1
96 97 98 99 100 101 102 103 104 −6 −5 −4 −3 −2 −1 0 1 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 96 97 98 99 100 101 102 103 104 −6 −5 −4 −3 −2 −1 0 1 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 96 97 98 99 100 101 102 103 104 −6 −5 −4 −3 −2 −1 0 1 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 96 97 98 99 100 101 102 103 104 −6 −5 −4 −3 −2 −1 0 1 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 96 97 98 99 100 101 102 103 104 −6 −5 −4 −3 −2 −1 0 1 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 96 97 98 99 100 101 102 103 104 −6 −5 −4 −3 −2 −1 0 1 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 97 98 99 100 101 102 103 104 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 97 98 99 100 101 102 103 104 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 97 98 99 100 101 102 103 104 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 97 98 99 100 101 102 103 104 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 97 98 99 100 101 102 103 104 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 97 98 99 100 101 102 103 104 1−bsat 2−btet 3−lais 4−lnng 5−mkmk 6−mlkn 7−mnna 8−msai 9−ngng 10−pbjo 11−ppnj 12−prkb 13−pski 14−slbu 15−tiku 0 200 400 600 800 1000 1200 mm 1 day 5 days 25 days 125 days 159 days 169 days 200 days 250 days 300 days 350 days 400 days 451 days A. P. Kositsky*, J.-P. Avouac*, J. Genrich* , J. Galetzka, K. Sieh*, D. H. Natawidjaja, B. Suwargadi [email protected], [email protected] *1200 E. California Blvd. Mail Code 100-23 Pasadena CA 91125 Padang Bengkulu 1833 (Mw~8.9-9.1) 1797 (Mw~8.7-8.9) 1935 (Mw~7.7) W h a r t o n R i d g e .2 .4 .6 .8 1 Coupling 0 96 98 100 102 - - - 6 4 2 2 4 5.7 cm/yr Enggano Investigator Fracture Zone 2005 (Mw8.7) 2000 (Mw7.9) 2004 (Mw9.1) Pagai Is. Sipora Siberut Mentawai Islands Batu 2007 (M w 8.4) 2007 (M w 7.9) 1B 2B 1A 1C 2A Afterslip on the Sumatra megathrust following the 2007 Mentawai earthquake sequence Abstract A magnitude 8.4 and twelve hours later, a magnitude 7.9 earthquake occurred on September 12, 2007 occurred on the Sumatra megathrust in the Mentawai islands area, rupturing partially a patch of the plate interface that had remained locked in the decades preceding the earthquake (Figure 1) [Konca, et al., in press]. Here we analyze the postseismic time series collected at the per- manent GPS stations from the Sumatra Geodetic Array (SuGAr) (http://www.tectonics.caltech.edu). Displacements were determined first relative to ITRF200 and then expressed relative to the Australia plate using the pole of [Bock, et al., 2003]. The time series show trenchward displacements amounting to as much as 80 cm over the first 125 days after the earthquakes, and as much as 120 cm after 451 days. The stations located on the islands show postseismic subsidence (Figure 2), while these same stations had experienced uplift during the earthquake sequence. This pattern suggests afterslip on the shallow portion of the plate interface updip of the ruptured area as was observed following the Mw 8.6 Nias earthquake of 2005 [Hsu, et al., 2007]. The geodetic times series were inverted for slip on the megathrust using the PCAIM algorithm [Kositsky and Avouac, submitted] (Figure 4). The best fitting model obtained from the inversion 3 first principal components does yield a good fit to the time series (Figure 3), showing that the data are consistent with the hypothesis that postseismic deformation is dominated by afterslip on the megath- rust. Moreover the distribution of afterslip is mostly complementary of the co-seismic slip distribution in the area where the data distribution yields some reasonable spatial resolution (Figure 5). Finally, the temporal evolution pattern is consistent with a logarithmic increase of slip as expected from velocity strengthening friction laws (Figure 3). These results suggest that postseis- mic deformation following the 2007 Mentawai earthquakes is probably reflecting frictional slip on velocity strengthening patches on the megathrust, in particular updip of the rupture area. Af- terslip released a geodetic moment of about 1.5 x 10^21N.m over the 451 days following the mainshock, equivalent to as much as 25% of the moment released by seismic slip during the earth- quake sequence. Figure 1: Interseismic coupling on the Sunda megathrust, offshore Sumatra, and rupture area of major recent earthquakes. The pat- tern of coupling, defined as the ratio of interseismic slip rate to plate convergence rate, is derived from the