21
1 EE290C - Spring 2004 Advanced Topics in Circuit Design High-Speed Electrical Interfaces Lecture 6 Equalizers Borivoje Nikolic February 5, 2004. 2 Agenda Equalization Background Implementation of Equalizers Digital Receive Equalizers Mixed-Signal Receive Equalizers Transmit Equalizers Some practical implementations Summary

Advanced Topics in Circuit Design High-Speed …bwrcs.eecs.berkeley.edu/Classes/EE290C_S04/lectures/Lecture6...Advanced Topics in Circuit Design High-Speed Electrical Interfaces Lecture

  • Upload
    vandiep

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

1

EE290C - Spring 2004Advanced Topics in Circuit DesignHigh-Speed Electrical Interfaces

Lecture 6EqualizersBorivoje NikolicFebruary 5, 2004.

2

Agenda

Equalization BackgroundImplementation of Equalizers

Digital Receive EqualizersMixed-Signal Receive EqualizersTransmit Equalizers

Some practical implementationsSummary

2

3

Link as a Communication System

Communication through a band-limited channel

Tx Rx

Channel

frequency

H(f)channel

4

Inter-Symbol Interference

Effects of frequency-selective attenuation in the time domain

No ISIx[nT] · x[mT] = 0m ? n

No ISIx[nT] · x[mT] ? 0m ? n

3

5

Channel

General channel should be ISI-free

TxRcvr

Front-End

Channel

Slicer/Detector

ISI-free channel

6

Equalizer

Most channels are low-pass

EqChannel

f

H(f)Channel G(f)

EqualizerG(f)H(f)Channel + equalizer

f f

Band-limited channel (w/ISI) ? no ISI

4

7

Equalizer: Amplitude + Phase

f

|H(f)|channel

|G(f)|Equalizer

f

Band-limited channel (w/ISI) ? no ISIf

∠ H(f)channel

∠ G(f)Equalizer

f

1

0.1

10

1

0

-90o

90o

0

8

Implementing Equalizers

Digital receive equalizersAnalog receive equalizersTransmit equalizers

5

9

Receive Equalizers

Digital equalizer

Mixed-signal equalizer

10

Receive Equalizers

ADC resolution

f

|H(f)|channel

1

0.01

QN

Analog equalizers can reduce the resolution requirement for the ADC

6

11

Implementing Equalizers

Digital receive equalizersAnalog receive equalizersTransmit equalizers

12

Transversal Filter

FIR filter, direct form

[ ] [ ] ]1[...]2[]1[ 210 +−++−+−+= Nnxanxanxanxany N

7

13

Critical Path

Digital FIR

T = Tmult + (N-1)Tadd

14

Pipelining

Pipelining can be used in both digital and analog (mixed-signal) implementations to increase throughput

Pipelining: Adding same number of delay elements in each forward cutset (in the data-flow graph) from the input to the output

Cutset: set of edges in a graph that if removed, graph becomes disjointForward cutset: cutset from input to output over all edges

Increases latency

Register overhead (power, area)

8

15

Pipelining

3-tap FIR

16

Pipelined Direct FIR

Critical path

T = Tmult + Tadd

9

17

Multi-Operand Addition

Adders form a tree

T = Tmult + (log2N)Tadd

18

Multi-Operand Addition

Using 3:2 or 4:2 compression

Optional pipelining, 1-2 stages

10

19

Transposing FIR

Transposition:Reversing the direction of all the edges in a signal-flow graph,Interchanging the input and output ports Functionality unchanged

20

Transposed FIR

Represent as a signal-flow graph

11

21

Transposed FIR

Critical path shortened

Input loading increased

T = Tmult + Tadd

22

Parallel FIR

Feed-forward algorithms are easy to parallelizeProcessing element representation of a transversal filter

a1 x[n]

y[n]a0 a1 a2

x[n-1] x[n-2]

0

Transversal filterProcessing element

12

23

Parallel FIR

Two parallel pathsTwo cycles to complete operationCan be extended to more

Processing elementTwo parallel path FIR

24

Practical Digital EqualizersMita, ISSCC’96, two parallel paths150Mb/s 0.7µm BiCMOS

13

25

Practical Digital Equalizers

Moloney, JSSC 7/98, 2 parallel paths, 3:2 Wallace150Mb/s 0.7µm BiCMOS

26

Practical Digital Equalizers

Wong, Rudell, Uehara, Gray JSSC 3/95, 4 parallel paths50Mb/s, 1.2µm CMOS

14

27

Practical Digital Equalizers

Thon, ISSCC’95Transposed filter, 240Mb/s 0.8µm 3.7V CMOS, 150mW

28

Practical Digital Equalizers

Staszewski, JSSC 8/002 parallel transposed paths550Mb/s 0.21µm CMOS, 36mW

15

29

Practical Digital Equalizers

Rylov, ISSCC’012.3Gb/s, 1.2W, 0.18µm domino CMOS

30

Practical Digital Equalizers

Tierno, ISSCC’02

1.3Gb/s, 450mW, 0.18µm 2.1V domino CMOS

16

31

Implementing Equalizers

Digital receive equalizersAnalog receive equalizersTransmit equalizers

32

Analog Receive Equalizers

Delay-line-based FIRStraightforward, direct or transposeNeeds two S/H per tapS/H offset, noise, error accumulate

