17
Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 20 of 36 IMSE - Σ∆ Design Group Characterising Data Converters Static and dynamic measurements ADC and DAC testing Static Signal-to-noise Gain error Non-linearity INL, DNL -FS/4 0 FS/4 FS/2 Analog input 0 1 2 3 4 5 6 7 Output code FS/2 missing codes non- monotonicity DC Accuracy Dynamic Clock max. rate Signal DC or low frequency Clock max. rate Signal variable freq. & amplitude ratio Distortion Offset SNDR (SINAD) Conversion time (ADC) IP3 SFDR Noise THD Dynamic Range, Dynamic non-linearity test Settling time, Glitches (DAC) 0 2e+05 4e+05 6e+05 8e+05 1e+06 Frequency (Hz) -150 -125 -100 -75 -50 -25 0 Amplitude (dBV) ENOB SNDR(dB) Amplitude (dBV) SNDR(dB) Conversion time (s)

ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Embed Size (px)

Citation preview

Page 1: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 20 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Static and dynamic measurements

ADC and DAC testingStatic

Signal-to-noise

Gainerror

Non-linearityINL, DNL

-FS/4 0 FS/4 FS/2Analog input

0

1

2

3

4

5

6

7

Ou

tpu

t co

de

FS/2

missing

codesnon-

monotonicity

DC

Acc

ura

cyDynamic

Clock max. rate

Signal DC or lowfrequency

Clock max. rate

Signal variablefreq. & amplitude

ratioDistortionOffset

SNDR(SINAD)Conversion

time (ADC)IP3

SFDR

Noise

THD

DynamicRange,

Dynamicnon-linearitytest

Settling time,Glitches (DAC)

0 2e+05 4e+05 6e+05 8e+05 1e+06Frequency (Hz)

-150

-125

-100

-75

-50

-25

0

Am

plit

ud

e (

dB

V)

ENOB

SN

DR

(dB

)

Amplitude (dBV)

SN

DR

(dB

)

Conversion time (s)

Page 2: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 21 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters What must be measured for proper characterisation

Static characteristics (Accuracy: INL, DNL, missing codes, non-monotonicity)

• Important only for low-frequency ADC or DAC conversion: Instrumentation, control

• Dynamic limitations (S/H, buffers...) not included

• Easy to obtain because no high-frequency test set-up is required

• Meaningless for high-frequency converters

Dynamic characteristics (SNR, SNDR, SFDR, IP3, THD, ENOB)

• Essential for medium- and high- frequency ADCs or DACs

• Both static and dynamic errors are included in dynamic measurements (i.e. ENOB)

• Difficult to perform: involved test set-up and measurement processing

• Dynamic characteristics must be obtained for full-scale maximum-frequency input

ENOB (bit)

87.87.67.47.2

25 Signal Freq. (MHz)50 75

8bit, 150 MSample/s ADC

7.2bit at 75MHz input frequency~ 8bit at low frequency

Page 3: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 22 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Offset, gain error and linearity: Static measure for DACs

Digitalpattern

generatorDi

DAC Vo

Voltmeter

Precision

0 1 2 3 4 5 6 7Input code (3bit)

-FS/2

0.0

+FS/2

Ana

log

outp

ut

IdealActual

1LSB (ideal)∆4

DNLj ∆j LSB–=

INL1

0 1 2 3 4 5 6 7Input code (3bit)

0.0

+FS/2

Ana

log

outp

ut

IdealActual

Offset

After offsetcorrection

Gainerror

Best-fit line

0 5 10 15Code

-0.05

-0.03

-0.01

0.01

0.03

0.05Without correction

After offset and

Best-fit straight line

gain correction

INL measurements for the same 4bit DAC

LS

B4b

it

-.33

-.20

-.07

.07

.20

.33% FS

Control

Trigger

Data

(D.U.T.)

3bit DAC

Usually:

INL INLMax=

DNL DNLMax=

Page 4: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 23 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Offset, gain error and linearity: Static measure for ADCs

-FS/4 0 FS/4 FS/2Analog input

0

1

2

3

4

5

6

7

Out

put c

ode

IdealActual

Offset

1/2LSB

1LSB(ideal)

Offsetcorrected

Gainerror

-FS/2 -FS/4 0 FS/4 FS/2Analog input

0

1

2

3

4

5

6

7

Out

put c

ode

1LSB(ideal)

∆3

DNLj ∆ j LSB–=

INL5

DNL3 LSB>

Missing code

0 5 10 15Output code

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

LS

B4b

itWithout correction

After offset and

Best-fit straight line

gain correctionThe best-fit line methodusually gives the lowestINL, but it doesn’t linearity in someapplications

represent the converter

Digital

comp.DoADCVi

(D.U.T.)

