22
Adaline and Madaline Signal processing developed as an engineering discipline with the advent of electronic communication. Initially, analog filters using itor (RLC) circuits were designed to remove noise from the communication signals. Today, signal processing has evolved into a many-faceted technology, with the emphasis having shifted from tuned circuit implementation to digital signal processors (DSPs) that can perform the same types of filtering applica- tions by executing convolution filters implemented in software. The basis for the industry remains the design and implementation of filters to perform noise removal from information-bearing signals. In this chapter, we will focus on a specific type of filter, called the Ada- line (and the multiple-Adaline, or Madaline) developed by Bernard Widrow of Stanford University. As we will see, the Adaline model is similar to that of a single PE in an ANS. 2.1 REVIEW OF SIGNAL PROCESSING We begin our discussion of the Adaline and Madaline networks with a review of basic signal-processing theory. An understanding of this material is essen- tial if we are to appreciate the operation and applications of these networks. However, this material is also typically covered as part of an undergraduate curriculum in information coding and data communication. Therefore, readers already comfortable with signal-processing concepts may skip this first section without fear of missing material relevant to the Adaline and Madaline topics. For those readers who are not familiar with the techniques commonly used to implement electronic communications and signal processing, we shall be- gin by describing briefly the data-encoding and modulation schemes used in an amplitude-modulation (AM) radio transmission. As part of this discussion, we shall illustrate the need for filters in the communications industry. We will then 45

adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

Embed Size (px)

Citation preview

Page 1: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

Ad

alin

e a

nd M

adal

ine

Sign

al p

roce

ssin

g de

velo

ped

as a

n en

gine

erin

g di

scip

line

wit

h th

e ad

vent

of

elec

tron

ic c

omm

unic

atio

n. I

niti

ally

, ana

log

filt

ers

usin

gito

r (R

LC

) ci

rcui

ts w

ere

desi

gned

to

rem

ove

nois

e fr

om t

he c

omm

unic

atio

nsi

gnal

s. T

oday

, si

gnal

pro

cess

ing

has

evol

ved

into

a m

any-

face

ted

tech

nolo

gy,

wit

h th

e em

phas

is h

avin

g sh

ifte

d fr

om t

uned

cir

cuit

impl

emen

tatio

n to

dig

ital

sign

al p

roce

ssor

s (D

SPs)

tha

t ca

n pe

rfor

m t

he s

ame

type

s of

fil

teri

ng a

pplic

a-tio

ns b

y ex

ecut

ing

conv

olut

ion

filte

rs i

mpl

emen

ted

in s

oftw

are.

Th

e ba

sis

for

the

indu

stry

rem

ains

the

des

ign

and

impl

emen

tatio

n of

filt

ers

to p

erfo

rm n

oise

rem

oval

fro

m i

nfor

mat

ion-

bear

ing

sign

als.

In t

his

chap

ter,

we

will

foc

us o

n a

spec

ific

typ

e of

filt

er,

calle

d th

e A

da-

line

(and

the

mul

tiple

-Ada

line,

or

Mad

alin

e) d

evel

oped

by

Ber

nard

Wid

row

of

Stan

ford

Uni

vers

ity.

As

we

wil

l se

e, t

he A

dalin

e m

odel

is

sim

ilar

to t

hat

of a

sing

le P

E i

n an

AN

S.

2.1

RE

VIE

W O

F S

IGN

AL

PR

OC

ES

SIN

G

We

begi

n ou

r di

scus

sion

of

the

Ada

line

and

Mad

alin

e ne

twor

ks w

ith

a re

view

of b

asic

sig

nal-

proc

essi

ng t

heor

y.

An

unde

rsta

ndin

g of

thi

s m

ater

ial

is e

ssen

-tia

l if

we

are

to a

ppre

ciat

e th

e op

erat

ion

and

appl

icat

ions

of

thes

e ne

twor

ks.

How

ever

, th

is m

ater

ial

is a

lso

typi

call

y co

vere

d as

par

t of

an

unde

rgra

duat

ecu

rric

ulum

in

info

rmat

ion

codi

ng a

nd d

ata

com

mun

icat

ion.

T

here

fore

, re

ader

sal

read

y co

mfo

rtab

le w

ith

sign

al-p

roce

ssin

g co

ncep

ts m

ay s

kip

this

fir

st s

ectio

nw

itho

ut f

ear

of m

issi

ng m

ater

ial

rele

vant

to

the

Ada

line

and

Mad

alin

e to

pics

.Fo

r th

ose

read

ers

who

ar

e no

t fa

mil

iar

wit

h th

e te

chni

ques

com

mon

ly u

sed

to i

mpl

emen

t el

ectr

onic

com

mun

icat

ions

and

sig

nal

proc

essi

ng,

we

shal

l be

-gi

n by

des

crib

ing

brie

fly

the

data

-enc

odin

g an

d m

odul

atio

n sc

hem

es u

sed

in a

nam

plit

ude-

mod

ulat

ion

(AM

) ra

dio

tran

smis

sion

. A

s pa

rt o

f th

is d

iscu

ssio

n, w

esh

all

illu

stra

te t

he n

eed

for

filte

rs i

n th

e co

mm

unic

atio

ns i

ndus

try.

We

will

the

n

45

Page 2: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

46

Ad

alin

e a

nd

revi

ew t

he c

once

pts

of t

he f

requ

ency

dom

ain,

the

fou

r ba

sic

filt

er t

ypes

, an

dFo

urie

r an

alys

is.

Thi

s pr

elim

inar

y se

ctio

n co

nclu

des

with

a b

rief

ove

rvie

w o

fdi

gita

l si

gnal

pro

cess

ing,

bec

ause

man

y of

the

conc

epts

rea

lize

d in

dig

ital

fil

ters

are

dire

ctly

app

lica

ble

to t

he A

dali

ne a

nd M

adal

ine

(and

man

y ot

her)

neu

ral

netw

orks

.

Si

gnal

Pro

cess

ing

and

Filte

rs

Sig

nal

proc

essi

ng i

s an

eng

inee

ring

dis

cipl

ine

that

dea

ls p

rim

aril

y w

ith

the

im-

plem

enta

tion

of f

ilte

rs t

o re

mov

e or

red

uce

unw

ante

d fr

eque

ncy

com

pone

nts

from

an

info

rmat

ion-

bear

ing

sign

al.

Let

's c

onsi

der,

for

exa

mpl

e, a

n A

M r

a-di

o br

oadc

ast.

Ele

ctro

nic

com

mun

icat

ion

tech

niqu

es, w

heth

er f

or a

udio

sig

nals

or o

ther

dat

a, c

onsi

st o

f si

gnal

enc

odin

g an

d m

odul

atio

n.

