37.5

Haz

elnu

tke

rnel

2439

.83

35.8

Pean

ut40

39.4

534

.6B

eech

34.6

39.5

936

.2C

asto

r29

.737

.41

42.3 (c

onti

nued

)

688 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Var

iety

orpr

oces

sing

Vis

cosi

ty,

mm

2/s

,40ı

CA

STM

-D44

5,A

STM

-D88

Den

sity

,kg

/L,1

5.6ı

CA

STM

-D12

98D

ensi

ty,

kg/L

25

ıC

Surf

ace

tens

ion,

dyne

s/cm

AST

M-D

971

Net

calo

rific

valu

e,M

J/kg

Gro

ssca

lori

ficva

lue,

MJ/

kgA

STM

-D27

0

Cet

ane

AST

M-D

613,

AST

M-D

976

Ail

anth

us30

.239

.38

35.1

Saffl

ower

Hig

hol

eic

40.8

39.6

148

.8Sp

ruce

35.6

39.4

434

.2Se

sam

e36

39.4

240

.4B

ayla

urel

23.2

38.3

233

.6C

orn

mar

row

35.1

39.6

37.5

Oliv

e29

.439

.749

.3A

lmon

d34

.239

.834

.5W

alnu

t24

39.8

52.9

Whe

atgr

ain

32.6

39.3

35.2

Cot

tons

eed

33.7

39.4

33.7

Soyb

ean

33.1

39.6

38.1

Cas

tor

297

0.95

3737

.274

7C

orn

34.9

0.90

9539

.537

.6C

otto

nsee

d33

.50.

9148

39.4

6841

.8C

ram

be53

.60.

9044

40.4

8244

.6L

inse

ed27

.20.

9236

39.3

0734

.6Pe

anut

39.6

0.90

2639

.782

41.8

Rap

esee

d37

0.91

1539

.709

37.6

Saffl

ower

Hig

hol

eic

41.2

0.90

2139

.516

49.1

Saffl

ower

31.3

0.91

4439

.519

41.3

Sesa

me

35.5

0.91

3339

.349

40.2

Soyb

ean

32.6

0.91

3839

.623

37.9 (c

onti

nued

)

Appendices 689

Tab

leA

6.10

(con

tinu

ed)

Fat

Var

iety

orpr

oces

sing

Vis

cosi

ty,

mm

2/s

,40ı

CA

STM

-D44

5,A

STM

-D88

Den

sity

,kg

/L,1

5.6ı

CA

STM

-D12

98D

ensi

ty,

kg/L

25

ıC

Surf

ace

tens

ion,

dyne

s/cm

AST

M-D

971

Net

calo

rific

valu

e,M

J/kg

Gro

ssca

lori

ficva

lue,

MJ/

kgA

STM

-D27

0

Cet

ane

AST

M-D

613,

AST

M-D

976

Sunfl

ower

33.9

0.91

6139

.575

37.1

Pean

utC

rude

42.3

0.91

535

40.3

Dec

can

hem

p38

.72

Cot

tons

eed

35.8

0.92

5@

1563

.559

.5Su

nflow

er34

.20.

9231

39.5

41.8

Rap

esee

d38

0.91

636

.87

44–4

8R

apes

eed

Hea

ted

0.88

439

.08

Rap

esee

dU

nhea

ted

0.91

839

.08

Can

ola

390.

9236

.543

Rap

esee

dH

igh

eruc

ic51

0.91

36.3

3Sa

fflow

erL

inol

eic

32.3

0.93

36.3

79Sa

fflow

erO

leic

42.1

0.92

36.0

32Su

nflow

er34

.90.

9236

.327

Jatr

opha

Cru

de0.

9236

Soyb

ean

Cru

de0.

923

39.5

58So

ybea

nD

egum

med

0.92

239

.591

Sunfl

ower

Use

dco

okin

goi

l72

.60.

915

36.9

4

Sunfl

ower

Cru

de32

.137

.188

Cot

tons

eed

Onc

e-re

fined

32.5

60.

9100

132

.637

.418

39.8

49C

otto

nsee

dB

leac

hed

and

deod

oriz

ed34

.25

0.91

0432

.55

37.5

1739

.993

(con

tinu

ed)

690 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Var

iety

orpr

oces

sing

Vis

cosi

ty,

mm

2/s

,40ı

CA

STM

-D44

5,A

STM

-D88

Den

sity

,kg

/L,1

5.6ı

CA

STM

-D12

98D

ensi

ty,

kg/L

25

ıC

Surf

ace

tens

ion,

dyne

s/cm

AST

M-D

971

Net

calo

rific

valu

e,M

J/kg

Gro

ssca

lori

ficva

lue,

MJ/

kgA

STM

-D27

0

Cet

ane

AST

M-D

613,

AST

M-D

976

Cot

tons

eed

Cru

de34

.89

0.90

899

31.9

536

.958

39.4

Pean

utC

rude

36.3

30.

9059

132

.22

37.1

0239

.614

Pean

utO

nce-

refin

ed37

.16

0.91

292

31.8

937

.241

39.7

49Pe

anut

Ble

ache

dan

dde

odor

ized

37.3

80.

9015

932

.28

37.4

3339

.929

Soyb

ean

Onc

e-re

fined

30.5

50.

9087

832

.13

37.7

640

.204

Soyb

ean

Deg

umm

ed31

.28

0.90

182

32.1

336

.952

39.3

88So

ybea

nC

rude

32.2

30.

9019

832

.01

36.9

8139

.388

Soyb

ean

Lig

hthy

dro-

gena

ted

37.5

40.

9028

837

.332

39.8

2

Sunfl

ower

Dew

axed

30.6

10.

9074

733

.237

.626

40.0

75Su

nflow

erO

nce-

refin

ed30

.69

0.90

785

32.8

237

.616

40.0

6Su

nflow

erC

rude

30.9

60.

9086

732

.01

37.5

2839

.956

Sunfl

ower

Deo

dori

zed

31.6

70.

9074

732

.82

37.6

8840

.135

Bab

assu

30.3

0.94

638

Palm

39.6

0.91

842

Can

ola

37.8

239

.533

.5Pa

lm40

.85

0.91

5352

Rap

esee

d51

0.92

136

.75

Sunfl

ower

33.9

0.91

74C

orn

Cru

deC

otto

nsee

dC

rude

Rap

esee

dC

anol

a(c

onti

nued

)

Appendices 691

Tab

leA

6.10

(con

tinu

ed)

Fat

Col

dfil

ter

clog

ging

poin

tıC

AST

M-E

N11

6,IP

309

Pour

poin

tıC

AST

M-D

97

Clo

udpo

intı

CA

STM

-D25

00

Flas

hpo

intı

CA

STM

-D93

Fire

poin

tıC

Aut

o-ig

niti

onpo

int

Init

ialb

oili

ngpo

int,

0.1%

evap

orat

edı

CA

STM

-D86

Fina

lboi

ling

poin

t,99

.5%

evap

orat

edı

CA

STM

-D86

Soyb

ean

269

Sunfl

ower

255

Sunfl

ower

257

Sunfl

ower

262

Soyb

ean

153

Soyb

ean

229

Ric

ebra

n20

0So

ybea

n24

7So

ybea

n34

0So

ybea

n27

9C

orn

270–

295

Cot

tons

eed

210

Rap

esee

d27

5–29

0So

ybea

n23

0Su

nflow

er22

0C

asto

r3

1.7

260

Mah

ua99

Nee

m18

0Pa

lm27

Palm

oil

614

344

Cot

tons

eed

235

Cra

mbe

274

Lin

seed

240

(con

tinu

ed)

692 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Col

dfil

ter

clog

ging

poin

tıC

AST

M-E

N11

6,IP

309

Pour

poin

tıC

AST

M-D

97

Clo

udpo

intı

CA

STM

-D25

00

Flas

hpo

intı

CA

STM

-D93

Fire

poin

tıC

Aut

o-ig

niti

onpo

int

Init

ialb

oili

ngpo

int,

0.1%

evap

orat

edı

CA

STM

-D86

Fina

lboi

ling

poin

t,99

.5%

evap

orat

edı

CA

STM

-D86

Saffl

ower

260

Wal

nut

232

Bee

chnu

t26

0C

orn

276

Soyb

ean

255

Popp

y26

5R

apes

eed

245

Haz

elnu

tker

nel

230

Pean

ut27

0B

eech

242

Cas

tor

260

Ail

anth

us23

8Sa

fflow

er29

2Sp

ruce

238

Sesa

me

262

Bay

laur

el22

6C

orn

40

1.1

277

Cot

tons

eed

15

1.7

234

Cra

mbe

12

1027

4L

inse

ed1

51.

724

1Pe

anut

6.7

12.8

271

Rap

esee

d3

1.7

3.9

246

Saffl

ower

20.