modeling of geodetic and paleogeodetic data [Chlieh, et al., 2008]. Slip distribution of the 2005 Mw 8.6 earthquake of 2005 is shown with 5 meter con- tour lines in green Gray and black polygons show estimated rup- ture areas of the 1797 and 1833 earthquakes. Dark and pale blue lines show the 1 m and 5 m slip contour lines of the Mw 8.4 and 7.9 seismic ruptures of 2007, stars show the epicenters. Figure 6: Distribution of afterslip over different time periods obtained with PCAIM. A series of earthquakes occured near slbu near day 159, and the contribtuion of the largest shocks has been removed from slbu using a parametric model. Note the slip shift of slip toward the south during the last ~200 days. Bock, Y., L. Prawirodirdjo, J. F. Genrich, C. W. Stevens, R. McCaffrey, C. Subarya, S. S. O. Puntodewo, and E. Calais, Crustal motion in Indonesia from Global Positioning System measurements, Journal of Geophysical Research-Solid Earth, 108, doi: 10.1029/2001KB000324, 2003. Chlieh, M., J.-P. Avouac, K. Sieh, D. H. Natawidjaja, and J. Galetzka, Het- erogeneous coupling on the Sumatra megathrust constrained from geodetic and paleogeodetic measurements, J. Geophys. Res.,, 113, doi:10.1029/2007JB004981, 2008. Hsu, Y. J., P. Segall, S. B. Yu, L. C. Kuo, and C. A. Williams, Temporal and spatial variations of post-seismic deformation following the 1999 Chi- Chi, Taiwan earthquake, Geophysical Journal International, 169, 367- 379, 2007. Konca, A. O., et al., Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence, Nature. Kositsky, A. P., and J. P. Avouac, Inverting geodetic time series with a Principal Component Analysis based Inversion Method, J. Geophys. Res. B., in press. This study was partly funded by the Gordon and Betty Moore Fundation and NSF grant EAR 0838495. Andrew Kositsky thanks the Caltech Summer Under- graduate Research Fellowship (SURF) program, George W. Housner Student Dis- covery Fund, and Burns Prize in Geology. References and Acknowledgements Evolution of Afterslip Geological Context Figure 4: Time variation of slip at depth at the the patches of largest slip within the updip, downdip, and seismic crisis regions. The slip at the seis- mic crisis region is consistent with the timing of the later earthquakes in that region. 2007.8 2008 2008.2 2008.4 2008.6 2008.8 −400 −200 0 200 400 600 800 1000 1200 Slip on Select Patches at Depth Slip in mm Updip Patch Downdip Patch Seismic Crisis Patch Figure 5: Original GPS imtseries plus model predictions. Most features in most of the timeseries are faithfully represented by the model. 0 100 200 −100 0 100 200 −50 0 50 −100 −20 −10 0 10 20 0 50 2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009 −40 −20 0 20 40 −50 0 50 −50 0 50 100 150 2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009 −200 −100 0 100 −50 −50 0 50 100 150 −100 0 100 200 −50 0 50 −40 −20 0 20 40 −40 −20 0 20 40 −40 −20 0 20 40 −20 0 20 40 60 −20 −10 0 10 20 −100 −50 0 50 −20 −10 0 10 20 −20 −10 0 10 20 −40 −20 0 20 40 −20 −10 0 10 20 −20 0 20 40 −40 −20 0 20 40 −50 0 50 100 −50 0 50 100 2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009 −40 −20 0 20 40 −20 −10 0 10 20 −40 −20 0 20 40 −40 −20 0 20 40 0 50 100 −100 0 100 200 2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009 −200 −100 0 100 -50 −20 0 20 40 60 −40 −20 0 20 40 −40 −20 0 20 40 −50 0 50 100 150 −100 0 100 200 2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009 −40 −20 0 20 40 −50 0 50 100 150 −100 0 100 200 −40 −20 0 20 40 −100 0 100 200 −100 0 100 200 −40 −20 0 20 40 bsat btet lais lnng mkmk mlkn mnna msai ngng pbjo ppnj prkb pski slbu tiku Raw Data Modeled Signal E N U E N U E N U E N U E N U E N U GPS Timeseries and Model Predictions 0 1 2 3 4 5 6 7 0 20 100 120 Number of Components χ 2 red vs. Number of Components 105.8131 3.1132 1.8009 1.4755 1.3012 1.2313 1.2073 1.1902 χ 2 red 1 2 3 4 5 6 7 10 −300 10 −250 10 −50 10 0 p 1 2 p 23 p 34 p 45 p 5 6 p 6 7 =4.8e−297 =8.9e−48 =1.5e−22 =8.9e−08 =0.0015 =0.0041 Added Component p−value p-Value For Each Component 100 102 104 -6 -4 -2 0 98 Seismicity: 451 Days Post-Mainshock Model Statistics Figure 2: Location of seismicity following the September 12, 2007 mainshocks. Primary shock shown in cyan. Note the three clusters of seismicity, updip, downdip, and to the Northwest (“seismic crisis region”). Figure 3: Two measures of the significance of the seven components used.p-values are the chance that the additional ith component explains primarily noise, and χ should be about one. 2 red