Info

rmat

ion

to b

e t

his

case

, au

dibl

e so

unds

, su

ch a

s vo

ice

or b

e en

-co

ded

elec

tron

ical

ly b

y an

ana

log

sign

al t

hat

exac

tly r

epro

duce

s th

e fr

eque

ncie

san

d am

plit

udes

of t

he o

rigi

nal s

ound

s. S

ince

the

soun

ds b

eing

enc

oded

rep

rese

nta

cont

inuu

m f

rom

sile

nce

thro

ugh

voic

e to

mus

ic,

the

inst

anta

neou

s fr

eque

ncy

of t

he e

ncod

ed s

igna

l w

ill

vary

wit

h ti

me,

ra

ngin

g fr

om 0

to

appr

oxim

atel

y10

,000

her

tz (

Hz)

.R

athe

r th

an a

ttem

pt t

o tr

ansm

it th

is e

ncod

ed s

igna

l di

rect

ly,

we

tran

sfor

mth

e si

gnal

int

o a

form

mor

e su

itabl

e fo

r ra

dio

tran

smis

sion

. W

e ac

com

plis

h th

istr

ansf

orm

atio

n by

mod

ulat

ing

the

ampl

itud

e of

a h

igh-

freq

uenc

y ca

rrie

r si

gnal

wit

h th

e an

alog

inf

orm

atio

n si

gnal

. T

his

proc

ess

is i

llus

trat

ed i

n Fi

gure

2.1

.H

ere,

th

e ca

rrie

r is

not

hing

mor

e th

an a

sin

e w

ave

wit

h a

freq

uenc

y m

uch

grea

ter

than

the

inf

orm

atio

n si

gnal

. Fo

r A

M r

adio

, th

e ca

rrie

r fr

eque

ncy

wil

l be

in t

he r

ange

of

550

to (

KH

z).

Sinc

e th

e fr

eque

ncy

of t

he c

arri

eris

sig

nifi

cant

ly g

reat

er t

han

is t

he m

axim

um f

requ

ency

of t

he i

nfor

mat

ion

sign

al,

litt

le i

nfor

mat

ion

is l

ost

by t

his

mod

ulat

ion.

T

he m

odul

ated

sig

nal

can

then

be

tran

smit

ted

to a

rec

eivi

ng s

tati

on (

or b

road

cast

to a

nyon

e w

ith

a ra

dio

rece

iver

),w

here

the

sig

nal

is d

emod

ulat

ed a

nd i

s re

prod

uced

as

soun

d.T

he m

ost o

bvio

us r

easo

n fo

r a

filt

er in

AM

rad

io is

tha

t dif

fere

nt p

eopl

e ha

vedi

ffer

ent p

refe

renc

es i

n m

usic

and

ent

erta

inm

ent.

The

refo

re,

the

gove

rnm

ent

and

the

com

mun

icat

ion

indu

stry

hav

e al

low

ed m

any

diff

eren

t ra

dio

stat

ions

to

op-

erat

e in

the

sam

e ge

ogra

phic

al a

rea,

so

that

eve

ryon

e's

tast

es i

n en

tert

ainm

ent

can

be a

ccom

mod

ated

. W

ith s

o m

any

diff

eren

t ra

dio

stat

ions

all

broa

dcas

ting

in c

lose

pro

xim

ity,

how

is

it th

at w

e ca

n li

sten

to

only

one

sta

tion

at a

tim

e?Th

e an

swer

is

to a

llow

eac

h re

ceiv

er t

o be

tun

ed b

y th

e us

er t

o a

sele

ctab

le f

re-

quen

cy.

In t

unin

g th

e ra

dio,

we

are

esse

ntia

lly c

hang

ing

the

freq

uenc

y-re

spon

sech

arac

teri

stic

s of

a b

andp

ass

filt

er i

nsid

e th

e ra

dio.

T

his

filt

er a

llow

s on

ly t

hesi

gnal

s fr

om t

he s

tatio

n in

whi

ch w

e ar

e in

tere

sted

to

pass

, w

hile

eli

min

atin

gal

l th

e ot

her

sign

als

bein

g br

oadc

ast

wit

hin

the

spec

trum

of

the

AM

rad

io.

To i

llus

trat

e ho

w t

he b

andp

ass

filt

er o

pera

tes,

we

wil

l ch

ange

our

ref

eren

cefr

om t

he t

ime

dom

ain

to t

he f

requ

ency

dom

ain.

W

e be

gin

by c

onst

ruct

ing

atw

o-ax

is g

raph

, w

here

the

x a

xis

repr

esen

ts i

ncre

asin

g fr

eque

ncie

s an

d th

e y

axis

rep

rese

nts

decr

easi

ng a

tten

uati

on i

n a

unit

cal

led

the

deci

bel

(dB

). S

uch

a

2.1

Rev

iew

of

Sig

nal

Pro

cess

ing

47

1.0

0.5

(a)

-0.5

-1.0

0.05

0.

10.15

0.2

Car

rier

wav

e

(b)

(c)

0.05

0.1

0.15

Wav

e co

ntai

ning

info

rmat

ion

0.05

0.1

0.15

0.2

1.1

0.9

0.8

0.7

1.5

1.0

0.5

-0.5

-1.0

-1.5

Am

plitu

de-m

odul

ated

wav

e

Figu

re 2

.1

Typ

ical

in

form

atio

n-en

codi

ng

and

ampl

itude

-mod

ulat

ion

tech

niq

ues

for

ele

ctro

nic

com

munic

atio

n a

re

(a)

The

carr

ier

wave

has

a f

requency

muc

h h

ighe

r th

an t

hat

of

(b)

the

info

rmatio

n-b

earing

(c

) T

he c

arr

ier

wave

is

mod

ulat

edby

th

e i

nfo

rma

tion

-be

ari

ng s

ignal.

0.2

Page 3: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

48

Ad

alin

e a

nd

Mad

alin

e

grap

h is

ill

ustr

ated

in

Figu

re 2

.2(a

). F

or t

he A

M r

adio

exa

mpl

e, l

et u

s im

agin

eth

at t

here

are

sev

en A

M r

adio

sta

tions

, la

bele

d A

thr

ough

G,

oper

atin

g in

the

area

whe

re w

e ar

e li

sten

ing.

T

he f

requ

enci

es a

t w

hich

the

se s

tatio

ns t

rans

mit

are

grap

hed

as v

erti

cal

line

s lo

cate

d on

the

fre

quen

cy a

xis

at t

he p

oint

cor

re-

spon

ding

to

thei

r tr

ansm

itti

ng,

or c

arri

er,

freq

uenc

y. T

he a

mpl

itude

of

the

lines

,as

ill

ustr

ated

in

Figu

re 2

.2(a

), i

s al

mos

t 0

dB,

indi

catin

g th

at e

ach

stat

ion

istr

ansm

itti

ng a

t fu

ll p

ower

, an

d ea

ch c

an b

e re

ceiv

ed e

qual

ly w

ell.

Now

we

wil

l a

ban

dpas

s fi

lter

to s

elec

t on

e of

the

sev

en s

tatio

ns.

The

freq

uenc

y re

spon

se o

f a

typi

cal

band

pass

filt

er i

s ill

ustr

ated

in

Figu

re 2

.2(b

).N

otic

e th

at t

he f

requ

ency

-res

pons

e cu

rve

is s

uch

that

all

freq

uenc

ies

that

fal

lou

tsid

e th

e in

vert

ed n

otch

are

atte

nuat

ed t

o ve

ry s

mal

l m

agni

tude

s, w

here

asfr

eque

ncie

s w

ithin

the

pass

band

are

allo

wed

to p

ass

with

ver

y lit

tlehe

nce

the

nam

e "b

andp

ass

filte

r."

To t

une

our

radi

o re

ceiv

er t

o an

y on

e of

the

seve

n br

oadc

astin

g st

atio

ns,

we

sim

ply

adju

st t

he f

requ

ency

res

pons

e of

the

filte

r su

ch t

hat

the

carr

ier

freq

uenc

y of

the

des

ired

sta

tion

is w

ithin

the

pass

band

. CD C o i

0-

f

[ 3

C

[

EE

F- C B

500

700

900

1300

Frequency

(KHz)

1500

17

00

(b)

CO

Figu

re 2

.2

-20

500

700

900

1300

1500

1700

Fre

quen

cy (

KH

z)

Th

ese

are

fre

qu

en

cy d

omai

n g

rap

hs

of (

a) A

M r

ad

io r

ecep

tion

of s

even

d

iffe

ren

t st

atio

ns,

(b)

the

fre

qu

en

cy r

espo

nse

of t

hetu

nin

g fil

ter

and

the

mag

nitu

de o

f th

e re

ceiv

ed

sig

na

ls a

fte

rfilte

rin

g.