612

.229

3(c

onti

nued

)

Appendices 693

Tab

leA

6.10

(con

tinu

ed)

Fat

Col

dfil

ter

clog

ging

poin

tıC

AST

M-E

N11

6,IP

309

Pour

poin

tıC

AST

M-D

97

Clo

udpo

intı

CA

STM

-D25

00

Flas

hpo

intı

CA

STM

-D93

Fire

poin

tıC

Aut

o-ig

niti

onpo

int

Init

ialb

oili

ngpo

int,

0.1%

evap

orat

edı

CA

STM

-D86

Fina

lboi

ling

poin

t,99

.5%

evap

orat

edı

CA

STM

-D86

Saffl

ower

6.7

18.3

260

Sesa

me

9.4

3.9

260

Soyb

ean

12.

23

.925

4Su

nflow

er1

57.

227

4D

ecca

nH

emp

255

270

Cot

tons

eed

12

10.

28

.724

2Su

nflow

er1

81

2.2

6.7

232

Rap

esee

d15

2022

0–30

0Ja

trop

ha22

5Su

nflow

er29

0Su

nflow

er29

034

0Su

nflow

er27

5C

otto

nsee

d4

032

535

8.7

681.

4C

otto

nsee

d4

132

335

5.5

681.

9C

otto

nsee

d3

030

033

9.9

683.

3Pe

anut

210

296

345.

368

0.5

Pean

ut0

1023

535

9.4

680

Pean

ut1

1033

036

1.3

679.

5So

ybea

n9

132

036

0.7

681.

4(c

onti

nued

)

694 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Col

dfil

ter

clog

ging

poin

tıC

AST

M-E

N11

6,IP

309

Pour

poin

tıC

AST

M-D

97

Clo

udpo

intı

CA

STM

-D25

00

Flas

hpo

intı

CA

STM

-D93

Fire

poin

tıC

Aut

o-ig

niti

onpo

int

Init

ialb

oili

ngpo

int,

0.1%

evap

orat

edı

CA

STM

-D86

Fina

lboi

ling

poin

t,99

.5%

evap

orat

edı

CA

STM

-D86

Soyb

ean

107

315

360.

767

9.1

Soyb

ean

10

631

234

4.2

679.

5So

ybea

n2

32–3

732

535

9.4

681.

4Su

nflow

er9

1632

235

8.7

681.

4Su

nflow

er1

116

328

358.

768

2.3

Sunfl

ower

91

031

435

8.1

682.

8Su

nflow

er9

732

336

068

1.9

Bab

assu

2015

0Pa

lm31

267

Can

ola

240

Palm

1726

635

2Su

nflow

er27

4Pe

anut

282

445

Oliv

e22

534

3So

ybea

n22

044

5C

orn

393

Cot

tons

eed

343

Rap

esee

d31

5(c

onti

nued

)

Appendices 695

Tab

leA

6.10

(con

tinu

ed)

Fat

Car

bon

resi

due,

%w

eigh

tA

STM

-D18

9,A

STM

-D52

4

Ash

,%in

wei

ght

AST

M-D

482

Part

icul

ate

mat

ter,

mg/

100

ml

Sedi

men

tcon

tent

byth

eex

trac

tion

met

hod,

%vo

lum

eA

STM

-D47

3

Inso

lubl

eim

puri

ties

,%

wei

ght

AO

CS

Met

hod

Ca

3a-4

6

Uns

apon

ifiab

lem

atte

r,%

wei

ght

AO

CS

Met

hod

Ca

6a-4

0

Wat

erby

Kar

l-Fi

sche

r,%

wei

ght

AST

M-D

1744

Wat

eran

dse

dim

ent

cont

ent,

%w

eigh

tA

STM

-D17

96

Soyb

ean

0.00

2Su

nflow

er0.

01Su

nflow

er0.

01Su

nflow

er0.

01So

ybea

n0.

01So

ybea

n0.

2R

iceb

ran

0.3

Ani

mal

fat

0.11

2.63

Res

taur

ant

grea

se1.

030.

99

Yel

low

grea

se3.

832.

53R

esta

uran

tgr

ease

0.09

0.34

Res

taur

ant

grea

se<

0.1

0.43

Res

taur

ant

grea

se0.

030.

42

Res

taur

ant

grea

se0.

030.

38

Res

taur

ant

grea

se0.

080.

47

Res

taur

ant

grea

se1.

224.

83

(con

tinu

ed)

696 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Car

bon

resi

due,

%w

eigh

tA

STM

-D18

9,A

STM

-D52

4

Ash

,%in

wei

ght

AST

M-D

482

Part

icul

ate

mat

ter,

mg/

100

ml

Sedi

men

tcon

tent

byth

eex

trac

tion

met

hod,

%vo

lum

eA

STM

-D47

3

Inso

lubl

eim

puri

ties

,%

wei

ght

AO

CS

Met

hod

Ca

3a-4

6

Uns

apon

ifiab

lem

atte

r,%

wei

ght

AO

CS

Met

hod

Ca

6a-4

0

Wat

erby

Kar

l-Fi

sche

r,%

wei

ght

AST

M-D

1744

Wat

eran

dse

dim

ent

cont

ent,

%w

eigh

tA

STM

-D17

96

Res

taur

ant

grea

se0.

110.

52

Res

taur

ant

grea

se2.

510.

25

Soyb

ean

<0.

10.

43So

ybea

n<

0.1

0.41

Palm

oil

0.00

30

Cot

tons

eed

0.25

0.02

Cra

mbe

0.23

0.04

Lin

seed

0.24

0.01

Saffl

ower

0.26

0.00

7W

alnu

t0.

240.

02Su

nflow

er0.

280.

01B

eech

nut

0.23

0.03

Cor

n0.

220.

01So

ybea

n0.

240.

006

Popp

y0.

250.

02R

apes

eed

0.31

0.00

6H

azel

nut

kern

el0.

210.

01

(con

tinu

ed)

Appendices 697

Tab

leA

6.10

(con

tinu

ed)

Fat

Car

bon

resi

due,

%w

eigh

tA

STM

-D18

9,A

STM

-D52

4

Ash

,%in

wei

ght

AST

M-D

482

Part

icul

ate

mat

ter,

mg/

100

ml

Sedi

men

tcon

tent

byth

eex

trac

tion

met

hod,

%vo

lum

eA

STM

-D47

3

Inso

lubl

eim

puri

ties

,%

wei

ght

AO

CS

Met

hod

Ca

3a-4

6

Uns

apon

ifiab

lem

atte

r,%

wei

ght

AO

CS

Met

hod

Ca

6a-4

0

Wat

erby

Kar

l-Fi

sche

r,%

wei

ght

AST

M-D

1744

Wat

eran

dse

dim

ent

cont

ent,

%w

eigh

tA

STM

-D17

96

Pean

ut0.

220.

02B

eech

0.24

0.04

Cas

tor

0.21

0.01

Ail

anth

us0.

220.

02Sa

fflow

er0.

240.

01Sp

ruce

0.26

0.01

Sesa

me

0.25

0.00

2B

ayla

urel

0.2

0.03

Cor

nm

arro

w0.

220.

01O

live

0.23

0.02

Alm

ond

0.22

0.01

Wal

nut

0.21

0.01

Whe

atgr

ain

0.23

0.02

Cot

tons

eed

0.25

0.02

Soyb

ean

0.24

0.00

6C

asto

r0.

22<

0.01

Tra

ceC

orn

0.24

0.01

Tra

ceC

otto

nsee

d0.

240.

010.

04(c

onti

nued

)

698 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Car

bon

resi

due,

%w

eigh

tA

STM

-D18

9,A

STM

-D52

4

Ash

,%in

wei

ght

AST

M-D

482

Part

icul

ate

mat

ter,

mg/

100

ml

Sedi

men

tcon

tent

byth

eex

trac

tion

met

hod,

%vo

lum

eA

STM

-D47

3

Inso

lubl

eim

puri

ties

,%

wei

ght

AO

CS

Met

hod

Ca

3a-4

6

Uns

apon

ifiab

lem

atte

r,%

wei

ght

AO

CS

Met

hod

Ca

6a-4

0

Wat

erby

Kar

l-Fi

sche

r,%

wei

ght

AST

M-D

1744

Wat

eran

dse

dim

ent

cont

ent,

%w

eigh

tA

STM

-D17

96

Cra

mbe

0.23

305

0.2

Lin

seed

0.22

<0.

01T

race

Pean

ut0.

240.

005

Tra

ceR

apes

eed

0.3

0.05

4T

race

Saffl

ower

0.24

<0.

001

Tra

ceSa

fflow

er0.

250.

006

Tra

ceSe

sam

e0.

25<

0.01

Tra

ceSo

ybea

n0.

27<

0.01

Tra

ceSu

nflow

er0.

23<

0.01

Tra

cePe

anut

0.02

0.61

Cot

tons

eed

0.00

2A

bsen

tA

bsen

tSu

nflow

erA

bsen

t0.

002

Abs

ent

Rap

esee

d0.

01C

anol

a0.

0043

Saffl

ower

0.00

46Sa

fflow

er0.

