27
Nonequilibrium Thermodynamics Laboratories The Ohio State University AIAA 2006-3076 MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich D t fM h i lE i i Dept. of Mechanical Engineering The Ohio State University And Sivaram Gogineni Innovative Scientific Solution, Inc. Innovative Scientific Solution, Inc.

AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Nonequilibrium Thermodynamics Laboratories The Ohio State University

AIAA 2006-3076

MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows

Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich

D t f M h i l E i iDept. of Mechanical EngineeringThe Ohio State University

And

Sivaram Gogineni

Innovative Scientific Solution, Inc.Innovative Scientific Solution, Inc.

Page 2: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

SupportNonequilibrium Thermodynamics Laboratories The Ohio State University

pp

AFOSR grant FA9550-05-1-0085

Phase I AFOSR SBIR with ISSI

Page 3: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

MotivationNonequilibrium Thermodynamics Laboratories The Ohio State University

MHD boundary layer flow separation control in hypersonic inlets

N d l ti l l i t ti t l l t i l d ti it• Needs relatively low interaction parameter: low electrical conductivity, modest magnetic field, use of lightweight permanent magnets

• Full-scale boundary layers are ~10 cm thick: need to demonstrate MHD control of relatively large cross section area flows

MHD ti b d f h i hi lMHD power generation on board of hypersonic vehicles

• Mach number and stagnation temperatures are too high for a power turbine (M=6, T0~2,000 K): MHD may be the only feasible option0 y y p

Typical flow conditions i f i i iimply the use of low-temperature, nonequilibrium plasmas

Page 4: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Objectives

Nonequilibrium Thermodynamics Laboratories The Ohio State University

• Characterize MHD pulser-sustainer discharge plasma (discharge power, flow temperature rise, conductivity, Hall parameter, cathode fall)

• Isolate Lorentz force effect on core flow Mach number using static pressure measurements: flow acceleration / decelerationp

• Detect MHD power generation in unseeded and seeded low-temperature flows

• Determine range of applicability for on-board MHD power generation (with simulations of pulser –sustainer discharge in magnetic field)

Page 5: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

MHD test section schematic

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Static pressure port

Optical access window

Flow

down

up

Sustainer current

Static pressure port

DC electrode block

Pulsed electrode block

Optical fiber location and line of sight

Magnet pole

• Contoured nozzle• 12 cm long 4 cm x 2 cm test section

Flow

B

g p

west

• 12 cm long, 4 cm x 2 cm test section• Equipped with pressure ports and Pitot ports• Ceramic/copper pulsed and DC electrode blocks• Stagnation pressure P0=0.2-1.0 atm

east Static pressure port

Stagnation pressure P0 0.2 1.0 atm• Ionization: repetitively pulsed discharge

Page 6: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

MHD wind tunnel (shown with CPT pulser)

Nonequilibrium Thermodynamics Laboratories The Ohio State University

CPT pulser: U=20 kV ν=50 kHz τ=20 30 nsecCPT pulser: U=20 kV, ν=50 kHz, τ=20-30 nsec

New FID pulser: U=10-40 kV, ν=100 kHz, τ= 3-5 nsec

• High ionization efficiency at high E/N• Excellent plasma stability (duty cycle ~ 1:1000)

Page 7: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Repetitively pulsed discharge (40 kHz rep rate)+ DC sustainer in M=4 air flow

Nonequilibrium Thermodynamics Laboratories The Ohio State University

+ DC sustainer in M=4 air flow

Voltage [kV]

10

20

Voltage [kV]Current [A]

Voltage

Current

-10

0

10 Current

-30

-20

10

VPEAK=13.2 kVIPEAK=31.3 A

Air, B=1.5 T-500 0 500 1000

Time [ns]

-40

30 PEAK 3 .3

,P0=1 atm, Ptest=13 torr, Umax=13 kV

Time [ns]

Plasma always remains uniform and stable for run times of several seconds

Page 8: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Pulse voltage and sustainer current in M=3 nitrogen flowP0=1/3 atm P =8 torr

Nonequilibrium Thermodynamics Laboratories The Ohio State University

P0 1/3 atm, Ptest 8 torr

5

10Voltage [kV]

25 μs

2.0Current [A]

0

5 25 μs

0.0

1.0

-10

-530 ns

-1.0

0 25 50 75Time [μs]

-150 25 50 75 100

Time [μs]