2.1

Rev

iew

of

Sig

nal

Pro

cess

ing

49

As

anot

her

exam

ple

of t

he u

se o

f fi

lters

in

the

com

mun

icat

ion

indu

stry

,co

nsid

er t

he p

robl

em o

f ec

ho s

uppr

essi

on i

n lo

ng-d

ista

nce

tele

phon

e co

mm

u-ni

catio

n.

As

indi

cate

d in

Fig

ure

2.3,

the

pro

blem

is

caus

ed b

y th

e in

tera

ctio

nbe

twee

n th

e am

plif

iers

and

ser

ies

coup

ling

use

d on

bot

h en

ds o

f th

e li

ne,

and

the

dela

y tim

e re

quir

ed t

o tr

ansm

it t

he v

oice

inf

orm

atio

n be

twee

n th

e sw

itch

-in

g of

fice

and

the

com

mun

icat

ions

sat

ellit

e in

geo

stat

iona

ry o

rbit

, 23

,000

mil

esab

ove

the

eart

h.

Spec

ific

ally

, yo

u he

ar a

n ec

ho o

f yo

ur o

wn

voic

e in

the

tel

e-ph

one

whe

n yo

u sp

eak.

The

sig

nal

carr

ying

you

r vo

ice

arri

ves

at t

he r

ecei

ving

tele

phon

e ap

prox

imat

ely

270

mill

isec

onds

aft

er y

ou s

peak

. Th

is d

elay

is

the

amou

nt o

f tim

e re

quir

ed b

y th

e m

icro

wav

e si

gnal

to

trav

el t

he 4

6,00

0 m

iles

betw

een

the

tran

smitt

ing

stat

ion,

the

sat

ellit

e, a

nd t

he r

ecei

ving

sta

tion

on t

hegr

ound

. O

nce

rece

ived

and

rou

ted

to t

he d

estin

atio

n te

leph

one,

the

sig

nal

isag

ain

ampl

ifie

d an

d re

prod

uced

as

soun

d on

the

rec

eivi

ng h

ands

et.

Unf

ortu

-na

tely

, it

is a

lso

ofte

n pi

cked

up

by t

he t

rans

mitt

er a

t th

e re

ceiv

ing

end,

due

to i

mpe

rfec

tions

in

the

devi

ces

used

to

deco

uple

the

inc

omin

g si

gnal

s.

It c

anth

en b

e a

nd f

ed b

ack

to y

ou a

ppro

xim

atel

y 1/

2 se

cond

aft

er y

ousp

oke.

The

res

ult

is e

cho.

O

bvio

usly

, a

sim

ple

band

pass

filt

er c

anno

t be

use

dto

rem

ove

the

echo

, be

caus

e th

ere

is n

o w

ay t

o di

stin

guis

h th

e ec

hoed

sig

nal

from

val

id s

igna

ls.

To s

olve

pro

blem

s su

ch a

s th

ese,

the

com

mun

icat

ions

ind

ustr

y ha

s de

vel-

oped

man

y di

ffer

ent

type

s of

filt

ers.

Th

ese

filte

rs n

ot o

nly

are

used

in

23,3

00 m

iles

Inco

min

g si

gnal

retra

nsm

itted

due

to c

oupl

ing

leak

age

Ret

urni

ng s

igna

l is

orig

inal

dela

yed

by 5

00 m

illis

econ

ds,

resu

lting

in a

n "e

cho"

2.3

E

cho

ca

n o

ccu

r in

lo

ng

-dis

tan

ce t

ele

com

mu

nic

atio

ns.

Page 4: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

50A

dal

ine a

nd

Mad

alin

e

tron

ic c

omm

unic

atio

ns,

but

also

hav

e an

app

licat

ion

base

tha

t in

clud

es r

adar

and

sona

r im

agin

g, e

lect

roni

c w

arfa

re,

and

med

ical

tec

hnol

ogy.

H

owev

er,

all

the

appl

icat

ion-

spec

ific

fi

lter

im

plem

enta

tions

can

be

grou

ped

into

fou

r ge

n-er

al f

ilte

r ty

pes:

lo

wpa

ss,

ban

dpas

s, a

nd b

ands

top.

The

cha

ract

eris

ticfr

eque

ncy

resp

onse

of

the

se

filt

ers

is

depi

cted

in

Fi

gure

2.

4.

The

ad

aptiv

efi

lter

, w

hich

is

the

su

bjec

t of

the

rem

aind

er o

f th

e ch

apte

r,

has

char

acte

ris-

tics

uni

que

to t

he a

ppli

cati

on i

t se

rves

. It

can

rep

rodu

ce t

he c

hara

cter

istic

s of

any

of t

he f

our

basi

c fi

lter

typ

es,

alon

e or

in

com

bina

tion.

A

s w

e sh

all

show

late

r, th

e ad

aptiv

e fi

lter

is i

deal

ly s

uite

d to

the

tel

epho

ne-e

cho

prob

lem

jus

tdi

scus

sed.

Low

pass

filt

er

Hig

hpas

s fil

ter

Ban

dpas

s fil

ter

Ban

dsto

p fil

ter

c t t c CD

Freq

uenc

y

Freq

uenc

y

Freq

uenc

y

Fre

quen

cy

Figu

re 2

.4

Fre

qu

en

cy-r

esp

on

se c

ha

ract

eri

stic

s of

the

fou

r ba

sic

filte

r ty

pes

are

sh

ow

n.

2.1

Rev

iew

of

Sig

nal

Pro

cess

ing

51

2.1.

2 F

ou

rier

An

alys

is a

nd

th

e F

req

uen

cy D

omai

n

To

anal

yze

a si

gnal

-pro

cess

ing

prob

lem

tha

t re

quir

es a

filt

er,

we

mus

t le

ave

the

tim

e do

mai

n an

d fi

nd a

too

l fo

r tr

ansl

atin

g ou

r fi

lter

mod

els

into

the

fre

quen

cydo

mai

n,

beca

use

mos

t of

the

si

gnal

s w

e w

ill

anal

yze

cann

ot b

e co

mpl

etel

yun

ders

tood

in

the

tim

e do

mai

n.

For

exam

ple,

mos

t si

gnal

s co

nsis

t no

t on

ly o

fa

fund

amen

tal

freq

uenc

y, b

ut a

lso

harm

onic

s th

at m

ust

be c

onsi

dere

d, o

r th

eyco

nsis

t of

man

y di

scre

te f

requ

ency

com

pone

nts

that

mus

t be

acc

ount

ed f

or b

yth

e fi

lters

we

desi

gn.

The

re a

re m

any

tool

s th

at w

e ca

n us

e to

hel

p un

ders

tand

the

freq

uenc

y-do

mai

n na

ture

of

sign

als.

One

of t

he m

ost

com

mon

ly u

sed

is t

heFo

urie

r se

ries.

It

has

bee

n sh

own

that

any

per

iodi

c si

gnal

can

be

mod

eled

as

an i

nfin

ite

serie

s of

sin

es a

nd c

osin

es.