Afterslip on the Sumatra megathrust following Evolution of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

400 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

25 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

300 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

194 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

159 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

1 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

125 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

169 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

250 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

350 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

5 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

451 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

96 97 98 99 100 101 102 103 104 105

−6

−5

−4

−3

−2

−1

0

1

1−bsat

2−btet

3−lais

4−lnng5−mkmk

6−mlkn

7−mnna

8−msai9−ngng

10−pbjo

11−ppnj

12−prkb

13−pski

14−slbu

15−tiku

5 days, γ = 0.2, rake = 73°

0

200

400

600

800

1000

1200

mm

1 day 5 days

25 days 125 days

159 days 169 days

200 days 250 days

300 days 350 days

400 days 451 days

A. P. Kositsky*, J.-P. Avouac*, J. Genrich* , J. Galetzka, K. Sieh*, D. H. Natawidjaja, B. [email protected], [email protected]*1200 E. California Blvd. Mail Code 100-23 Pasadena CA 91125

Padang

Bengkulu

1833(Mw~8.9-9.1)

1797(Mw~8.7-8.9)

1935(Mw~7.7)

Wha

rton

Ridge

.2 .4 .6 .8 1

Coupling

0

96 98 100 102

-

-

-

6

4

2

2

4

5.7 cm/yr

Enggano

Inve

stig

ator

Frac

ture

Zone

2005(Mw8.7)

2000(Mw7.9)

2004(Mw9.1)

Pagai Is.

Sipora

Siberut

Mentaw

ai Islands

Batu

2007(Mw 8.4)

2007(Mw7.9)

1B

2B

1A

1C

2A

Afterslip on the Sumatra megathrust following the 2007 Mentawai earthquake sequence

AbstractA magnitude 8.4 and twelve hours later, a magnitude 7.9 earthquake occurred on September 12, 2007 occurred on the Sumatra megathrust in the Mentawai islands area, rupturing partially a patch of the plate interface that had remained locked in the decades preceding the earthquake (Figure 1) [Konca, et al., in press]. Here we analyze the postseismic time series collected at the per-manent GPS stations from the Sumatra Geodetic Array (SuGAr) (http://www.tectonics.caltech.edu). Displacements were determined first relative to ITRF200 and then expressed relative to the Australia plate using the pole of [Bock, et al., 2003]. The time series show trenchward displacements amounting to as much as 80 cm over the first 125 days after the earthquakes, and as much as 120 cm after 451 days. The stations located on the islands show postseismic subsidence (Figure 2), while these same stations had experienced uplift during the earthquake sequence. This pattern suggests afterslip on the shallow portion of the plate interface updip of the ruptured area as was observed following the Mw 8.6 Nias earthquake of 2005 [Hsu, et al., 2007]. The geodetic times series were inverted for slip on the megathrust using the PCAIM algorithm [Kositsky and Avouac, submitted] (Figure 4). The best fitting model obtained from the inversion 3 first principal components does yield a good fit to the time series (Figure 3), showing that the data are consistent with the hypothesis that postseismic deformation is dominated by afterslip on the megath-rust. Moreover the distribution of afterslip is mostly complementary of the co-seismic slip distribution in the area where the data distribution yields some reasonable spatial resolution (Figure 5). Finally, the temporal evolution pattern is consistent with a logarithmic increase of slip as expected from velocity strengthening friction laws (Figure 3). These results suggest that postseis-mic deformation following the 2007 Mentawai earthquakes is probably reflecting frictional slip on velocity strengthening patches on the megathrust, in particular updip of the rupture area. Af-terslip released a geodetic moment of about 1.5 x 10^21N.m over the 451 days following the mainshock, equivalent to as much as 25% of the moment released by seismic slip during the earth-quake sequence.

Figure 1: Interseismic coupling on the Sunda megathrust, offshore Sumatra, and rupture area of major recent earthquakes. The pat-tern of coupling, defined as the ratio of interseismic slip rate to plate convergence rate, is derived from the modeling of geodetic and paleogeodetic data [Chlieh, et al., 2008]. Slip distribution of the 2005 Mw 8.6 earthquake of 2005 is shown with 5 meter con-tour lines in green Gray and black polygons show estimated rup-ture areas of the 1797 and 1833 earthquakes. Dark and pale blue lines show the 1 m and 5 m slip contour lines of the Mw 8.4 and 7.9 seismic ruptures of 2007, stars show the epicenters.