0074

Jatr

opha

0.00

984

(con

tinu

ed)

Appendices 699

Tab

leA

6.10

(con

tinu

ed)

Fat

Car

bon

resi

due,

%w

eigh

tA

STM

-D18

9,A

STM

-D52

4

Ash

,%in

wei

ght

AST

M-D

482

Part

icul

ate

mat

ter,

mg/

100

ml

Sedi

men

tcon

tent

byth

eex

trac

tion

met

hod,

%vo

lum

eA

STM

-D47

3

Inso

lubl

eim

puri

ties

,%

wei

ght

AO

CS

Met

hod

Ca

3a-4

6

Uns

apon

ifiab

lem

atte

r,%

wei

ght

AO

CS

Met

hod

Ca

6a-4

0

Wat

erby

Kar

l-Fi

sche

r,%

wei

ght

AST

M-D

1744

Wat

eran

dse

dim

ent

cont

ent,

%w

eigh

tA

STM

-D17

96

Cot

tons

eed

0.01

15.6

0.64

Cot

tons

eed

<0.

0117

0.01

2C

otto

nsee

d0.

2338

50.

112

Pean

ut<

0.01

20.2

0.12

2Pe

anut

<0.

013

0.05

9Pe

anut

<0.

0127

.80.

02So

ybea

n<

0.01

10.

066

Soyb

ean

0.04

14.7

0.06

8So

ybea

n0.

0810

10.

036

Soyb

ean

<0.

012.

40.

03Su

nflow

er<

0.01

20.

089

Sunfl

ower

<0.

011.

60.

104

Sunfl

ower

0.03

187

0.06

6Su

nflow

er<

0.01

1.6

0.02

Palm

7.15

<0.

010.

037

(con

tinu

ed)

700 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Moi

stur

ean

dvo

lati

les

byho

tpla

te%

wei

ght

AO

CS

Met

hod

Ca

2b-3

8

Moi

stur

e,vo

lati

les,

inso

lubl

es,a

ndun

sapo

nifia

bles

%w

eigh

t

Free

fatt

yac

id,

%w

eigh

tas

olei

cac

idA

cid

valu

e,m

gK

OH

/gIo

dine

valu

e,g

I/10

0goi

lSa

tura

tion

leve

lPe

roxi

denu

mbe

r,pp

mO

xyge

n

Soyb

ean

0.2

109

6Su

nflow

er1.

313

012

Sunfl

ower

1.5

128

14Su

nflow

er1.

513

017

Soyb

ean

6.1

109

4So

ybea

n6.

211

011

Ric

ebra

n7

Cas

tor

82–8

8C

ocon

ut6/

12/2

009

Cor

n10

–140

Cot

tons

eed

90–1

40C

ram

be93

Lin

seed

168–

204

Oliv

e75

–94

Palm

35–6

1Pe

anut

80–1

06R

apes

eed

94–1

20Sa

fflow

er12

6–15

2Se

sam

e10

4–12

0Su

nflow

er11

0–14

3A

nim

alfa

t0.

112.

8525

.7<

0.2

(con

tinu

ed)

Appendices 701

Tab

leA

6.10

(con

tinu

ed)

Fat

Moi

stur

ean

dvo

lati

les

byho

tpla

te%

wei

ght

AO

CS

Met

hod

Ca

2b-3

8

Moi

stur

e,vo

lati

les,

inso

lubl

es,a

ndun

sapo

nifia

bles

%w

eigh

t

Free

fatt

yac

id,

%w

eigh

tas

olei

cac

idA

cid

valu

e,m

gK

OH

/gIo

dine

valu

e,g

I/10

0goi

lSa

tura

tion

leve

lPe

roxi

denu

mbe

r,pp

mO

xyge

n

Bro

wn

grea

se37

.03

Res

taur

ant

grea

se0.

352.

3710

.51

Lar

d41

–50

Yel

low

grea

se0.

266.

4225

.5<

0.2

Res

taur

ant

grea

se3.

113.

542.

63.

7

Res

taur

ant

grea

se0.

310.

749.

74

Res

taur

ant

grea

se1.

261.

710.

74.

6

Res

taur

ant

grea

se0.

651.

061.

33.

1

Res

taur

ant

grea

se18

.06

24.1

141

.80.

8

Res

taur

ant

grea

se0.

350.

981.

13.

4

Res

taur

ant

grea

se55

.38

58.1

414

.80.

6

Soyb

ean

15.3

4So

ybea

n0.

010.

440.

0266

Soyb

ean

<0.

100.

410.

017.

3Ta

llow

47–6

3(c

onti

nued

)

702 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Moi

stur

ean

dvo

lati

les

byho

tpla

te%

wei

ght

AO

CS

Met

hod

Ca

2b-3

8

Moi

stur

e,vo

lati

les,

inso

lubl

es,a

ndun

sapo

nifia

bles

%w

eigh

t

Free

fatt

yac

id,

%w

eigh

tas

olei

cac

idA

cid

valu

e,m

gK

OH

/gIo

dine

valu

e,g

I/10

0goi

lSa

tura

tion

leve

lPe

roxi

denu

mbe

r,pp

mO

xyge

n

Yel

low

grea

se38

.63

Cot

tons

eed

113.

2C

ram

be99

.83

Lin

seed

156.

74Sa

fflow

er13

9.83

Wal

nut

135.

24Su

nflow

er13

2.32

Bee

chnu

t11

0.64

Cor

n11

9.41

Soyb

ean

120.

52Po

ppy

116.

83R

apes

eed

108.

05H

azel

nut

kern

el98

.62

Pean

ut11

9.35

Bee

ch10

5.15

Cas

tor

88.7

2A

ilan

thus

107.

18Sa

fflow

er88

.57

Spru

ce96

.08

Sesa

me

91.7

6(c

onti

nued

)

Appendices 703

Tab

leA

6.10

(con

tinu

ed)

Fat

Moi

stur

ean

dvo

lati

les

byho

tpla

te%

wei

ght

AO

CS

Met

hod

Ca

2b-3

8

Moi

stur

e,vo

lati

les,

inso

lubl

es,a

ndun

sapo

nifia

bles

%w

eigh

t

Free

fatt

yac

id,

%w

eigh

tas

olei

cac

idA

cid

valu

e,m

gK

OH

/gIo

dine

valu

e,g

I/10

0goi

lSa

tura

tion

leve

lPe

roxi

denu

mbe

r,pp

mO

xyge

n

Bay

laur

el69

.82

Cor

nm

arro

w11

9.41

Oliv

e10

0.16

Alm

ond

102.

35W

alnu

t98

.62

Whe

atgr

ain

120.

96C

otto

nsee

d11

3.2

Soyb

ean

69.8

2C

asto

r0.

219.

6C

orn

0.11

18.4

Cot

tons

eed

0.07

64.8

Cra

mbe

0.36

26.5

Lin

seed

0.2

33.7

Pean

ut0.

282

.7R

apes

eed

1.14

30.2

Saffl

ower

0.26

13.6

Saffl

ower

0.7

56.4

Sesa

me

4.96

22.4

Soyb

ean

0.2

44.5

Sunfl

ower

0.15

10.7

Pean

ut0.

080.

131

90.2

(con

tinu

ed)

704 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Moi

stur

ean

dvo

lati

les

byho

tpla

te%

wei

ght

AO

CS

Met

hod

Ca

2b-3

8

Moi

stur

e,vo

lati

les,

inso

lubl

es,a

ndun

sapo

nifia

bles

%w

eigh

t

Free

fatt

yac

id,

%w

eigh

tas

olei

cac

idA

cid

valu

e,m

gK

OH

/gIo

dine

valu

e,g

I/10

0goi

lSa

tura

tion

leve

lPe

roxi

denu

mbe

r,pp

mO

xyge

n

Dec

can

hem

pC

otto

nsee

d0.

2465:4

8

Sunfl

ower

Rap

esee

d2

111

Cot

tons

eed

0.01

92109

149

Cot

tons

eed

0.03

4108:9

4137

Cot

tons

eed

109:1

82:4

6

Pean

ut92:3

648:5

Pean

ut0.

073

95:0

9240

Pean

ut0.

0629

95:3

221:3

Soyb

ean

0.02

2130:8

1162

Soyb

ean

128:5

753:8

Soyb

ean

0.08

1129:5

743:2

Soyb

ean

0.02

7102:4

98:4

1

Sunfl

ower

0.05

85132:0

1304

Sunfl

ower

0.17

1134:5

246

Sunfl

ower

0.06

2131:9

3262

Sunfl

ower

0.05

55132:9

972:5

Sunfl

ower

0.03

0.1

130

14

(con

tinu

ed)

Appendices 705

Tab

leA

6.10

(con

tinu

ed)

Fat

Oxi

dati

onst

abil

ity,

mg/

100

ml

AST

M-D

2274

Jetf

uelt

herm

alox

idat

ion

test

rati

ngA

STM

-D32

41In

duct

ion

peri

od

Cop

per

corr

osio

nra

ting

AST

M-D

130

Sapo

nific

atio

nva

lue,

mg

KO

H/g

oil

Car

bon,

%w

eigh

tH

ydro

gen,

%w

eigh

t

Soyb

ean

189

Sunfl

ower

197

Sunfl

ower

201

Sunfl

ower

208

Soyb

ean

190

Soyb

ean

192

Palm

oil

15C

otto

nsee

d17

8.59

Cra

mbe

178.