The

Fou

rier

ser

ies,

whi

ch d

escr

ibes

the

freq

uenc

y-do

mai

n na

ture

of

perio

dic

sign

als,

is

give

n by

the

equ

atio

n

x(t)

= +

whe

re i

s th

e fu

ndam

enta

l fr

eque

ncy

of th

e si

gnal

in

the

time

dom

ain,

and

the

coef

fici

ents

, a

nd a

re n

eede

d to

mod

ulat

e th

e am

plitu

de o

f th

e in

divi

dual

term

s of

the

serie

s.T

his

serie

s is

use

ful

for

desc

ribi

ng t

he d

iscr

ete

freq

uenc

y co

mpo

nent

s th

atco

mpr

ise

a no

ntri

vial

per

iodi

c si

gnal

. A

s an

illu

stra

tion,

a s

quar

e w

ave

can

bede

com

pose

d in

to a

sum

mat

ion

of f

requ

ency

ele

men

ts c

onta

inin

g no

thin

g m

ore

than

sin

e w

aves

of

diff

eren

t am

plitu

de a

nd f

requ

ency

, as

is

illus

trat

ed i

n Fi

g-ur

e 2.

5. S

ince

a s

quar

e w

ave

is u

sefu

l for

repr

esen

ting

bina

ry in

form

atio

n in

dat

atr

ansm

issi

on,

it is

im

port

ant

that

we

unde

rsta

nd th

e fr

eque

ncy-

dom

ain

natu

re o

fsu

ch a

sig

nal.

From

ins

pect

ion

in t

he t

ime

dom

ain,

we

can

obse

rve

that

the

squa

re w

ave

is i

deal

ly s

uite

d to

bin

ary

data

rep

rese

ntat

ion

beca

use

ther

e ar

e tw

odi

stin

ct s

tate

s (a

1 a

nd a

0),

and

the

tran

sitio

n ti

me

betw

een

stat

es is

neg

ligib

le.

It i

s di

ffic

ult,

how

ever

, to

obt

ain

a pe

rfec

t sq

uare

wav

e in

any

pra

ctic

alel

ectr

onic

cir

cuit,

due

in

part

to

the

effe

cts

of t

he t

rans

mitt

ing

med

ia o

n th

esi

gnal

. T

o ill

ustr

ate

why

thi

s is

so,

con

side

r th

e Fo

urie

r se

ries

expa

nsio

n

x(t)

= +

- +

- +

whi

ch d

escr

ibes

a t

ypic

al s

quar

e w

ave.

As

illus

trat

ed i

n Fi

gure

2.5

, if

we

alge

brai

cally

add

tog

ethe

r th

e fi

rst

thre

esi

nuso

idal

com

pone

nts

of t

his

Four

ier

serie

s, w

e pr

oduc

e a

sign

al t

hat

alre

ady

stro

ngly

res

embl

es t

he s

quar

e w

ave.

How

ever

, w

e sh

ould

not

ice

that

the

res

ul-

tant

sig

nal

also

exh

ibit

s ri

pple

s in

bot

h ac

tive

regi

ons.

The

se r

ippl

es w

ill r

emai

nto

som

e ex

tent

, un

less

we

com

plet

e th

e in

fini

te s

erie

s.

Sinc

e th

at i

s ob

viou

sly

not

prac

tical

, w

e m

ust

even

tual

ly t

runc

ate

the

seri

es a

nd s

ettle

for

som

e am

ount

of r

ippl

e in

the

res

ulti

ng s

igna

l.It

tur

ns

out

that

thi

s tr

unca

tion

exa

ctly

cor

resp

onds

to

the

beha

vior

we

obse

rved

whe

n tr

ansm

itti

ng a

squ

are

wav

e ac

ross

an

elec

trom

agne

tic m

edia

. A

s i

s im

poss

ible

to

have

a m

ediu

m o

f in

fini

te b

andw

idth

, it

follo

ws

that

it

is t

o tr

ansm

it al

l th

e fr

eque

ncy

com

pone

nts

of a

squ

are

wav

e.

Thu

s,

Page 5: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

52

Ad

alin

e a

nd

1.0J I

:

1

;5

0.1!-1

.5-1

.0-0

.5

0.25

0.5

1.0

1.5

0.5

1.0

1.5

-0.5

-0.7

5

0.2

0.1

0.5

1.0

1.5

Figu

re 2

.5

The

fir

st t

hree

fre

quen

cy-d

omai

n co

mpo

nent

s of

a s

quar

e w

ave

are

show

n.

Not

ice

that

the

sin

e w

aves

eac

h ha

ve d

iffer

ent

mag

nitu

des,

as

indi

cate

d by

the

coor

dina

tes

on th

e e

ven

thou

gh t

hey

are g

raph

ed t

o the

sam

e h

eigh

t.

whe

n w

e tr

ansm

it a

peri

odic

squ

are

wav

e, w

e ca

n ob

serv

e th

e fr

eque

ncy-

dom

ain

effe

cts

in t

he t

ime-

dom

ain

sign

al a

s ov

ersh

oot,

unde

rsho

ot,

and

ripp

le.

Thi

s ex

ampl

e sh

ows

that

the

Four

ier s

erie

s ca

n be

a p

ower

ful t

ool i

n he

lpin

gus

to

unde

rsta

nd t

he f

requ

ency

-dom

ain

natu

re o

f an

y pe

riodi

c si

gnal

, an

d to

pred

ict

ahea

d of

tim

e w

hat

tran

smis

sion

eff

ects

we

mus

t co

nsid

er a

s w

e de

sign

filte

rs f

or o

ur s

igna

l-pr

oces

sing

app

licat

ions

.W

e ca

n al

so a

pply

Fou

rier

ana

lysi

s to

ape

riod

ic s

igna

ls,

by e

valu

atin

g th

eFo

urie

r in

tegr

al,

whi

ch i

s gi

ven

by

2.1

Rev

iew

of

Sig

nal

Pro

cess

ing

53

We

wil

l no

t, ho

wev

er,

bela

bor

this

poi

nt.

Our

pur

pose

her

e is

mer

ely

to u

nder

-st

and

the

freq

uenc

y-do

mai

n na

ture

of s

igna

ls.

Rea

ders

inte

rest

ed in

inv

esti

gati

ngFo

urie

r an

alys

is f

urth

er a

re r

efer

red

to K

apla

n

F

ilter

Im

ple

men

tatio

n a

nd

Dig

ital

Sig

nal

Pro

cess

ing

Ear

ly i

mpl

emen

tatio

ns o

f th

e fo

ur b

asic

filt

ers

wer

e pr

edom

inan

tly t

uned

RL

Cci

rcui

ts.

Thi

s ap

proa

ch h

ad a

bas

ic l

imita

tion,

how

ever

, in

tha

t th

e fi

lters

had

only

a v

ery

smal

l ra

nge

of a

djus

tabi

lity.

A

side

fro

m o

ur b

eing

abl

e to

cha

nge

the

reso

nant

fre

quen

cy o

f th

e fi

lter

by a

djus

ting

a va

riab

le c

apac

itor

or i

nduc

tor,

the

filte

rs w

ere

pret

ty m

uch

fixe

d on

ce i

mpl

emen

ted,

lea

ving

litt

le r

oom

for

chan

ge a

s ap

plic

atio

ns b

ecam

e m

ore

soph

istic

ated

.Th

e ne

xt s

tep

in t

he e

volu

tion

of f

ilter

des

ign

cam

e ab

out w

ith t

he a

dven

t of

digi

tal

com

pute

r sy

stem

s, a

nd, j

ust

rece

ntly

, w

ith t

he a

vaila

bilit

y of

mic

roco

m-

pute

r ch

ips

with

arc

hite

ctur

es c

usto

m-t

ailo

red

for

sign

al-p

roce

ssin

g ap

plic

atio

ns.