-2.0

Pulse energy 1-2 mJ

Time averaged pulsed discharge

<I> = 0.95 A (top curve) <I>=0.86 A (bottom curve) g p g

power 80-120 W DC discharge power 1.4 kW

Page 9: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

N2 second positive band (C3Πu→B3Πg) emission in M=3 nitrogen: Flow temperatures with and without 1 4 kW discharge

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Intensit [arbitrar nits] Intensity [arbitrary units]

Flow temperatures with and without 1.4 kW discharge

1.0

1.2Intensity [arbitrary units]

UPS = 0 kV

UPS = 2 kV 1.0

1.2Intensity [arbitrary units]

Synthetic spectra

T = 180 K

T 260 K

0.6

0.8

0.6

0.8

T = 260 K

T = 100 K

0.2

0.4

0.2

0.4

397 398 399 400 401Wavelength [nm]

0.0397 398 399 400 401

Wavelength [nm]

0.0

g g [ ]

Line of sight averagedT=180±20 K for both cases

ΔT~10 K (~90% of discharge power frozen in N2 vibrations)

Page 10: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Effect of Lorentz force and Joule heat on pressure and Mach number: 1-D theory

Nonequilibrium Thermodynamics Laboratories The Ohio State University

on pressure and Mach number: 1-D theory

Lorentz force⎞⎛

AIBBjF zy ≅=

Lorentz force⎟⎟⎠

⎞⎜⎜⎝

⎛⋅

−−⋅

−⋅= Q

uF

Mpu

dxdu &

γγ 1

112

( )[ ] ( )⎭⎬⎫

⎩⎨⎧ ⋅

−+⋅+−−⋅

−= Q

aMFM

Mdxdp &111

11 22

γγh

IRUIEjQ PSyy

)( −⋅≅⋅= αα&

Joule heat

⎭⎩ aMdx 1 AhjQ yy

α : Effective Joule heating factor

~0.1 due to energy storage in N2vibrational modePressure and velocity changes

for two different Lorentz force directions

5~1)1(// 2 +−=± MuduPdP γ

%10P±Δ

∆u±/u ~ 2%

/± udu %10~P

±

Page 11: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Analytic expressions for pressure rise and effective Joule heat factor

Nonequilibrium Thermodynamics Laboratories The Ohio State University

and effective Joule heat factor

MHD interaction parameter

210−≈=LBj zyη

Effective loading parameter

4≈⋅

=⋅

=EEj

K yyy αα2 10∞

≈=uρ

η 4≈==uBuBj

Kzzy

( ) 2( ) LBjM

Mpp zyAR ⋅−

+−⋅≅Δ−Δ

1112 2

: Pressure change for l ti f +F

ApΔ

( ) LEja

MMpp

yy

RA

11

2

2

−−Δ+Δ

≅γ

α

accelerating force, +F

RpΔ : Pressure change for t di f F

( ) j yyγretarding force, -F

Page 12: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Momentum transfer from electrons to neutral flow:how significant is it?

Nonequilibrium Thermodynamics Laboratories The Ohio State University

how significant is it?

# f f lli i

Ey40nN eτν

# of momentum transfer collisions per neutral particle

φdrvFlow u

Neutral velocity change per collision

4.0~~N

N erescollcoll τν

,tan dr mvφ β= =

,dr mvsmv

Mmu drcoll /15~2~ ±±Δ β

tandrv

φ β= =B Neutral flow velocity change

smNuu collcoll /12~2 ⋅Δ=Δ ±

311e cm10n −= cm/s107v 6

dr ⋅= 5β =∆u±/u ~ 2%

7e 101Nn −⋅= 110

coll s105ν −⋅= μsec75τ res =∆u±/u 2%

Page 13: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Isolation of Lorentz force effect from Joule heating effect

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Test sectionDecelerating force

jup

B

Bj

B

jwest east

downj

j

A l ti fFlow Accelerating force

j

Lorentz force: B j polarity dependent

Magnet pole

j

BB

jLorentz force: B, j polarity dependent

Joule heating: polarity independent

j

Page 14: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Static pressure measurements in M=3 dry air flows

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Air, P0=250 torr, Ptest=8.7 torr

UPS=2 kV, R=0.5 kΩ, <I>=1.2 A1.3

Normalized pressure

di f

Dry air: B=1.5 T, R=1.0 kΩ

Pulsed discharge duration 0.5 s1.2

Retarding force

B east, j down

B west, j up

11.0=Δ−Δ

ppp AR1.1

Accelerating force

B east, j up

B west, j downp

1.0

1-D MHD model prediction:

α=0.101.0 2.0 3.0i

0.9Pulser alone

Time [s]

Page 15: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Static pressure measurements in M=3 N2 flows

Nonequilibrium Thermodynamics Laboratories The Ohio State University

2

Nitrogen, P0=250 torr, Ptest=8.5 torr

UPS=2 kV, R=0.5 kΩ, <I>=0.9 A1.3Normalized pressure

Nitrogen: B=1.5 T, R=0.5 kΩ

Pulsed discharge duration 0.5 s1.2

Retarding force

B east, j down

B west, j up

12.0=Δ−Δ pp AR

1.1

Accelerating force

B east, j up

B west, j downp

1.0

1-D MHD model prediction:

α=0.111.0 2.0 3.00.9

Pulser alone

Time [s]

Page 16: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

M=3 room air flows:Comparable pressure rise but no Lorentz force effect

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Comparable pressure rise but no Lorentz force effect

1 5

2.0Current [A]

Dry air, <I> = 0.51 A

Room air, <I> = 0.052 A

1.2Normalized pressure

Room air: B=1.5 T, R=0.5 kΩ

Retarding force, <I> = 0.076 A

1.0

1.5

1.1

Accelerating force, <I> = 0.094 A

0.0

0.51.0

0 25 50 75 100-0.5

1.0 2.0 3.00.9

Time [μs] Time [s]

OHOOHOe 2222 +→++ −Lower current due to rapid electron attachment:

Comparable flow heating due to rapid vibrational relaxation N2-H2O: α=0.40

Page 17: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Comparison with quasi-1-D theory

Nonequilibrium Thermodynamics Laboratories The Ohio State University

3.1

3.2Mach number

Joule heating factor

0

1.3Normalized pressure

Joule heating factor

0 1

2.9

3.0

α = 0

α = 0.11.2

α = 0.1

α = 0.05

α = 0.0

2 6

2.7

2.8

ΔM

1 0

1.1

2.4

2.5

2.6

2 0 1 0 0 0 1 0 2 00.9

1.0

Air

Nitrogen

-2.0 -1.0 0.0 1.0 2.0Current [A]

-2.0 -1.0 0.0 1.0 2.0Current [A]

Decelerating force Accelerating force ΔM±=-0.13 at I = ±1.0 A in air

Page 18: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Comparison with quasi-1-D theory (continued)What would it take to increase Mach number?

Nonequilibrium Thermodynamics Laboratories The Ohio State University

What would it take to increase Mach number?

0.15Normalized pressure difference ( ) LBj

MMpp zyAR ⋅−

+−⋅≅Δ−Δ

1112 2

0.10

Very good agreement with experiment

0 05 Nitrogen0.05 Nitrogen

Dry air

Eq. (9)

Eqs. (2-5)

)1.0(4 =≈⋅

=⋅

= ααα

uBE

uBjEj

Kz

y

zy

yyeff

0.0 0.5 1.0 1.5Current [A]

0.00q ( )

True flow acceleration (Keff~1) would require increasing conductivity by arequire increasing conductivity by a

factor of 4 (up to σ=0.3 mho/m)

Page 19: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Cathode voltage fall vs. MHD e.m.f. (open voltage):Power generation show stopper

Nonequilibrium Thermodynamics Laboratories The Ohio State University

V lt [V]

Power generation show stopper

A A β 1 8

20

30

40Voltage [V]

B = +1.5 T0.8

1.0Average current, A

Nitrogen

B=0T

B=0.75T

β=1.8

β=1.2

0

10

20

B = 0 T0.6

B=1.5T

σ=0.073mho/m

β

-30

-20

-10

B = -1.5 T0.2

0.4

0 10 20 30Time [μs]

-40

-30

0 500 1000 1500Voltage, V

0.0

Uc= 250-500 V (increasing with B field)

Uopen= uBh = 25-30V (independent of σ)

g ,

Red flag: Cathode layer not self-sustained in power generation regime

Page 20: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Cathode layer bottleneckNonequilibrium Thermodynamics Laboratories The Ohio State University

y

Self sustaining criterion:0.4

Current [A]