59L

inse

ed18

8.71

Saffl

ower

190.

23W

alnu

t19

0.82

Sunfl

ower

191.

7B

eech

nut

193.

52C

orn

194.

14So

ybea

n19

4.61

Popp

y19

6.82

Rap

esee

d19

7.07

Haz

elnu

tker

nel

197.

63Pe

anut

199.

8C

asto

r20

2.71

Ail

anth

us20

6.34

(con

tinu

ed)

706 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Oxi

dati

onst

abil

ity,

mg/

100

ml

AST

M-D

2274

Jetf

uelt

herm

alox

idat

ion

test

rati

ngA

STM

-D32

41In

duct

ion

peri

od

Cop

per

corr

osio

nra

ting

AST

M-D

130

Sapo

nific

atio

nva

lue,

mg

KO

H/g

oil

Car

bon,

%w

eigh

tH

ydro

gen,

%w

eigh

t

Bee

ch20

2.16

Saffl

ower

206.

82Sp

ruce

207.

79Se

sam

e21

0.34

Bay

laur

el22

0.62

Cor

nm

arro

w19

4.14

Oliv

e19

6.83

Alm

ond

197.

56W

alnu

t19

7.63

Whe

atgr

ain

205.

68C

otto

nsee

d20

7.71

Soyb

ean

220.

78C

asto

r95

1AC

orn

9.3

1AC

otto

nsee

d7.

31A

Cra

mbe

91A

Lin

seed

2.9

1APe

anut

6.4

1AR

apes

eed

101A

Saffl

ower

9.8

1ASa

fflow

er3.

11A

Sesa

me

8.7

1ASo

ybea

n7.

41A

(con

tinu

ed)

Appendices 707

Tab

leA

6.10

(con

tinu

ed)

Fat

Oxi

dati

onst

abil

ity,

mg/

100

ml

AST

M-D

2274

Jetf

uelt

herm

alox

idat

ion

test

rati

ngA

STM

-D32

41In

duct

ion

peri

od

Cop

per

corr

osio

nra

ting

AST

M-D

130

Sapo

nific

atio

nva

lue,

mg

KO

H/g

oil

Car

bon,

%w

eigh

tH

ydro

gen,

%w

eigh

t

Sunfl

ower

5.4

1AC

otto

nsee

d1A

195.

3Su

nflow

er1A

Rap

esee

d77

.311

.9Su

nflow

er76

.61

12.0

9C

otto

nsee

d4

1A77

.211

.5C

otto

nsee

d1

FP77

.511

.7C

otto

nsee

d4C

1A76

.811

.5Pe

anut

1FP

77.4

11.8

Pean

ut1

1B77

.311

.8Pe

anut

21A

77.3

11.8

Soyb

ean

0FP

77.4

11.5

Soyb

ean

4FP

77.3

11.4

Soyb

ean

4C

FP76

.911

.3So

ybea

n1

FP77

.411

.7Su

nflow

er1

1B77

.711

.5Su

nflow

er2

1B77

.611

.5Su

nflow

er4C

FP77

.511

.4Su

nflow

er3

1A77

.711

.5B

abas

suPa

lmC

anol

aPa

lm0.

11A

Rap

esee

d77

.611

.7Su

nflow

er20

6.34

(con

tinu

ed)

708 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Oxy

gen,

%w

eigh

t

Sulf

ur%

wei

ght

AST

M-D

1266

,AST

M-D

129,

IP33

6N

itro

gen,

%w

eigh

t

Phos

phor

us%

wei

ght

AO

CS

Met

hod

Ca

12–5

5Ph

osph

orus

ppm

Stoc

hiom

etri

cai

r:fu

el

Sunfl

ower

0.46

Sunfl

ower

0.07

Sunfl

ower

0.05

Soyb

ean

0.14

Soyb

ean

0.97

Palm

oil

12.9

87C

otto

nsee

d0.

01C

ram

be0.

01L

inse

ed0.

01Sa

fflow

er0.

01W

alnu

t0.

02Su

nflow

er0.

01B

eech

nut

0.00

8C

orn

0.01

Soyb

ean

0.01

Popp

y0.

01R

apes

eed

0.01

Haz

elnu

tker

nel

0.02

Pean

ut0.

01B

eech

0.00

6C

asto

r0.

01A

ilan

thus

0.01

Saffl

ower

0.02

(con

tinu

ed)

Appendices 709

Tab

leA

6.10

(con

tinu

ed)

Fat

Oxy

gen,

%w

eigh

t

Sulf

ur%

wei

ght

AST

M-D

1266

,AST

M-D

129,

IP33

6N

itro

gen,

%w

eigh

t

Phos

phor

us%

wei

ght

AO

CS

Met

hod

Ca

12–5

5Ph

osph

orus

ppm

Stoc

hiom

etri

cai

r:fu

el

Spru

ce0.

01Se

sam

e0.

01B

ayla

urel

0.02

Cor

nm

arro

w0.

01O

live

0.02

Alm

ond

0.01

Wal

nut

0.02

Whe

atgr

ain

0.02

Cot

tons

eed

0.01

Soyb

ean

0.01

Cas

tor

0.01

3C

orn

0.01

7C

otto

nsee

d0.

018

Cra

mbe

0.01

12L

inse

ed0.

016

Pean

ut0.

019

Rap

esee

d0.

0118

Saffl

ower

0.02

0.42

Saffl

ower

0.01

20Se

sam

e0.

0110

Soyb

ean

0.01

32Su

nflow

er0.

0115

Pean

ut0.

015

Cot

tons

eed

(con

tinu

ed)

710 Appendices

Tab

leA

6.10

(con

tinu

ed)

Fat

Oxy

gen,

%w

eigh

t

Sulf

ur%

wei

ght

AST

M-D

1266

,A

STM

-D12

9,IP

336

Nit

roge

n,%

wei

ght

Phos

phor

us%

wei

ght

AO

CS

Met

hod

Ca

12–5

5Ph

osph

orus

ppm

Stoc

hiom

etri

cai

r:fu

el

Sunfl

ower

Abs

ent

Rap

esee

d10

.80.

0002

12.6

3C

otto

nsee

d10

.6N

otde

tect

ed0.

002

Not

dete

cted

Cot

tons

eed

10.7

Not

dete

cted

0.00

6N

otde

tect

edC

otto

nsee

d11

Not

dete

cted

0.03

50.

062

Pean

ut10

.2N

otde

tect

ed0.

003

Not

dete

cted

Pean

ut10

.3N

otde

tect

ed0.

001

Not

dete

cted

Pean

ut10

.3N

otde

tect

edN

otde

tect

edN

otde

tect

edSo

ybea

n10

.5N

otde

tect

ed0.

001

Not

dete

cted

Soyb

ean

10.7

Not

dete

cted

0.00

40.

015

Soyb

ean

10.7

Not

dete

cted

0.00

90.

027

Soyb

ean

10.7

Not

dete

cted

Not

dete

cted

Not

dete

cted

Sunfl

ower

10.5

Not

dete

cted

0.00

2N

otde

tect

edSu

nflow

er10

.6N

otde

tect

ed0.

001

Not

dete

cted

Sunfl

ower

10.5

Not

dete

cted

0.00

40.

007

Sunfl

ower

10.4

Not

dete

cted

0.00

4N

otde

tect

edPa

lm0.

044

Rap

esee

d10

.5<

0.00

01Su

nflow

er0.

01

Sour

ceof

data

:Cou

rtes

yof

Cre

ativ

eco

mm

ons.