The

basi

c co

ncep

t und

erly

ing

digi

tal

filte

r im

plem

enta

tion

is t

he i

dea

that

a c

on-

tinuo

us a

nalo

g si

gnal

can

be

sam

pled

per

iodi

cally

, qu

antiz

ed,

and

proc

esse

dby

a f

airl

y st

anda

rd c

ompu

ter

syst

em.

This

app

roac

h, i

llust

rate

d in

Fig

ure

2.6,

over

cam

e th

e lim

itatio

n of

fix

ed im

plem

enta

tion,

bec

ause

cha

ngin

g th

e fi

lter

was

sim

ply

a m

atte

r of

rew

ritin

g th

e so

ftw

are

for

the

com

pute

r. W

e w

ill t

here

fore

conc

entra

te o

n w

hat

goes

on

with

in t

he s

oftw

are

sim

ulat

ion

of th

e an

alog

fil

ter.

We

assu

me

that

the

com

pute

r im

plem

enta

tion

of t

he f

ilter

is

a di

scre

te-

time,

lin

ear,

time-

inva

rian

t sy

stem

. Sy

stem

s th

at s

atis

fy t

hese

con

stra

ints

can

perf

orm

a t

rans

form

atio

n on

an

inpu

t si

gnal

, ba

sed

on s

ome

pred

efin

ed c

rite

ria,

Orig

inal

sig

nal

Tim

e

t

Dis

cret

e sa

mpl

es

Tim

e

Fig

ure

2.6

D

iscr

ete-

time

sam

plin

g of

a c

on

tinu

ou

s si

gn

al

is s

ho

wn

.

Page 6: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

54A

dal

ine a

nd

to p

rodu

ce a

n ou

tput

tha

t co

rres

pond

s to

the

inp

ut a

s th

ough

it

had

pass

edth

roug

h an

ana

log

filt

er.

Thu

s, a

com

pute

r, e

xecu

ting

a p

rogr

am t

hat

appl

ies

a gi

ven

tran

sfor

mat

ion

oper

atio

n, t

o di

scre

te,

digi

tize

d ap

prox

imat

ions

of

aco

ntin

uous

inp

ut s

igna

l, c

an p

rodu

ce a

n ou

tput

val

ue y

(n)

for

each

inp

utsa

mpl

e, w

here

is

the

disc

rete

tim

este

p va

riab

le.

In i

ts r

ole

in p

erfo

rmin

g th

istr

ansf

orm

atio

n, t

he c

ompu

ter

can

be t

houg

ht o

f as

a d

igita

l fi

lter

. M

oreo

ver,

any

filt

er c

an b

e co

mpl

etel

y ch

arac

teri

zed

by i

ts r

espo

nse,

h(n

), t

o th

e un

it i

mpu

lse

func

tion,

rep

rese

nted

as

M

ore

prec

isel

y,

=

The

bene

fit

of th

is f

orm

ulat

ion

is t

hat,

once

the

sys

tem

res

pons

e to

the

uni

tim

puls

e is

kno

wn,

the

sys

tem

out

put

for

any

inpu

t is

giv

en b

y

y(n)

=

whe

re i

s th

e sy

stem

inp

ut.

Thi

s eq

uatio

n is

mea

ning

ful

to u

s in

tha

t it

desc

ribe

s a

conv

olut

ion

sum

betw

een

the

inpu

t si

gnal

and

the

unit

impu

lse

resp

onse

of

the

syst

em.

The

pro

- c

an b

e pi

ctur

ed a

s a

win

dow

slid

ing

past

a s

cene

of

inte

rest

. A

s ill

ustr

ated

in F

igur

e 2.

7, f

or e

ach

time

step

, th

e sy

stem

out

put

is p

rodu

ced

by t

rans

posi

ngan

d sh

iftin

g o

ne p

ositi

on t

o th

e ri

ght.

The

sum

mat

ion

is t

hen

perf

orm

edov

er a

ll no

nzer

o va

lues

of

for

the

fin

ite l

engt

h of

the

filte

r. In

thi

s m

anne

r,w

e ca

n re

aliz

e th

e fi

lter

by

repe

titiv

ely

perf

orm

ing

floa

ting-

poin

t m

ultip

licat

ions

and

addi

tions

, co

uple

d w

ith s

ampl

e tim

e de

lays

and

shi

ft o

pera

tions

. R

epet

itive

,m

athe

mat

ical

ope

ratio

ns a

re w

hat

com

pute

rs d

o be

st;

ther

efor

e, t

he c

onvo

lutio

nsu

m p

rovi

des

us w

ith

a m

echa

nism

for

bui

ldin

g th

e di

gita

l eq

uiva

lent

of

anal

ogfi

lters

. R

eade

rs i

nter

este

d in

lea

rnin

g m

ore

abou

t di

gita

l si

gnal

pro

cess

ing

are

refe

rred

to

Opp

enhe

im a

nd S

chaf

er [

5] o

r H

amm

ing

It is

suf

fici

ent

for

our

purp

oses

to n

ote

that

the

con

volu

tion

sum

is

apr

oduc

ts o

pera

tion

sim

ilar

to t

he t

ype

of o

pera

tion

an A

NS

PE p

erfo

rms

whe

nco

mpu

ting

its i

nput

act

ivat

ion

sign

al.

Spec

ific

ally

, th

e A

dalin

e us

es e

xact

ly t

his

cal

cula

tion,

with

out t

he s

ampl

e tim

e de

lays

and

shi

ft o

pera

tions

,to

det

erm

ine

how

muc

h in

put

stim

ulat

ion

it re

ceiv

es f

rom

an

inst

anta

neou

s in

put

sign

al.

As

we

shal

l se

e in

the

nex

t se

ctio

n, t

he A

dalin

e ex

tend

s th

e ba

sic

filt

erop

erat

ion

one

step

fur

ther

, in

tha

t it

has

impl

emen

ted

wit

hin

itsel

f a

mea

nsof

ada

ptin

g th

e w

eigh

ting

coef

fici

ents

to

allo

w i

t to

inc

reas

e or

dec

reas

e th

est

imul

atio

n it

rece

ives

the

nex

t tim

e it

is p

rese

nted

wit

h th

e sa

me

sign

al.

The

abi

lity

of t

he A

dalin

e to

ada

pt i

ts w

eigh

ting

coef

fici

ents

is

extr

emel

yus

eful

. W

hen

wri

ting

a di

gita

l fi

lter

pro

gram

on

a co

mpu

ter,

the

pro

gram

mer

mus

t kn

ow e

xact

ly h

ow t

o sp

ecif

y th

e fi

lteri

ng a

lgor

ithm

and

wha

t th

e de

tails

of

the

sign

al c

hara

cter

istic

s ar

e. I

f mod

ific

atio

ns a

re d

esir

ed, o

r if

the

sign

al c

hara

c-te

rist

ics

chan

ge, r

epro

gram

min

g is

requ

ired

. W

hen

the

prog

ram

mer

use

s an

Ada

-lin

e, t

he p

robl

em s

hift

s to

one

of

bein

g ab

le t

o sp

ecif

y th

e de

sire

d ou

tput

sig

nal,

2.2

Ad

alin

e a

nd

th

e A

dap

tive

Lin

ear

Com

bin

er55

(a)

(b)

0.2 0.1

I

I I

•-

" , .