−+

Di

CIA

IB

VoltmeterDigital

IdealActual

Servo loop method• No high-resolution ramp generator needed; large robustness.

• Slow for high-resolution. Sensitive to code stability.

INL measurements for the same 4bit ADC

D i

D i 1–

D i Do≥

D i Do<

Page 5: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 24 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Offset, gain error and linearity: Dynamic measurement

Signal

generatorDo

ADCVi IdealDAC

Vo

(D.U.T.)

Code density method

Ideal

Actual

-FS/2 FS/2

Missing code

7

012

3

45

6

Output code

Code density (%)25 50

Missing code

bin tooshort

bin toolong

Right size bin

7

012

3

45

6

Outputcode

2550Ideal Code density (%)

Time

Signal

• Apply an accurately known signal

• Histogram of the output codes

• Bin size can be obtained from thehistogram data♦ If signal = ramp, bin size is pro-

portional to code density.

Triangular

Precision ramp

Page 6: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 25 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Offset, gain error and linearity: Dynamic measurement

Histogram

DNL

INL

5-bit ADCMissingcodes

Histogram

INL

DNL

10-bit ADC

Sig

nal

n -> n+1 code transition point:

-FS/2

+FS/2Precisionsinewave

Code density method with sinewaves• Signal amplitude slightly above FS/2

• Signal frequency

♦ fs = sampling frequency♦ P = number of signal period (odd, prime number:

1,3,5,7...)♦ M = total number of samples taken

• If sinewave generator is not precise enough,divide ADC FS in sections

fxPM-----

fS= • Allows evaluation of the accuracy of high-fre-quency converters

• Requires synchronisation for high resolution

• Otherwise, the number of samples neededmay be prohibitive: 40Msamples for 16bit!,within 0.1LSB

• Slow for high resolution

Pros/Cons

v0 A πnC0

ntotal------------ 1–

sin=

A

vn A πnCn

ntotal------------

Vn 1–

A-------------

sin 1–+sin=

nCn = number of occurrences of code n

ntotal = total number of samples

Page 7: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 26 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Offset, gain error and linearity: Dynamic measurement

Code density method example (4bit ADC)

Measuredcode histogram

Extratedcode transition

After offset andgain error correction

• ADC features:♦ Offset error = -2.017%FS = -0.303LSB♦ Gain error = 4.595%FS = 0.689LSB♦ DNL = 2.873%FS = 0.431LSB♦ INL = 1.531%FS = 0.230LSB

INL

DNL

Page 8: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 27 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Output spectrum and derived measurements - I

Sampled data

Am

plitu

de

Discontinuities

Windoweddata

Data windowing

• Required when sampled data do not con-tain an integer number of signal periods

♦ FFT assumes that sampled data are peri-odic with period equal to the sampled timeslot

♦ Such periodicity may require a “jump”, thuscorrupting the results

♦ Windowing alter start and end data to avoiddiscontinuities

• Windowing reduces sidelobes but alsoreduces frequency resolution

# sample

Window(#)1

0

X

=

0 50 10010-20

10-16

10-12

10-8

10-4

100

PS

D

Freq. (kHz)

5 6 7 8

10-6

10-4

10-2

100

♦ Compromise between sidelobe suppression and frequency resolution

16384-point FFT

Page 9: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 28 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Output spectrum and derived measurements - II

Sinewave

generatorDo

ADCVi

Using MATLAB

• Windowing the signal...>> Np = # points;

>> W = blackman(Np); or >> W = kaiser(Np, 60);• FFT...

>> fs = sampling frequency>> [ys,f] = psd(Vo,Np,fs,W,[ ]); f -> frequency

• Spectrum (amplitude)>> sp_a = ys*norm(W)^2/sum(W)^2*4;

• Spectrum (power spectral density)>> sp_psd = ys*norm(W)^2/sum(W)^2/(fs/Np);

• Plotting...>> semilogx(f,10*log10(sp_a));

>> semilogx(f,10*log10(sp_psd));

IdealDAC

Vo

Frequency (Hz)-150

-125

-100

-75

-50

-25

0

Am

plitu

de (

dBV

)

-180-155

-130

-105-80

-55-30

-5

Pow

er s

pect

ral d

ensi

ty (

dB/H

z)

signal amplitude

harmonic amplitude

Frequency (Hz)

Digitalsinewavegenerator Di

DAC Vo

(D.U.T.)(D.U.T.)