C:nU

sers

nOw

nernD

eskt

opnF

uel

Prop

erti

esof

Var

ious

Oil

san

dFa

ts.m

ht

Appendices 711

Appendix 7: Ethanol

Fig. A7.1 Effect of different amount of ethanol on octane number of gasoline-ethanol blendedfuel

Fig. A7.2 Effect of different amount of ethanol on lower heating value of gasoline-ethanolblended fuel

712 Appendices

Fig. A7.3 Effect of different amount of ethanol on stoichiometric air/fuel ratio of gasoline-ethanolblended fuel

Fig. A7.4 Effect of different amount of ethanol on Reid vapor pressure of gasoline-ethanolblended fuel

Appendices 713

Fig. A7.5 Effect of different amount of ethanol on specific gravity of gasoline-ethanol blendedfuel

Table A7.1 E10 fuel properties

Form Liquid

Appearance Clear, straw coloredOdor Characteristic hydrocarbon-likeFlash point 45ıC (49ıF)Auto ignition temperature 257.22ıC (495.00ıF)Thermal decomposition No decomposition if stored and applied as directedLower explosive limit 0.3% (V)Upper explosive limit 7.6% (V)pH Not applicableFreezing point No data availableBoiling point 85–437ıF (39–200ıC)Vapor Pressure 345–1,034 hPa at 37.8ıC (100.0ıF)Relative Vapor Density Approximately 3–4Density 0.8 g/cm3

Water solubility NegligibleViscosity, dynamic No data availableViscosity, kinematic No data availablePercent volatiles 100%Conductivity (Conductivity can be reduced by environmental

factors such as a decrease in temperature)

Hydrocarbon liquids without static dissipater additive may have conductivity below 1picoSiemens per meter (pS/m). The highest electro-static ignition risks are associated with“ultra-low conductivities” below 5 pS/m

714 Appendices

Tab

leA

7.2

Com

pari

son

offu

elpr

oper

ties

ofE

-Die

sel(

E-1

5)w

ith

othe

rfu

els

Prop

erty

Die

sel

E-1

5E

than

olG

asol

ine

Rei

dva

por

pres

sure

,kPa

(psi

)<

3(<

0.4)

15(2

.2)

15(2

.2)a

62(9

.0)

Low

erfla

mm

abil

ity

lim

itC

once

ntra

tion

,vol

%0.

63.

33.

31.

4Te

mpe

ratu

re,ı

C(ı

F)64

(145

)13

(55)

13(5

5)4

5(

49)

Upp

erfla

mm

abil

ity

lim

itC

once

ntra

tion

,vol

%5.

619

197.

6Te

mpe

ratu

re,ı

C(ı

F)15

0(3

00)

42(1

08)

42(1

08)

20

(4)

Flas

hpo

int,

ıC

(ıF)

64(1

45)

13(5

5)13

(55)

43

(45)

Aut

oign

itio

nte

mpe

ratu

re,ı

C(ı

F)23

0(4

45)

230

(445

)36

6(6

91)

300

(570

)D

ensi

ty,k

g/L

(lb/

gal)

0.86

3(7

.20)

0.85

1(7

.10)

0.78

5(6

.55)

0.79

1(6

.6)

Vap

orsp

ecifi

cgr

avit

y,(a

irD

1)5.

51.

61.

63.

5L

ower

heat

ing

valu

eM

ass,

MJ/

kg(B

tu/l

b)42

.6(1

8,30

0)40

.4(1

7,40

0)27

.0(1

1,60

0)43

.9(1

8,90

0)V

olum

e,M

J/L

(Btu

/gal

)36

.7(1

32,0

00)

34.4

(123

,000

)21

.2(7

6,00

0)32

.7(1

17,0

00)

Hig

her

heat

ing

valu

eM

ass,

MJ/

kg(B

tu/l

b)46

.5(2

0,00

0)44

.2(1

9,00

0)29

.8(1

2,80

0)46

.7(2

0,10

0)V

olum

e,M

J/L

(Btu

/gal

)40

.2(1

44,0

00)

37.7

(135

,000

)23

.4(8

3,90

0)34

.8(1

25,0

00)

Lat

enth

eato

fva

pori

zati

on,k

J/kg

(Btu

/lb)

270

(120

)35

0(1

50)

840

(360

)35

0(1

50)

Dif

fusi

vity

,cm

2/s

(ft2

/hr)

0.04

6(0

.18)

0.10

(0.3

9)0.

10(0

.39)

0.06

4(0

.25)

Wat

erla

ndL

R,

Ven

kate

shS,

Unn

asch

S(2

003)

Safe

tyan

dpe

rfor

man

ceas

sess

men

tof

etha

nol/

dies

elbl

ends

(E-D

iese

l).

Rep

ortN

o.N

RE

L/S

R-5

40-3

4817

a Eth

anol

has

blen

ding

Rei

dva

por

pres

sure

inhy

droc

arbo

nfu

els

of12

0–12

5kP

a(1

7–18

psi)

Appendices 715

Appendix 8: Hydrogen

Liquid Hydrogen Facts

Form:

Ortho

- -H+ H+

Para

--H+ H+

Normal Hydrogen: 75% Ortho, 25% ParaLiquid Hydrogen: 0.2% Ortho, 99.8% ParaHeat of Conversion from Normal to Para: 0.146 kWhth/kgHeat of Liquefaction: 0.123 kWhth/kg

Table A8.1 Properties of ortho and para hydrogen

Physical properties Para-hydrogen Ortho (normal)-hydrogen

Triple pointTemperature (K) 13.803 13.957Pressure (KPa) 7.04 7.2Density (solid) (kg/m3) 86.48 86.71Density (liquid) (kg/m3) 77.03 77.21Density (vapor) (kg/m3) 0.126 0.130Boiling point at 101.3 Kpa (K) 20.268 20.39Heat of vaporization (J/mol) 898.30 899.1

Liquid phaseDensity (kg/m3) 70.78 70.96Cp(J/mol/K) 19.70 19.7Cv(J/mol/K) 11.60 11.6Enthalpy (J mol) 516:6 548.3Entropy (J/mol/K) 16.08 34.92Viscosity (m Pa s) 13:2 103 13:3 103

Velocity of sound (m/s) 1089 1101Thermal conductivity (W/m/K) 98:92 103 100 103

Compressibility factor 0.01712 0.01698

Gaseous phaseDensity (kg/m3) 1.338 1.331Cp(J/mol/K) 24.49 24.60Cv(J/mol/K) 13.10 13.2

(continued)

716 Appendices

Table A8.1 (continued)

Physical properties Para-hydrogen Ortho (normal)-hydrogen

Enthalpy (J/mol) 381.61 1447.4Entropy (J/mol/K) 60.41 78.94Viscosity (m Pa s) 1:13 103 1:11 103

Velocity of sound (m/s) 355 357Thermal conductivity (W/m/K) 60:49 103 16:5 103

Compressibility factor 0.906 0.906

Critical pointTemperature (K) 32.976 33.19Pressure (MPa) 1.29 1.325Density (kg/m3) 31.43 30.12

Properties at STP (273.15 K, 101.3Kpa)Density (kg/m3) 0.0899 0. 0899Cp (J/mol/K) 30.35 28.59Cv (J/mol/K) 21.87 20.3Viscosity (m Pa s) 8:34 103 8:34 103

Velocity of sound (m/s) 1246 1246Thermal conductivity (W/m/K) 182:6 103 173:9 103

Compressibility factor 1.0005 1.00042Dielectric constant 1.00027 1.000271Prandtl number 0.6873 0.680

Table A8.2 Hydrogen standards and codes already published

ISO Description Stage ICS No TC

ISO 13984:1999 Liquid hydrogen – Landvehicle fueling systeminterface

90.93 71.100.20 TC 19743.060.40

ISO 13985:2006 Liquid hydrogen – Landvehicle fuel tanks

90.60 43.060.40 TC 19771.100.20

ISO 14687-1:1999/Cor1:2001

60.60 71.100.20 TC 197

ISO 14687-1:1999/Cor2:2008

60.60 71.100.20 TC 197

ISO 14687-1:1999 Hydrogen fuel – Productspecification – Part 1:All applications exceptproton exchangemembrane (PEM) fuelcell for road vehicles

90.92 71.100.20 TC 197

(continued)

Appendices 717

Table A8.2 (continued)

ISO Description Stage ICS No TC

ISO/TS 14687-2:2008 Hydrogen fuel – Productspecification – Part 2:Proton exchangemembrane (PEM) fuelcell applications forroad vehicles

90.92 71.100.20 TC 19743.060.40

ISO/PAS 15594:2004 Airport hydrogen fuelingfacility operations

90.93 49.100 TC 197

ISO/TS 15869:2009 Gaseous hydrogen andhydrogen blends – Landvehicle fuel tanks

90.92 43.060.40 TC 197

ISO/TR 15916:2004 Basic considerations for thesafety of hydrogensystems

90.92 71.020 TC 19771.100.20

ISO 16110-1:2007 Hydrogen generators usingfuel processingtechnologies – Part 1:Safety

90.60 71.100.20 TC 19771.020

ISO 16110-2:2010 Hydrogen generators usingfuel processingtechnologies – Part 2:Test methods forperformance

60.60 71.100.2071.020 TC 197

ISO 16111:2008 Transportable gas storagedevices – Hydrogenabsorbed in reversiblemetal hydride

60.60 71.100.20 TC 197

ISO 17268:2006 Compressed hydrogensurface vehicle refuelingconnection devices

90.92 43.180 TC 19771.100.20

ISO/TS 20100:2008 Gaseous hydrogen – fuelingstations

90.92 71.100.20 TC 19743.060.40

ISO 22734-1:2008 Hydrogen generators usingwater electrolysisprocess – Part 1:Industrial andcommercial applications