I T

, ,

01

23

45

67

n

x(n)

1.00

0.50

- • • •

• • • •

nx(

n)1

1 1

1 0.

5

5

0.5

6

0.5

7

05

(c)

|.05

|.10

I .05

.10

|.2b

.30

.25

y(0)

=

|.1

5 =

=

0.30

= =

Fig

ure

2.7

C

on

volu

tion s

um

ca

lcu

latio

n i

s (

a) T

he p

roce

ss b

egin

sby

de

term

inin

g t

he d

esi

red

resp

on

se o

f th

e f

ilte

r to

th

e u

nit

imp

uls

e f

un

ctio

n

at e

igh

t d

iscr

ete

tim

est

ep

s.

(b)

The

in

put

sign

al i

s sa

mpl

ed a

nd q

uant

ized

eig

ht

(c)

The

out

put

of

the f

ilte

r is

pro

duce

d f

or

ea

ch b

y m

ulti

plic

atio

n o

fea

ch te

rm in

(a)

with

the

corr

espo

ndin

g va

lue

of (b

) fo

r a

ll va

lidtim

este

ps.

give

n a

part

icul

ar i

nput

sig

nal.

The

Ada

line

take

s th

e in

put

and

the

desi

red

out-

put,

and

adju

sts

itse

lf s

o th

at i

t ca

n pe

rfor

m t

he d

esir

ed t

rans

form

atio

n. F

urth

er-

mor

e, t

he s

igna

l ch

arac

teri

stic

s ch

ange

, th

e A

dalin

e ca

n ad

apt

auto

mat

ical

ly.

We

shal

l no

w e

xpan

d th

ese

idea

s, a

nd b

egin

our

inve

stig

atio

n of

the

Ada

line.

2.2

AD

AL

INE

A

ND

T

HE

A

DA

PT

IVE

LIN

EA

R C

OM

BIN

ER

Ada

line

is

a de

vice

con

sist

ing

of a

sin

gle

proc

essi

ng e

lem

ent;

as

such

, it

is t

echn

ical

ly a

neu

ral

netw

ork.

N

ever

thel

ess,

it

is a

ver

y im

port

ant

stru

ctur

eth

at d

eser

ves

clos

e st

udy.

M

oreo

ver,

we

wil

l sh

ow h

ow i

t ca

n fo

rm t

he b

asis

°f a

net

wor

k in

a l

ater

sec

tion.

Page 7: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

56A

dal

ine a

nd

Mad

alin

e

The

ter

m A

dalin

e is

an

acro

nym

; ho

wev

er,

its

mea

ning

has

cha

nged

som

e-w

hat

over

the

yea

rs.

Initi

ally

cal

led

the

AD

Apt

ive

Lin

ear

NE

uron

, it

beca

me

the

AD

Apt

ive

LIN

ear

Ele

men

t, w

hen

neur

al n

etw

orks

fel

l ou

t of

fav

or i

n th

ela

te 1

960s

. It

is

alm

ost

iden

tica

l in

str

uctu

re t

o th

e ge

nera

l PE

des

crib

ed i

nC

hapt

er 1

. F

igur

e 2.

8 sh

ows

the

Ada

line

str

uctu

re.

The

re a

re t

wo

basi

c m

od-

ific

atio

ns r

equi

red

to m

ake

the

gene

ral

PE s

truc

ture

int

o an

Ada

line.

T

he f

irst

mod

ific

atio

n is

the

add

itio

n of

a c

onne

ctio

n w

ith

wei

ght,

whi

ch w

e re

fer

to a

s th

e bi

as t

erm

. T

his

term

is

a w

eigh

t on

a c

onne

ctio

n th

at h

as i

ts i

nput

valu

e al

way

s eq

ual

to

1.

The

inc

lusi

on o

f su

ch a

ter

m i

s la

rgel

y a

mat

ter

ofex

peri

ence

. W

e sh

ow i

t he

re f

or c

ompl

eten

ess,

but

it

wil

l no

t ap

pear

in

the

disc

ussi

on o

f th

e ne

xt s

ectio

ns.

We

shal

l re

surr

ect

the

idea

of

a bi

as t

erm

in

Cha

pter

3,

on t

he b

ackp

ropa

gatio

n ne

twor

k.T

he s

econ

d m

odif

icat

ion

is t

he a

ddit

ion

of a

bip

olar

con

diti

on o

n th

e ou

tput

.T

he d

ashe

d bo

x in

Fig

ure

2.8

encl

oses

a p

art

of th

e A

dalin

e ca

lled

the

adap

tive

linea

r co

mbi

ner

(AL

C).

If th

e ou

tput

of t

he A

LC

is p

ositi

ve, t

he A

dalin

e ou

tput

is +

1. I

f th

e A

LC

out

put

is n

egat

ive,

the

Ada

line

out

put

is —

1.

Bec

ause

muc

hof

the

int

eres

ting

pro

cess

ing

take

s pl

ace

in t

he A

LC

por

tion

of

the

Ada

line

,w

e sh

all

conc

entr

ate

on t

he A

LC.

Lat

er,

we

shal

l ad

d ba

ck t

he b

inar

y ou

tput

cond

itio

n.Th

e pr

oces

sing

don

e by

the

ALC

is

that

of

the

typi

cal

proc

essi

ng e

lem

ent

desc

ribe

d in

the

pre

viou

s ch

apte

r. T

he A

LC

per

form

s a

y

+1

outp

ut-

Ada

ptiv

e lin

ear

com

bine

rI

Figu

re 2

.8

The

com

plet

e A

da

line

cons

ists

of t

he a

dapt

ive

linea

r co

mbi

ner,

in

the

dash

ed

box,

and

a

bip

ola

r o

utp

ut

fun

ctio

n.

Th

eadaptiv

e l

inear

com

bine

r re

sem

bles

the

gen

eral

PE

desc

ribed

in C

ha

pte

r

2.2

Ad

alin

e a

nd

th

e A

dap

tive

Lin

ear

Co

mb

iner

5

7

lati

on u

sing

the

inp

ut a

nd w

eigh

t ve

ctor

s, a

nd a

pplie

s an

out

put

func

tion

to

get

a si

ngle

out

put

valu

e. U

sing

the

not

atio

n in

Fig

ure

2.8,

y =

whe

re i

s th

e bi

as w

eigh

t. If

we

mak

e th

e id

enti

fica

tion

, =

1,

we

can

rew

rite

the

pre

cedi

ng e

quat

ion

as

or,

in v

ecto

r no

tati

on,

y =

(2.1)

The

out

put

func

tion

in

this

cas

e is

the

ide

ntity

fun

ctio

n,

as i

s th

e ac

tiva

tion

func

tion

. Th

e us

e of

the

iden

tity

func

tion

as

both

out

put

and

acti

vati

on f

unct

ions

mea

ns t

hat t

he o

utpu

t is

the

sam

e as

the

act

ivat

ion,

whi

ch i

s th

e sa

me

as t

he n

etin

put

to t

he u

nit.

The

Ada

line

(or

the

AL

C)

is A

DA

ptiv

e in

the

sen

se t

hat

ther

e ex

ists

aw

ell-

defi

ned

proc

edur

e fo

r m

odif

ying

the

wei

ghts

in

orde

r to

all

ow t

he d

evic

eto

giv

e th

e co

rrec

t ou

tput

val

ue f

or t

he g

iven

inp

ut.