Figure 6: Distribution of afterslip over different time periods obtained with PCAIM. A series of earthquakes occured near slbu near day 159, and the contribtuion of the largest shocks has been removed from slbu using a parametric model. Note the slip shift of slip toward the south during the last ~200 days.

Bock, Y., L. Prawirodirdjo, J. F. Genrich, C. W. Stevens, R. McCaffrey, C. Subarya, S. S. O. Puntodewo, and E. Calais, Crustal motion in Indonesia from Global Positioning System measurements, Journal of Geophysical Research-Solid Earth, 108, doi: 10.1029/2001KB000324, 2003.

Chlieh, M., J.-P. Avouac, K. Sieh, D. H. Natawidjaja, and J. Galetzka, Het-erogeneous coupling on the Sumatra megathrust constrained from geodetic and paleogeodetic measurements, J. Geophys. Res.,, 113, doi:10.1029/2007JB004981, 2008.

Hsu, Y. J., P. Segall, S. B. Yu, L. C. Kuo, and C. A. Williams, Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake, Geophysical Journal International, 169, 367-379, 2007.

Konca, A. O., et al., Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence, Nature.

Kositsky, A. P., and J. P. Avouac, Inverting geodetic time series with a Principal Component Analysis based Inversion Method, J. Geophys. Res. B., in press.

This study was partly funded by the Gordon and Betty Moore Fundation and NSF grant EAR 0838495. Andrew Kositsky thanks the Caltech Summer Under-graduate Research Fellowship (SURF) program, George W. Housner Student Dis-covery Fund, and Burns Prize in Geology.

References and Acknowledgements

Evolution of AfterslipGeological Context

Figure 4: Time variation of slip at depth at the the patches of largest slip within the updip, downdip, and seismic crisis regions. The slip at the seis-mic crisis region is consistent with the timing of the later earthquakes in that region.

2007.8 2008 2008.2 2008.4 2008.6 2008.8

−400

−200

0

200

400

600

800

1000

1200

Slip on Select Patches at Depth

Slip

in m

m

Updip PatchDowndip PatchSeismic Crisis Patch

Figure 5: Original GPS imtseries plus model predictions. Most features in most of the timeseries are faithfully represented by the model.

0

100

200

−100

0

100

200

−50

0

50

−100

−20

−10

0

10

20

0

50

2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009−40

−20

0

20

40−50

0

50

−50

0

50

100

150

2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009−200

−100

0

100

−50

−50

0

50

100

150

−100

0

100

200

−50

0

50

−40

−20

0

20

40

−40

−20

0

20

40

−40

−20

0

20

40

−20

0

20

40

60

−20

−10

0

10

20

−100

−50

0

50

−20

−10

0

10

20

−20

−10

0

10

20

−40

−20

0

20

40

−20

−10

0

10

20

−20

0

20

40

−40

−20

0

20

40

−50

0

50

100

−50

0

50

100

2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009−40

−20

0

20

40

−20

−10

0

10

20

−40

−20

0

20

40

−40

−20

0

20

40

0

50

100

−100

0

100

200

2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009−200

−100

0

100

-50

−20

0

20

40

60

−40

−20

0

20

40

−40

−20

0

20

40

−50

0

50

100

150

−100

0

100

200

2007.8 2008 2008.2 2008.4 2008.6 2008.8 2009−40

−20

0

20

40

−50

0

50

100

150

−100

0

100

200

−40

−20

0

20

40

−100

0

100

200

−100

0

100

200

−40

−20

0

20

40

bsat btet lais lnng mkmk

mlkn mnna msai ngng pbjo

ppnj prkb pski slbu tiku

Raw DataModeled Signal

E

N

U

E

N

U

E

N

U

E

N

U

E

N

U

E

N

U

GPS Timeseries and Model Predictions

0 1 2 3 4 5 6 70

20

100

120

Number of Components

χ2red vs. Number of Components

105.8131

3.1132 1.8009 1.4755 1.3012 1.2313 1.2073 1.1902

χ2 re

d

1 2 3 4 5 6 7 8 910−300

10−250

10−50

100

p1→2

p2→3

p3→4

p4→5

p5→6

p6→7

=4.8e−297

=8.9e−48=1.5e−22

=8.9e−08

=0.0015

=0.0041

Added Component

p−value

p-Value For Each Component

100 102 104-6

-4

-2

0

98

Seismicity: 451 Days Post-Mainshock Model Statistics

Figure 2: Location of seismicity following the September 12, 2007 mainshocks. Primary shock shown in cyan. Note the three clusters of seismicity, updip, downdip, and to the Northwest (“seismic crisis region”).

Figure 3: Two measures of the significance of the seven components used.p-values are the chance that the additional ith component explains primarily noise, and χ should be about one.2

red