60.60 71.120.99 TC 19771.100.20

ISO 26142:2010 Hydrogen detectionapparatus – Stationaryapplications

60.60 71.020 TC 19771.100.20

718 Appendices

Table A8.3 Hydrogen standards and codes under development

Standard and or project Description Stage ISO TC

ISO/CD 14687-2 Hydrogen fuel – Productspecification – Part 2: Protonexchange membrane (PEM)fuel cell applications for roadvehicles

30.60 71.100.20 TC 19743.060.40

ISO/NP 14687-3 Hydrogen fuel – Productspecification – Part 3: Protonexchange membrane (PEM)fuel cell applications forstationary appliances

10.99 71.100.20 TC 197

ISO/NP 15399 Gaseous hydrogen – Cylinders andtubes for stationary storage

10.99 23.020.30 TC 19771.100.20

ISO/NP 15869 Gaseous hydrogen and hydrogenblends – Land vehicle fueltanks

10.99 43.060.40 TC 19771.100.20

ISO/NP TR 15916 Basic considerations for the safetyof hydrogen systems

10.99 71.020 TC 19771.100.20

ISO/DIS 17268 Gaseous hydrogen land vehiclerefueling connection devices

40.60 71.100.20 TC 19743.180

ISO/CD 20100 Gaseous hydrogen – fuelingstations

30.60 71.100.20 TC 19743.060.40

ISO/DIS 22734-2 Hydrogen generators using waterelectrolysis process – Part 2:Residential applications

40.60 71.120.99 TC 19771.100.20

Index

A˛-Amylose, 335Absorber plate, 94, 95Absorption coefficients of several semi-

conductor materials, 133Absorption cooling, 101Acid catalyzed esterification, 386Acid hydrolysis, 451–452Acidogenesis, 379Acidogenic bacteria, 378Acid pretreatment process, 447–448Activation energy, 120Aerial view of the power tower plant at USA,

106Agricultural crops, 339, 341Air flat-plate collectors, 95–96

used for space heating, 96Airfoil designs, 46Airy’s theory, 272Alanates, 576, 580–581Alders, 346Alfalfa, 343, 370Alkaline electrolysis, 555Alkaline electrolyzers, 555American sycamore, 349Ammonia fiber expansion (AFEX)

pretreatment, 448Ammonia recycle percolation (ARP)

pretreatment, 448–449Amorphous silicon, 138–139Amylolytic yeast, 436Amylopectin, 335Anaerobic bacteria, 378Anderson cycle, 312Anemometer, 31Animal wastes, 339, 340

Annual average daily peak sun hours in variousregion of USA, 88

Aquaculture, 238–240Aquatic crops, 339, 341Arrangements

for micro-hydropower system, 191of small hydropower system, 188

Arrays, 136Ash, 348, 363Astronomical Unit (AU), 130Attenuator, 285AU. See Astronomical Unit (AU)Autothermal reforming for hydrogen

production, 508

BBacterial species used by various researchers

for production of ethanol, 435Bagasse, 349Bakers’ yeast, 435Band-bending in p-n junction, 121Band-gap (Eg), 128Band structures and Fermi levels for n-type

and p-type doped semiconductors,121

Base catalyzed transesterification, 386Batch systems. See Integral collector storage

systemsBeaufort scale, 281Bends, 202Bernard Forest de Belidor, 157Bernoulli’s equation, 275Betz limit, 21Betz’s law. See Betz limitBig bluestem, 345

719

720 Index

Binary cycle hydrothermal power plant, 232Biodiesel, 334, 363, 364, 385, 386, 388Bioenergy, 327, 331, 332, 336, 349, 382, 393Biofeedstock, 389Biofuel, 334, 346, 363, 381, 385, 389, 393Biomass, 327, 331–336, 338–343, 345, 347,

349, 361, 362, 375–378, 381, 382, 389,390, 393

gasification, 508Biomethane, 378, 380Black liquor, 334, 356, 357Black locust, 346Borane, 584–586Borohydrides, 581–583Boundary conditions, 274Brayton cycle, 532British Wind Energy Association (BWEA), 18Broad band, 123Bulb turbine, 177, 178Bunsen reaction section, 516, 526, 528

CCAAA. 419, 422Ca-Br-Fe (UT-3) cycle, 533–534Calculation of power from water flow, 194Capacity factor of wind turbine, 23Carbohydrates, 333, 335, 378Carbon and other high surface area materials,

568, 575–576Carbon dioxide, 327, 328, 333, 372, 378Cardoon, 346Carnot system, 514Cascade cells. See Multijunction cellsCashew nut, 387Castor seed, 385Catalysts, 505, 612CBP, 454, 458CAAA, 420CDS. 432, 433Cellulose, 333, 336–339, 346, 362, 390Cellulosic, 346, 362Cellulosic biomass, 337Cellulosic ethanol, 443Centre for Renewable Energy Resource

(CRES), 270Char, 372, 375Charcoal, 356, 357Chemical composition of some common corns,

428Clathrates, 576Clean Air Act Amendments (CAAA). See

CAAAClosed-cycle OTEC, 312

Closed-loop systems, 253Cocksfoot grass, 345Coefficient of performance for wind turbines,

21, 35Co-fired biopower plants, 369, 370Collector storage systems, 92Common reed, 345Comparison of Brazil and US ethanol

industries, 444Composite tanks, 568Composition of corn, 425, 427–430Compound parabolic concentrator, 548Concentrated acid hydrolysis, 452Concentrating solar power (CSP) systems. See

CSPConcrete Arch Dam. See Concrete damsConcrete dams, 167, 168Conduction band, 114, 120, 134Consolidated bioprocessing (CBP). See CBPContinuity equation, 273Contraction, 204Contraction loss, 200Contribution of hydropower

to total world energy mix, 160to world electricity generation, 161

Copper-chlorine thermochemical cycle, 534Copra, 385Cord, 360, 361, 363Coriolis force, 6Coriolis parameter, 7Corn, 334, 340, 341, 348, 382, 387, 389, 393,

422, 425, 427–431, 433, 436, 439–441,443, 444, 448, 449, 458, 460–462, 464,468, 469

Corn condensed distillers solubles (CDS). SeeCDS

Corn distillers dried grains (DDG). SeeDDG

Corn distillers dried grains/soluble (DDGS).See DDGS

Corn stalks, 349Cost

of wind energy, 38of hydrogen production, 566

Cotton seed, 385Covalent bonds, 112–114Crossflow turbine, 170, 192Cross section of gravity dam, 169Crude protein, 348Cryogenic liquid hydrogen, 573–574CSP. 102Cu-Cl cycle, 534–538Cycloturbine, 35Cypergras, Galingale, 345

Index 721

DDam, 166, 168, 169, 186, 206Darrieus wind turbine, 33DDG, 432, 460DDGS, 432, 433, 436, 464Defects, 119, 122, 138Dent corn, 429Desiccant cooling, 101, 102Desorption of hydrogen from

hydrides, 584Diffusion of carriers, 116Digester, 378–381Dilute acid hydrolysis, 451–452Direct circulation systems, 92Direct-fired biomass power plants, 370Direct-fired system, 369Direct gain, 98Direct hydration of ethylene, 425Direct methane cracking cycle, 510Dish engine solar system, 107Distribution, 553, 560, 586–588District heating in Reykjavik

Iceland, 248District heating systems, 226, 227, 240, 241,

243, 244Diurnal tide, 295Diversion or run of river, 161Dopant, 112, 116, 120, 134Double-basin systems, 300Douglas fir, 349Drift of carriers, 116Dry mill(ing), 436–442

and fermentation, 425processes, 430–433, 441

Dry steam power plants, 231Dynamical boundary condition, 275Dynamic and kinematic viscosities,

198

EEastern cottonwood, 349Eastern white pine, 349Ebb generation mode, 299E. coli, 435, 458E-diesel, 468Effect of dopant concentration, 134, 135Effect of thickness of cell, 1131Efficiency of high temperature electrolysis

cycle, 514–515Efficiency

of PV, 131of S-I cycle, 532–533

E85 fuel, 465, 467, 468

EGS, 229, 236, 237Electrical generator, 31Electricity generation using solar

concentrators, 86Electrolysis, 510, 512–515, 538, 543, 547,

555–557, 559, 565, 567Electrolytic process, 555Electron/hole pair, 121, 123–125Electronic controller, 31Embankment dams, 167Energy and the Sun, 83–85Energy balance, 458–464Energy cane, 345Energy crops, 339–341, 344, 353Energy Policy Act (EPACT) of 1992. See

EPACTEnergy Policy Act of 2005, 422Energy transport and power, 276Enhanced or engineered geothermal systems

(EGS). See EGSEntrance loss, 200Enzymatic hydrolysis, 449, 453–454EPACT, 421Equivalent circuit model for photovoltaic

cell, 125Escherichia coli. See E. coliEthanol, 420–434, 439, 441, 443–445, 454,

456, 458, 462, 465–469Ethyl alcohol, 382Eucalyptus, 343, 346, 349, 370Euler equation, 274European Wind Energy Association