Wha

t ou

tput

val

ue i

sco

rrec

t de

pend

s on

the

par

ticu

lar

proc

essi

ng f

unct

ion

bein

g pe

rfor

med

by

the

devi

ce.

The

Ada

line

(or

the

AL

C)

is L

inea

r be

caus

e th

e ou

tput

is a

sim

ple

line

arfu

ncti

on o

f th

e in

put

valu

es.

It i

s a

NE

uron

onl

y in

the

ver

y li

mit

ed s

ense

of

the

PEs

desc

ribe

d in

the

pre

viou

s ch

apte

r. T

he A

dali

ne c

ould

als

o be

sai

d to

be

a E

lem

ent,

avoi

ding

the

NE

uron

iss

ue a

ltoge

ther

. In

the

nex

t se

ctio

n, w

elo

ok a

t a

met

hod

to t

rain

the

Ada

line

to p

erfo

rm a

giv

en p

roce

ssin

g fu

ncti

on.

2.2.

1 T

he

LMS

Lea

rnin

g R

ule

Giv

en a

n in

put

vect

or,

x, i

t is

str

aigh

tfor

war

d to

det

erm

ine

a se

t of

wei

ghts

, w

hich

wil

l re

sult

in a

par

ticu

lar

outp

ut v

alue

, y.

Su

ppos

e w

e ha

ve a

set

of in

put

vect

ors,

XL

}, e

ach

havi

ng i

ts o

wn,

per

haps

uni

que,

cor

rect

or d

esir

ed o

utpu

t va

lue,

k =

The

pro

blem

of

find

ing

a si

ngle

wei

ght

vect

or t

hat

can

succ

essf

ully

ass

ocia

te e

ach

inpu

t ve

ctor

wit

h it

s de

sire

d ou

tput

valu

e is

no

long

er s

impl

e. I

n th

is s

ectio

n, w

e de

velo

p a

met

hod

calle

d th

e le

ast-

mea

n-sq

uare

(L

MS)

lea

rnin

g ru

le,

whi

ch i

s on

e m

etho

d of

fin

ding

the

des

ired

wei

ght

vect

or.

We

refe

r to

thi

s pr

oces

s of

fin

ding

the

wei

ght

vect

or a

s tr

aini

ngth

e A

LC.

The

lear

ning

rul

e ca

n be

em

bedd

ed i

n th

e de

vice

its

elf,

whi

ch c

an t

hen

self-

adap

t as

inp

uts

and

desi

red

outp

uts

are

pres

ente

d to

it.

Smal

l ad

just

men

tsar

e m

ade

to t

he w

eigh

t va

lues

as

each

com

bina

tion

is

proc

esse

dun

til

the

AL

C g

ives

cor

rect

out

puts

. In

a s

ense

, th

is p

roce

dure

is

a tr

ue t

rain

ing

proc

edur

e, b

ecau

se w

e do

not

nee

d to

cal

cula

te t

he v

alue

of

the

wei

ght

vect

orex

plic

itly

. B

efor

e de

scri

bing

the

tra

inin

g pr

oces

s in

det

ail,

let

's p

erfo

rm t

heca

lcul

atio

n m

anua

lly.

Page 8: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

58

Ad

alin

e a

nd

Cal

cula

tion

of w

*.

To b

egin

, le

t's s

tate

the

pro

blem

a l

ittle

dif

fere

ntly

: G

iven

exam

ples

, o

f so

me

proc

essi

ng f

unct

ion

that

ass

o-ci

ates

inp

ut v

ecto

rs,

wit

h (o

r m

aps

to)

the

desi

red

outp

ut v

alue

s, w

hat

is t

he b

est

wei

ght

vect

or,

for

an

AL

C t

hat

perf

orm

s th

is m

appi

ng?

To a

nsw

er t

his

ques

tion,

we

mus

t fi

rst

defi

ne w

hat

it is

tha

t co

nstit

utes

the

best

wei

ght

vect

or.

Cle

arly

, on

ce t

he b

est

wei

ght

vect

or i

s fo

und,

we

wou

ldlik

e th

e ap

plic

atio

n of

eac

h in

put

vect

or t

o re

sult

in t

he p

reci

se,

corr

espo

ndin

gou

tput

val

ue.

Thu

s, w

e w

ant t

o el

imin

ate,

or

at le

ast t

o m

inim

ize,

the

diff

eren

cebe

twee

n th

e de

sire

d ou

tput

and

the

act

ual

outp

ut f

or e

ach

inpu

t ve

ctor

. Th

eap

proa

ch w

e se

lect

her

e is

to

min

imiz

e th

e m

ean

squa

red

erro

r fo

r th

e se

t of

inpu

t ve

ctor

s.If

the

act

ual

outp

ut v

alue

is

fo

r th

e i

nput

vec

tor,

the

n th

e co

rre-

spon

ding

err

or t

erm

is

The

mea

n sq

uare

d er

ror,

or

expe

ctat

ion

valu

e of

the

err

or,

is d

efin

ed b

y

(2.2)

k=\

whe

re L

is

the

num

ber

of i

nput

vec

tors

in

the

trai

ning

Usi

ng E

q. w

e ca

n ex

pand

the

mea

n sq

uare

d er

ror

as f

ollo

ws:

= =•

(2.3)

(2.4)

In g

oing

fro

m E

q. (

2.3)

to

Eq.

(2.4

), w

e ha

ve m

ade

the

assu

mpt

ion

that

the

trai

ning

set

is

stat

istic

ally

sta

tiona

ry,

mea

ning

tha

t an

y ex

pect

atio

n va

lues

var

ysl

owly

wit

h re

spec

t to

tim

e. T

his

assu

mpt

ion

allo

ws

us t

o fa

ctor

out

the

wei

ght

vect

ors

from

the

exp

ecta

tion

valu

e te

rms

in E

q. (

2.4)

.

Exe

rcis

e 2.

1: G

ive

the

deta

ils o

f th

e de

riva

tion

that

lea

ds f

rom

Eq.

(2.

3),

toE

q. (

2.4)

alo

ng w

ith

the

just

ific

atio

n fo

r ea

ch s

tep.

Why

are

the

fac

tors

dk

and

lef

t to

geth

er i

n th

e la

st t

erm

in

Eq.

(2.

4),

rath

er t

han

show

n as

the

pro

duct

of t

he t

wo

sepa

rate

exp

ecta

tion

val

ues?

Def

ine

a m

atri

x R

= c

alle

d th

e in

put

corr

elat

ion

mat

rix,

and

ave

ctor

p

Furt

her,

mak

e th

e id

entif

icat

ion

£ =

U

sing

the

sede

fini

tion

s, w

e ca

n re

wri

te E

q. (

2.4)

as

(2.5

)

Thi

s eq

uatio

n sh

ows

as

an e

xpli

cit

func

tion

of

the

wei

ght

vect

or,

w.

In o

ther

wor

ds,

=

and

Ste

arns

use

the

not

atio

n, ]

, fo

r th

e ex

pect

atio

n va

lue;

als

o, t

he t

erm

exe

mpl

ars

wil

l so

met

imes

be

seen

as

a sy

nony

m f

or t

rain

ing

set.

2.2

Ad

alin

e a

nd

th

e A

dap

tive

Lin

ear

Co

mb

iner

59

To f

ind

the

wei

ght

vect

or c

orre

spon

ding

to

the

min

imum

m

ean

squa

red

erro

r, w

e di

ffer

enti

ate

Eq.