Spe

ctru

man

alys

er

Software

Page 10: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 29 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Output spectrum and derived measurements

0 2e+05 4e+05 6e+05 8e+05 1e+06Frequency (Hz)

-150

-125

-100

-75

-50

-25

0A

mpl

itude

(dB

V)

noise floor

signal

2nd har. 3rd har.

offsetSFDR THD dB 10log10

Vharj2∑

Vsig2---------------------=

Total harmonic distortion (dB)

Spurious-free dynamic range (dB)

SFDRdB

20log10

Vsig Vsp⁄( )=

Vsig

Vsp

2nd-order

Frequency (Hz)

Am

plitu

de (

dB

V) products

2-tone input

3rd-orderproducts

f1 f2

2f2 f1–2f1 f2–

f2 f1+

f2 f1–Difficultto removewhen f1 f2≈

Converter input (dBV)

Con

vert

er o

utpu

t (dB

V)

Signal

3rd-

inte

rm.

IP3

3rd-orderintercept point

Page 11: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 30 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Signal-to-noise ratio and other dynamic measurements

Spectral estimation of SNR

• Integrating PSD in the signal band...>> sp_psd_bin = sp_psd*(fs/Np);

>> sum(sp_psd_bin[“only noise”]);

Frequency (Hz)

-150

-125

-100

-75

-50

-25

0

PS

D x

freq

uenc

y bi

n (d

B)

In-b

and

err

or

po

wer

(d

B)

Filter

-80dB in-banderror power

SNRVsig

2 2⁄

error power------------------------------=

Minimum Sinusoidal Error (MSE) method

• Basis:♦ Apply a sinusoidal input♦ Fit the converter output to a sinewave of the

same frequency + offset + some harmonics♦ The fitting coefficients are offset and har-

monic amplitudes♦ The fitting error is noise

• No FFT required

• Requires a reconstruction filter

• Slow for large number of harmonics

• Non-convergence for very corrupted data

Pros/Cons1.0e-03Time-1.0

-0.5

0.0

0.5

1.0

Vo(

V)

Transient

Validoutput

VfitVoff Ai 2πj

fxfs---- φj+

sin∑+=

Voff 85.4mV=

A1 960mV=A2 9.5mV=A2 3.2mV=Noise 0.1mVrms=

SNR 37dB=THD 40– dB=

Page 12: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 31 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Signal-to-noise ratio and other dynamic measurements

0 2e+05 4e+05 6e+05 8e+05 1e+06Frequency (Hz)

-150

-125

-100

-75

-50

-25

0

Am

plitu

de (d

BV

)

2nd har.3rd har.

• In the presence of distortion♦ SNR does not represent accuracy♦ Add power of the harmonics to the noise power...

♦ SNDRdB

20log10Vsig

2 2⁄noise harmonics power+-----------------------------------------------------------------------

=

Signal-to-(noise + distortion) ratio (SNDR)

Dynamic range (DR)

• SNR varies with the input level♦ Ranging from SNR=0dB (signal = error) to SNRmax for FS input

♦ Dynamic range

♦ Equivalently

♦ or

DRdB

20log10VFS

VSNR=0dB------------------------

=

DR SNRmax=

DR 10logVFS

2 2⁄error power---------------------------------

=

SN

R(d

B)

Amplitude (dBV)

Overloading

SNRpeak

Ext

rap

ola

ted

SNR=0dB

VSNR=0dB VFS

Effective number of bits (ENOB)

♦ DR of an ideal B bit converter = , then♦ for given DR,

♦ Measure of the overall dynamic performance

3 2 2B 1–( )⋅ENOB

bitDR

dB1.76–( ) 6.02⁄=

Dyn

amic

ran

ge

DR

Page 13: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 32 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Dynamic characterisation of high-speed ADCs-I

SFDR

SNDR=39dB

Sinewave

generatorDo

ADCVi Aux.DAC

Vo

(D.U.T.)

Clk S÷

Spe

ctru

man

alys

er

• Very high-frequency testing♦ Involves PCB design♦ Increases equipment requirements♦ Digital caption of ADC output not possible

• Preferred solution♦ Direct ADC-DAC testing: auxiliary DAC♦ DAC accuracy must be higher than ADC accu-

racy: hard to fulfil If fClk_ADC = fClk_DAC.