(EWEA), 4Evacuated-tube collectors, 93, 96–97

for heating water or air, 96Expansion loss, 202

FFailure of various components of offshore

turbine, 57False flax, 346Far offshore, 282Fatty acids, 378, 386, 388–390

methyl ester, 386Feeder canal, 188Fe3O4/FeO cycle, 554–555Fermentation, 382, 429–433, 435, 436, 442,

444, 449, 451, 452, 454–458, 460and process integration, 454–458

Fermi level, 120Fiber sorghum, 346Fill factor, 118, 119First hydroelectric plant, 157

722 Index

Fish ladder, 189and fish passage, 205

Fixed bed gasifier, 375Flash steam hydrothermal power plants, 232Flat-plate collectors, 93, 94

for heating water, 94Flint corn, 427Flood generation mode, 299Flour corn, 428Fluidized-bed gasifier design, 374Fluid pressure, 274Forebay, 188Francis turbine, 177, 182Frequency and photon energy, 85Friction against the pipe wall, 197Fuel properties of common transportation

fuels, 420Fuelwood, 356

GGallium arsenide, 139Gaseous hydrogen storage, 567Gasification

of biomass, 502of coal, 502process, 369, 370

Gasoline-ethanol mixtures, 465Gas turbine-modular helium reactor, 557Gates and valves, 202Gearbox, 30Geopressurized brines, 229, 234Geothermal direct-use for direct heating, 241Geothermal energy, 218Geothermal heat pumps (GHP). See GHPGeothermal power plants, 221, 227,

234, 257Geothermal systems, 223, 236GHP, 243, 246, 247, 252, 256Giant cordgrass, 345Giant reed, 345, 346Gibbs free energy, 514, 515, 534Giromill wind turbine, 35Glass microspheres, 572–573Glucose, 335, 337Glycerol, 386, 389Gradual expansion, 202Grain alcohol, 382Greenhouses, 98Groundnut kernel, 385Ground-source heat pumps. See GSHPGroup velocity, 278GSHP, 247, 252Gustave-Gaspard Coriolis, 7

HHastelloy B2 and B3, 542, 543HAT, 303HAWT, 26Head loss, 196

equations for closed channels, 200in open channels, 202

Heat engine/vapor compression cooling(Rankine-cycle), 101

Heatingusing air, 99using liquid, 99

Height of sun in sky, 83Heliostats, 104Hemicellulose, 338, 347, 348Hemp, 346Herbaceous energy crops, 339Hexose sugars, 338HI decomposer, 543High-amylose corn, 428High-lysine corn, 428High-oil corn, 428High pressure cylinders, 568–573High speed shaft with its mechanical

brake, 31High-temperature cycles, 550High temperature electrolysis (HTE) of steam,

512–515High-temperature hydrothermal-convection

systems, 220High-temperature water splitting, 509–510,

544–545Horizontal axis turbines. See HATHorizontal axis wind turbines (HAWTs), 25,

26Hot air systems, 92Hot box. See Solar collectorHot dry rock systems. See EGSHub, 30Hybrid OTEC, 317Hybrid photovoltaic and thermal (PVT)

collector. See PVT collectorHybrid power systems, 110Hybrid solar lighting, 141Hybrid sulfur cycle, 510Hybrid vehicles, 501Hydrides, 568, 576–586Hydrogen

from biomass, 560from coal, 509produced from natural gas, 501from wind energy, 557–560

Hydrogenase enzyme-catalyzed hydrogenproduction, 562–563

Index 723

Hydrogen delivery methods, 586–587Hydrogen demand, 497–500Hydrogen economy, 497, 589Hydrogen internal combustion engine,

500–501Hydrogen iodide decomposition section, 516,

528, 529, 532Hydrogen production capacity in US, 498Hydrogen storage, 566–586Hydrogen use by end users, 498Hydrolysis, 449–454Hydronic collector, 100Hydropower generating

plants, 157construction methods, 164efficiency, 205

Hydrothermal fluids, 229, 231Hydroturbine, 168

IICE, 500, 501Iceland’s high-temperature fields, 243ICS, 93, 97–98Illustration of group velocity of

waves, 278Impoundment, 161, 164, 165Impulse turbine, 169Indian (Zea mays) corn, 428Indirect gain, 99Indirect heating or circulation systems, 92Indirect hydration of ethylene, 425Industrial crops, 339, 341Insolation, 80–83Installed wind power capacity of various

countries, 3Insulators, 114, 115Intake, 189Integral collector storage systems (ICS). See

ICSInteraction of photons with semiconductor

material, 112Internal combustion engines (ICE).

See ICEInternational Heat Flow Commission, 221Intrinsic efficiency, 122Intrinsic efficiency (i /, 122

for photovoltaic conversion, 124Isolated gain, 99Isopentane, 234

JJerusalem artichoke, 346

KKalina cycle, 234Kaplan turbine, 177, 180–182Kenaf, 341, 346, 387Kinematic boundary conditions, 276Kinetic energy

of wind, 20turbine, 177, 184

Klebsiella oxytoca, 435

LLand area requirement, 16–20Landfill gas, 339, 340, 364Land requirement, 341Land use in USA, 349Laplace equation, 275Large hydropower, 162Leakage loss around runner, 196LH2. 573–574Lift-type vertical axis configurations, 34–35Lignin, 333, 336, 338–340, 346–349,

356, 357Lignocelluloses, 424, 453–455Lignocellulosic biomass, 336, 338, 346, 347Lime pretreatment, 448Lindal diagram, 224Linear lift mechanism, 307Linear wave theory, 272, 273, 277, 280Lipase catalyzed transesterification, 386Liquid flat-plate collectors, 94–95Liquid hot water process, 447Liquid hydrogen (LH2). See LH2Liquid hydrogen storage, 567Load variation of pumped storage facility, 193Loblolly pine, 349Locations for high tides, 295Longitudinal section of underground

hydropower plant, 166Losses

at bends, 203in semiconductor photovoltaic cells, 122

Low frequency noise form wind turbines,61–66

Low speed shaft, 30Low-temperature cycles, 550Lupine, 387

MMagma, 223, 229, 231, 238, 239Maintenance strategy, 291Mantle, 217Maximum power, 118

724 Index

Maximum PV efficiency as function ofband-gap energy, 128

Maximum PV power, 127Meadow foxtail, 345Meal; 431, 433, 439, 464Mean annual wind speed, 48Mechanical loss in the turbine, 196Metal/metal oxide based systems, 510Methane, 340, 378, 379, 381Methanogenes, 379Methanogenic bacteria, 378Methyl tertiary butyl ether (MTBE). See

MTBEMicro-head hydropower systems, 190Micro hydropower, 162Million ton oil equivalent. See MtoeMiscanthus, 340, 343, 345, 346MIS silicon solar cell, 122Mixed tide, 295Model of geothermal system, 225Modine heaters, 241Modular systems, 369, 377Molten nitrate salt, 104Momentum balance equation, 273Monthly isolation at equator, 82Moody chart, 199, 200Mooring system, 291MTBE, 422Mtoe, 329–331Multijunction and high-efficiency solar cells,

139Multijunction cells, 140–141Multiple-basin, 296Multi-step reaction cycles, 550Municipal solid wastes, 339, 340Mustard, 385

NNaBH4 solutions, 575Nacelle, 29Napier grass, 345Natural water cycle, 158Neap tide, 292Nearshore, 282, 283Nitrogenase-enzyme catalyzed hydrogen

production, 563No. 2 Diesel, 420Non-amylolytic yeast, 436Northern white cedar, 349N-type semiconductor, 112Nuclear energy, 503, 509, 510

for hydrogen production, 510–543

OOats, 387Ocean energy, 267, 268Ocean thermal energy conversion. See OTECOcean waves, 268, 271, 273, 276–285, 288,

289, 291, 318theory, 271, 273, 280

Offshore, 270, 282, 283, 289, 290wind farm, 53–58

One step reaction, 509One sun, 129–131Open circuit voltage (Voc); 118, 128Open-cycle OTEC, 315Open-loop system, 256Operating cost for large onshore turbines, 42Operating costs of hydropower generating

systems, 160–161Operation of photovoltaic device, 122Oscillating hydroplane, 307Oscillating water column. See OWCOssberger turbine, 170, 174, 177, 178OTEC, 268, 309, 311–319Overall efficiency, 135Overtopping devices, 282, 289, 290OWC, 283, 285Oxidation, 372, 376–378Oxygen blown gasifier, 372

PPalm fruit, 385Palm kernel, 385Palm oil, 386Parabolic reflectors, 102Parallax effects, 292Paris basin in France, 243Partial oxidation, 507–508Passive, batch type solar heater, 98Payback time for wind energy, 43–45Pelamis WEC, 285Pelton turbine, 170, 191Penstock, 189Pentose, 338Perspective view of Earth cross section, 218Phase velocity, 277–279Photobiological water splitting, 560–563Photocatalytical processes, 563–566Photoelectrochemical water splitting, 560Photolytic processes, 560–566Photon energy, 116, 121–124, 131Photosynthesis, 328, 333Photovoltaic (PV) cells. See PV cellsPlanck’s equation, 84Plant cell structure, 336