)/11ln( γα +=dSelf-sustaining criterion:Pulse rep. rate: 100 kHz

0.2 Uopen<<Uc (αd<<1), γ<<1Low secondary emission from cathode

0.0

UPS= 500 V, <I> = 0.17 A

Low secondary emission from cathode

Secondary electrons emitted from cathode do not multiply

0 4

-0.2 UPS= 300 V, <I> = 0.10 A

UPS= 200 V, <I> = 28 mA

UPS= 100 V, <I> = 8.8 mANot a problem in high-temperature

MHD: thermionic emission0 10 20 30

Time [μs]

-0.4

E l l MHD ( A)

MHD: thermionic emission

Extremely low MHD currents (~mA)

at relatively high conductivity (σ>0.07-0.08 mho/m)

Page 21: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Pulser-sustainer discharge modeling calculations: kinetic model validation

Nonequilibrium Thermodynamics Laboratories The Ohio State University

calculations: kinetic model validation

0.8Current [A]

Experiment

Calculation

0.8Current [A]

0 4

0.6Calculation

0 4

0.6

0.2

0.4

0.2

0.4

Exp. <V> = 480 V

0 200 400 600 8000.0

0 50 100 1500.0

Exp. <V> = 530 V

Calc. <V> = 530 V

Voltage [V] Time [μs]

2-D time-dependent pulser-sustainer MHD discharge model

Reasonably good agreement with experiment → can be used for design study calculations

Page 22: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

MHD discharge modeling calculations: power generation parametric design study (B=0)

Nonequilibrium Thermodynamics Laboratories The Ohio State University

generation parametric design study (B 0)

B=0, U=50 V

No field penetration into plasma

Extremely low current (0.52 mA)

Current w/o cathode layer bottleneck: 83 mA

Adding up to 0.1% seed(varying α) and/orusing high-emissionelectrodes (varyingγ=0.01-1.0) do not helpγ 0.01 1.0) do not help

Page 23: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

MHD discharge modeling calculations: power generation parametric design study (B=1 5 T)

Nonequilibrium Thermodynamics Laboratories The Ohio State University

generation parametric design study (B 1.5 T)

B=1.5 T, U=50 V

No field penetration into plasma

Current circles around plasma

Extremely low current (0.26 mA)

Adding up to 0.1% seed(varying α) and/orusing high-emissionl t d ( ielectrodes (varyingγ=0.01-1.0) do not help

Is there a way out?

Page 24: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Pulser sustainer discharge at higher voltage (B=0 T)

Nonequilibrium Thermodynamics Laboratories The Ohio State University

B=0 T U=530 VB 0 T, U 530 V

Greater field penetration into plasma

Much higher current at the same conductivity (0.43 A)

Page 25: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Pulser-sustainer discharge at higher voltage (B=1.5 T)

Nonequilibrium Thermodynamics Laboratories The Ohio State University

B=1.5 T, U=530 V,

Very weak field penetration into plasma

Extremely low current (4 5 mA)Extremely low current (4.5 mA)

Page 26: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

Increasing MHD open voltage: three options

Nonequilibrium Thermodynamics Laboratories The Ohio State University

Uopen= uBh (h=4 cm) Uopen/Uc~0.1

Increasing flow velocity: T0~u2 too low (300 K)

Increasing B field: both Uopen and Uc increase with B

Increasing MHD electrode separation: can this work?Increasing MHD electrode separation: can this work?

Proposed solution: scale up electrode separation h, run generator in Hall mode (Uopen= β·uBh, β=2-3)

Page 27: AIAA 2006-3076 MHD · MHD Flow Control and Power Generation in Low-Temperature Supersonic Air Flows Munetake Nishihara, J. William Rich, Walter R. Lempert, and Igor V. Adamovich Dt

SummaryNonequilibrium Thermodynamics Laboratories The Ohio State University

y

Stable high-power MHD pulser/sustainer discharge operation (up to 1.5 kW)

Static pressure measurements:

Diff i t ti i b l ti d t di L t•Difference in static pressure rises by accelerating and retarding Lorentz forces

•Comparison with 1-D MHD flow model: Good quantitative agreement

•First experimental evidence of MHD deceleration of cold M=3 nitrogen and air core flows

L t t MHD ti i t / d liLow-temperature MHD power generation experiments / modeling:

• Low open voltages reduce MHD current by more than two orders of magnitude (cathode layer bottleneck)g y

• This effect cannot be reduced by seeding the flow or by using electrodes with high secondary emission coefficient (γ~1)

• Need to increase MHD e.m.f. (open voltage) by at least an order of magnitude