♦ DAC performance is relaxed by subsampling♦ Signal band reduced by S; noise PSD increased

by S => SNR does not change♦ Fundamental, harmonics, etc. translated to the

new signal baseband => THD, SFDR do notchange.

0 10 20 30 40 50Frequency (MHz)

-150

-125

-100

-75

-50

-25

0

PS

D x

freq

uenc

y bi

n (d

B)

SNDR=39dB

SFDR

Subsampledspectrum

Originalspectrum

Subsampled direct ADC-DACmethod

Page 14: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 33 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Dynamic characterisation of high-speed ADCs-II

Envelope testSinewave

generatorDo

ADCVi SlowDAC

Vo

(D.U.T.)

Spectrumanalyser

fx

fClk

2--------- ∆f+=

fClk

0 5 10 15 20 25 31ADC output code

Cod

e de

nsity

(%

)

Missingcode

Large DNLcodes

DigitizingOscilosc.fClk

S---------

0 5e-04 1e-03Time (s)

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

DA

C o

utp

ut

(V)

10.24MS/s 160kS/s

∆f 1kHz=

S 64=

Envelope frequency = ∆f

Resolution largerthan that of theADC under test

5bit ADC

Page 15: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 34 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Conversion time (ADC) and settling time (DAC)

Sinewave

generatorDo

ADCVi IdealDAC

VoDigital

sinewavegenerator Di

DAC Vo

(D.U.T.)(D.U.T.)

Spe

ctru

man

alys

er

SoftwarefClk fClk

0 0.5 1.0 1.5 2.0Output period (µs)

55

60

65

70

75

80

SN

DR

(dB

)

Conversiontime

Varying clock frequency

13b ADC

0 0.1 0.2 0.3Output period (µs)

40

45

50

55

SN

DR

(dB

)

Settlingtime

9b DAC

Page 16: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 35 of 36 IMSE - Σ∆ Design Group

Characterising Data Converters Settling time measurement (DAC) - II

Time

-FS/2

-FS/2

str str str str str str

Vo

Time

-FS/2

-FS/2

Vo

str str str str str

str

Patterngenerator

Di

DAC

Vo

(D.U.T.)0..001..11

fClk

str

ON CHIP

ProgrammableDelay

Vset

Vset

Vset

Voltmeter

Precision

reconstruction

Vo

str

Integrator

Page 17: ADC and DAC testing Static Dynamic - CSIC · • Difficult to perform: involved test set-up and measurement processing ... 0 1 2 3 4 5 6 7 Input code (3bit)-FS/2 0.0 +FS/2 A n a l

Design of Embeddable Data Converters: Prototyping and Characterisation...Slide 36 of 36 IMSE - Σ∆ Design Group

References

• M.I. Montrose: Printed Circuit Board Design Techniques for EMC Compliance, IEEE Press 1996.

• R. Morrison: Grounding and Shielding Techniques in Instrumentation 3rd Ed., John Wiley & Sons, 1986

• C.S. Walker: Capacitance, Inductance and Crosstalk Analysis, Artech House, 1990.

• J.L. Lamay and H.T. Bogard: “How to Obtain Maximum Practical Performance from State-of-the-Art Delta-Sigma Analog-to-Digital Converters,” IEEE Trans. on Instrumentation and measurement, Vol. 41, pp. 861-867, December 1992.

• E. Haseloff: “Printed Circuit Board Layout for Improved Electromagnetic Compatibility”. Texas InstrumentsApplication Report, 1996.

• D. Brooks: UltraCAD Design Notes, 1993-1995.

• J. Berrie: “The Defensive Design of Printed-Circuit Boards,” IEEE Spectrum, pp- 76-81, September 1999.

• A. Mayer, R. Plitschka: “High Speed Testing: An Introduction and Reference Guide to the Testing of High-Speed Digital Integrated Circuits”. Hewlett Packard Application Notes, 1989.

• Dynamic Characterization of A/D Converters with the HP 82000M. Hewlett Packard Application Notes, 1992.

• R. Friedrich: “Testing 20bit Measurement AD Converters with Hp82000M”. Hewlett Packard ApplicationNotes.

• “Terms, Definitions, and Letter Symbols for Analog-to-Digital and Digital-to-Analog Converters”. JEDECStandard No. 99, Addendum No.1, July 1989

• B. Razavi: Principles of Data Conversion System Design, IEEE Press, 1995

• R. van de Plassche: Integrated Analog-to-Digital and Digital-to-Analog Converters, Kluwer Academic Pub-lishers, 1994.