Index 725

Platinum on porous metal oxides, 524Point absorber, 282, 284Point absorber wave energy farm, 286Polycrystalline silicon thin film, 138Polycrystalline thin films, 139Polylactic acid, 389Polymer electrolyte membrane (PEM)

electrolysis, 555Popcorn, 427–428Poplar, 341, 343, 346, 370Port Kembla, Australia, 283Potential byproducts from dry mill ethanol

process, 439, 440Potential energy, 194Power coefficient for wind turbine, 37Power house, 189Power production equation for wind energy, 24Power tower systems, 104Prairie cordgrass, 345Processes for hydrogen production, 503Process heat, 362, 363Product purification, 503Projected increase in world wind power

installed capacity, 41,3-Propanediol, 389Propeller turbine, 177Pt catalysts, 524P-type semiconductor, 112–114, 116, 120, 121Pumped storage, 161, 193Pumped storage hydropower system, 192PV cells, 86, 110–131, 136–141PVT, 141Pyrolysis, 357, 372, 375

QQuaking aspen, 349Quantum efficiency, 135

RRadiant heating, 100Radiata pine, 349Range, 292

of applicability of linear wave theory, 280Rapeseed, 346, 385Rated power for wind energy, 24Raygras, 345Rayleigh distribution, 24. See also Weibull

distributionReaction turbine, 169, 174Rechargeable organic liquids, 575Red pine, 349

Reduction, 343, 372, 380Reed canary grass, 345, 346Reforming

of biofuel, 508of natural gas, 502of renewable liquid fuels, 503

Representation of ocean wave, 277Research octane number. See RONReserve power, 189Reservoir, 158, 164–167, 169, 185, 186, 192,

193Residues, 338–341, 349Reynolds number, 197, 198, 200Rh-based catalyst, 547Ring-of-Fire, 220RON, 501Rotor blades, 29Run-of-the-river hydropower systems, 185

SSaccharomyces cerevisiae, 435, 436, 442, 452,

456Salt reedgrass, 345Saturation current, 117Savonius wind turbine, 33–34S. cerevisiae. See Saccharomyces cerevisiaeSchematic diagram of pumped storage plant,

194Seasonal variation, 81Selection

of hydroturbines, 185of turbine for small or micro head systems,

191Semiconducting materials for PV, 112, 114,

136, 139Semidiurnal tide, 295Separate/sequential hydrolysis and

fermentation (SHF). See SHFSequential hydrolysis and fermentation (SHF),

455, 456Series resistance, 120Sesame, 385Shallow-water waves, 279SHF, 454–456Shockley diode equation, 117Short circuit current, 118Shunt current, 117Shunt resistance, 119SiC, 526, 542–544S-I cycle, 516, 532, 533, 541Silicon, 112, 113, 123, 129, 134, 138–139Silicon carbide (SiC). See SiC

726 Index

Simultaneous saccharification andco-fermentation (SSCF). SeeSSCF

Simultaneous saccharification and fermentation(SSF). See SSF

Single-basin, 296Single crystal, 138, 139Slagging gasifier, 372SlinkyTM method of looping pipes, 254–255Small hydroelectric power system, 186Small hydropower, 162, 174, 187, 188, 190Small wind systems, 58–61Soil, 348Solar cell

basic components of, 133equivalent electrical circuit, 116materials, 136, 137

Solar collector, 85, 91, 93Solar energy, 503, 509, 543

for hydrogen production, 543–555Solar irradiance measurement unit. See One

sunSolar lighting, 86, 141Solar pool heating, 86Solar power plant at Andulusia, Spain, 102Solar radiation, 79–81, 91, 93, 94, 102, 105,

139on USA landmass, 87

Solar reforming of natural gas, 545–548Solar space

cooling, 88heating, 86, 98–100

in buildings, 88Solar spectrum in space and on the earth’s

surface, 84Solar thermal concentrators, 104, 107Solar thermal energy, 86–88Solar thermal molten salt technology, 107–109Solar water and pool heaters, 88Solar water heating, 86, 88, 91–98Solid oxide electrolyzers, 555Sound intensity as applied to wind turbines,

63–64Sound pressure as applied to wind turbines, 64Southern red oak, 349Soybean, 349, 385

stalks, 349Soy oil, 386Space cooling, 101–102Space heating, 98–100Spectral irradiance of solar spectrum (Air Mass

2–AM2), 124Spillways, 166, 168

Spring barley, 346Spring tide, 292SSCF, 454, 457–458SSF, 454–457Starches, 335, 424, 427Steam generation, 362, 363Steam methane reforming

catalyst, 505–507cycle, 510reactions, 504

Steam reforming reactions, 503Stoichiometric air/fuel (A/F) ratio, 501Storage system, 566, 582Straflo turbine, 177–179Structure of doped silicon, 116Sugar, 333, 335, 338, 363, 369, 382, 385, 424,

427, 431, 436, 440, 442, 444, 447, 449,451, 452, 454, 457

Sugar beet, 346Sugarcane, 425, 442–444, 458, 464, 468Sugar crop fermentation, 425, 442–443Sulfuric acid hybrid cycle, 556Sulfur-iodine (S-I) cycle, 510, 516, 521, 524Sunflower, 346, 385Sunrooms, 98Sun-tracking mirrors. See HeliostatsSweet sorghum, 346Switchgrass, 336, 340, 343, 345, 348, 353,

370, 425, 448, 449, 468Syzygy, 292

TTail race, 189Tall fescue, 345Tandem cells. See Multijunction cellsTAPCHAN, 282, 283Tapered channel, 282Terminator device. See OWCTheoretical efficiency of photovoltaic cells,

120Theoretical maximum efficiency of wind

turbine. See Betz limitTheoretical photovoltaic efficiency, 122Theoretical thermodynamic efficiency of Otto

cycle engine, 500Theoretical wind power equation, 21Thermal receiver, 105Thermochemical hybrid cycles, 555–557Thermochemical solar cycle, 548–555Thermochemical water splitting, 503, 515–543Thermosyphon, 92Tidal barrage, 296, 299

Index 727

Tidal current, 267, 296, 302, 303, 306energy, 292turbines, 304

Tidal farm, 309Tidal fence, 302Tidal horizontal axis turbines, 304Tidal lagoons, 301Tidal power and tidal current energy, 267Tidal turbine, 302Time-averaged kinetic energy, 277Timothy, 345Tip speed ratio, 36TKE gasifier, 372, 374Total derivative, 273Tower, 31Trash rack losses, 202Triticale, 346Trough systems, 102–104Tube turbine, 177, 179, 181Turgo wheel turbine, 170, 171Two or multiple step reactions, 509–510Two-step reaction cycles, 550Two-way generation mode, 300

UUncatalyzed steam explosion process, 447Urban wastes, 339, 340Use of solar energy, 85–102UT-3 cycle, 533, 534Utility-scale power production, 110

VValence electrons, 114VAWT, 32–35Velocity potential function, 276Vertical axis turbines, 303, 304Vertical axis wind turbines (VAWTs). See

VAWTVolcanic zones and geothermal areas in

Iceland, 247

WWater electrolysis, 510, 512Water gas shift reaction, 503Water head for power production, 189Water requirements for corn growing, 464Wave climate, 291Wave dragon design, 290Wave energy in USA, 269Wave energy potential around the world, 269Wave heights, 291

Wave-induced pressure, 274Wavelength, 272, 276, 279, 280Wave power, 267, 268, 279, 282, 292Waxy corn, 427WDGS, 432, 433Weibull distribution, 24. See also Rayleigh

distributionWestinghouse sulfur process. See WSPWet distillers grains with solubles (WDGS).

See WDGSWet mill(ing), 433–442

and fermentation, 425process, 430

Wheat straw, 349White birch, 349Willow, 341, 343, 346, 370Wind class, 8, 9Wind energy, 1–69

economics, 52and intermittency, 66–67software packages, 16

Wind farms, 2, 51–58Wind generated electricity, 4, 41Windmills, 1Wind power density, 8, 48Wind resource map, 8–16Wind turbines, 2, 6–8, 10, 16–18, 20, 24–28,

32, 34, 39, 40, 42, 46–48, 51, 53, 54,57, 61, 62, 65–68

components, 29–31Wind vane, 31Winter rye, 346Winter wheat, 346Wood burning, 362Wood fuels, 356Wood pellets, 360Wood usage by various countries, 357Woody energy crops, 339Working principle of overtopping system, 290Worldwide generation of hydroelectric power,

158WSP, 533, 556

YYaw mechanism, 31Yeasts, 435, 436YSZ, 512Yttria-stabilized zirconia (YSZ). See YSZ

ZZinc/zinc oxide cycle, 550Zymomonas mobilis, 435, 458