Shuffling architecturesDigital shuffling of tap coefficients

Shuffling of analog inputs in the current domain

17

33

Practical Analog Equalizers

Coefficient shuffling

Lee, Razavi, CICC’01

34

Practical Analog EqualizersXu, ISSCC’96200MHz, 9-tap, 0.6µm CMOS, 500mW

18

35

Practical Analog Equalizers

Lee, CICC’01, 125MHz, 1000Base-T

36

Receive EqualizersADC resolution

f

|H(f)|channel

1

QN

Analog pre-equalizers can reduce the resolution requirement for the ADC

Before pre-equalization

After pre-equalization

19

37

Boost in CTF

E.g. 7-p 2-z CTF

See calculation in A. Hadji-Abdolhamid, D. Johns, ESSCIRC’03

38

Implementing Equalizers

Digital receive equalizersAnalog receive equalizersTransmit equalizers

20

39

Simple 2P/4P Tx Equalizing 5-Tap 2P/4P Tx

TNTP

A[0]

A[1]

A[2]

1/z

1/z

...

A[0]

B[0]

1/z

E[0]

TNT P

W/L

W/L

W/L

W/L

W/L

W/L

Transmit Equalizers

40

Original 5-Tap 2-PAM/4-PAM equalizing transmitter

: %>�@

$ >�@

%>�@

( >�@

7173

: � /

: � /

: � /

: ( >�@

$ >�@( >�@

$ OORFDWLRQ/ RJLF

: $>�@

: ( >�@

$ >�@

: $>�@

: � /

$ >�@( >�@

: � /

( >�@

: ( >�@

: � /

: � /

7173

7RWDO�JDWH� � �: � /

Shared equalizing transmitter

Transmit Equalizers

21

41

Summary

Digital receive equalizers are a solution with <2Gb/s and low ADC (~6-b) resolutions

Power is an issue

Mixed signal receive equalizers are hard to buildLower powerReduce ADC resolution requirements

High signaling rates – transmit equalization

42

ReferencesR. Jain, P.T. Yang, T. Yoshino, "FIRGEN: a computer -aided design system for high performance FIR filter integrated circuits," IEEE Transactions on Signal Processing, vol.39, no.7, pp.1655 -1668, July 1991.R.A. Hawley, B.C. Wong, T.-J. Lin, J. Laskowski , H. Samueli, "Design techniques for silicon compiler implementations of high-speed FIR digital filters," IEEE Journal of Solid -State Circuits, vol.31, no.5, pp.656 -667, May 1996.W.L. Abbott, et al, “A digital chip with adaptive equalizer for PRML detection in hard-disk drives” IEEE International Solid -State Circuits Conference, Digest of Technical Papers, ISSCC’94, San Francisco, CA, Feb. 16-18, 1994, pp. 284 -285.D.J. Pearson, et al, “Digital FIR filters for high speed PRML disk read channels,” IEEE Journal of Solid -State Circuits, vol.30, no.12, pp.1517-1523, May 1995.S. Mita, et al, “A 150 Mb/s PRML chip for magnetic disk drives,” IEEE International Solid -State Circuits Conference, Digest of Technical Papers, ISSCC’96, San Francisco, CA, Feb. 8 -10, 1996, pp. 62 -63, 418.D. Moloney, J. O'Brien, E. O'Rourke, F. Brianti, "Low-power 200-Msps, area-efficient, five-tap programmable FIR filter," IEEE Journal of Solid -State Circuits, vol.33, no.7, pp.1134 -1138, July 1998.C.S.H. Wong, J.C. Rudell, G.T. Uehara, P.R. Gray, "A 50 MHz eight-tap adaptive equalizer for partial-response channels," IEEE Journal of Solid -State Circuits, vol.30, no.3, pp.228-234, March 1995.L.E. Thon, P. Sutardja, F.-S. Lai, G. Coleman, "A 240 MHz 8 -tap programmable FIR filter for disk-drive read channes," 1995 IEEE International Solid -State Circuits Conference, Digest of Technical Papers, ISSCC '95, pp.82-3, 343, San Francisco, CA, 15-17 Feb. 1995. R. B. Staszewski, K. Muhammad, P. Balsara, "A 550 -MSample/s 8 -Tap FIR Digital Filter for Magnetic Recording Read Channels," IEEE Journal of Solid -State Circuits, vol. 35, no. 8, pp. 1205 -1210, August 2000.S. Rylov, et al, “A 2.3 GSample/s 10-tap digital FIR filter for magnetic recording read channels,” IEEE International Solid -State Circuits Conference, Digest of Technical Papers, ISSCC’01, San Francisco, CA, Feb. 5-7, 2001, pp. 190 -191.J. Tierno, et at, “A 1.3 GSample/s 10-tap full -rate variable-latency self -timed FIR filter with clocked interfaces,” IEEE International Solid -State Circuits Conference, Digest of Technical Papers, ISSCC’02, San Francisco, CA, Feb. 3 -7, 2002, pp. 60 -61, 444.