(2

.5),

eval

uate

the

res

ult

at a

nd s

et t

he r

esul

teq

ual

to z

ero:

= -

2p

- 2

p =

0

=

p

=

(2.6)

(2.7) (2.8)

Not

ice

that

, al

thou

gh i

s a

scal

ar,

is

a v

ecto

r. Eq

uatio

n (2

.6)

is a

nex

pres

sion

of

the

grad

ient

of

whi

ch i

s th

e ve

ctor

(2.9)

_

All

tha

t w

e ha

ve d

one

by t

he p

roce

dure

is

to s

how

tha

t w

e ca

n fi

nd a

poi

ntw

here

the

slo

pe o

f th

e fu

ncti

on,

is

zero

. In

gen

eral

, th

at p

oint

may

be

am

inim

um o

r a

max

imum

poi

nt.

In t

he e

xam

ple

that

fol

low

s, w

e sh

ow a

sim

ple

case

whe

re t

he A

LC

has

onl

y tw

o w

eigh

ts.

In t

hat

situ

atio

n, t

he g

raph

of

is a

par

abol

oid.

Fur

ther

mor

e, i

t mus

t be

conc

ave

upw

ard,

sin

ce a

ll co

mbi

nati

ons

of w

eigh

ts m

ust

resu

lt in

a n

onne

gativ

e va

lue

for

the

mea

n sq

uare

d er

ror,

Thi

s re

sult

is g

ener

al a

nd i

s ob

tain

ed r

egar

dles

s of

the

dim

ensi

on o

f th

e w

eigh

tve

ctor

. In

the

cas

e of

dim

ensi

ons

high

er t

han

two,

the

par

abol

oid

is k

now

n as

aSu

ppos

e w

e ha

ve

an

AL

C

wit

h tw

o in

puts

and

var

ious

oth

er q

uant

itie

sde

fine

d as

fol

low

s:

R =

3 1

1 4]

= 1

0

Rat

her

than

inv

erti

ng R

, w

e us

e E

q. (

2.7)

to

find

the

opt

imum

wei

ght

vect

or:

3 1

1 4

Thi

s eq

uati

on r

esul

ts i

n tw

o eq

uati

ons

for

w*

and

w*

+

= 5

The

solu

tion

is w

* (

1,

The

gra

ph o

f a

s a

func

tion

of

the

two

wei

ghts

is s

how

n in

Fig

ure

2.9.

2.2

: Sh

ow t

hat

the

min

imum

val

ue o

f th

e m

ean

squa

red

erro

r ca

n be

as

L

Page 9: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

60 a

nd

Fig

ure

2.9

F

or

an

AL

C

with

on

ly

two

wei

ghts

, th

e er

ror

surf

ace

is

a

para

bolo

id.

The

wei

ghts

tha

t m

inim

ize

the

err

or

occ

ur

at t

hebo

ttom

of

the p

arab

oloi

dal

surf

ace.

Exe

rcis

e 2.

3:

Det

erm

ine

an e

xpli

cit

equa

tion

for

as

a fu

ncti

on o

f a

ndus

ing

the

exam

ple

in t

he t

ext.

Use

it

to f

ind

the

opt

imum

wei

ght

vect

or,

the

min

imum

mea

n sq

uare

d er

ror,

and

pro

ve t

hat

the

para

bolo

id i

sco

ncav

e up

war

d.

In t

he n

ext

sect

ion,

we

shal

l ex

amin

e a

met

hod

for

find

ing

the

optim

umw

eigh

t ve

ctor

by

an i

tera

tive

pro

cedu

re.

Thi

s pr

oced

ure

allo

ws

us t

o av

oid

the

ofte

n-di

ffic

ult

calc

ulat

ions

nec

essa

ry t

o de

term

ine

the

wei

ghts

man

uall

y.

Fin

ding

w*

by t

he M

etho

d of

Ste

epes

t D

esce

nt.

As

you

mig

ht i

mag

ine,

the

anal

ytic

al c

alcu

lati

on t

o de

term

ine

the

opti

mum

wei

ghts

for

a p

robl

em i

s ra

ther

diff

icul

t in

gen

eral

. N

ot o

nly

does

the

mat

rix

man

ipul

atio

n ge

t cu

mbe

rsom

e fo

rla

rge

dim

ensi

ons,

but

als

o ea

ch c

ompo

nent

of

R a

nd p

is

itsel

f an

exp

ecta

tion

valu

e. T

hus,

exp

lici

t ca

lcul

atio

ns o

f R

and

p r

equi

re k

now

ledg

e of

the

stat

isti

csof

the

inpu

t si

gnal

s. A

bet

ter

appr

oach

wou

ld b

e to

let

the

AL

C f

ind

the

opti

mum

wei

ghts

its

elf

by h

avin

g it

sear

ch o

ver

the

wei

ght

surf

ace

to f

ind

the

min

imum

.A

pur

ely

rand

om s

earc

h m

ight

not

be

prod

ucti

ve o

r ef

fici

ent,

so w

e sh

all

add

som

e in

tell

igen

ce t

o th

e pr

oced

ure.

2.2

an

d t

he A

dap

tive L

inea

r C

om

bin

er61

Beg

in b

y as

sign

ing

arbi

trar

y va

lues

to

the

wei

ghts

. Fr

om t

hat

poin

t on

the

wei

ght

surf

ace,

det

erm

ine

the

dire

ctio

n of

the

ste

epes

t sl

ope

in t

he d

ownw

ard

dire

ctio

n. C

hang

e th

e w

eigh

ts s

ligh

tly

so t

hat

the

new

wei

ght

vect

or l

ies

fart

her

dow

n th

e su

rfac

e. R

epea

t th

e pr

oces

s un

til

the

min

imum

has

bee

n re

ache

d. T

his

proc

edur

e is

ill

ustr

ated

in

Figu

re I

mpl

icit

in t

his

met

hod

is t

he a

ssum

ptio

nth

at w

e kn

ow w

hat

the

wei

ght

surf

ace

look

s li

ke i

n ad

vanc

e. W

e do

not

kno

w,

but

we

wil

l se

e sh

ortl

y ho

w t

o ge

t ar

ound

thi

s pr

oble

m.

Typ

ical

ly,

the

wei

ght

vect

or d

oes

not

init

iall

y m

ove

dire

ctly

tow

ard

the

min

imum

poi

nt.

The

cros

s-se

ctio

n of

the

par

abol

oida

l w

eigh

t su

rfac

e is

usu

ally

elli

ptic

al,

so t

he n

egat

ive

grad

ient

may

not

poi

nt d

irec

tly

at t

he m

inim

um p

oint

,at

lea

st i

niti

ally

. Th

e si

tuat

ion

is i

llust

rate

d m

ore

clea

rly

in t

he c

onto

ur p

lot

ofth

e w

eigh

t su

rfac

e in

Fig

ure

Figu

re 2

.10

We c

an

use t

his

di

agra

m

to vi

sua

lize t

he st

eepe

st-d

esce

ntm

etho

d.

An

initi

al

sele

ctio

n fo

r th

e w

eig

ht

vect

or

resu

ltsin

a

n

err

or,

T

he st

ee

pe

st-d

esc

en

t m

etho

d co

nsi

sts

of

slid

ing th

is p

oin

t dow

n the s

urf

ace

tow

ard

the b

otto

m,

alw

ays

mo

vin

g i

n t

he d

ire

ctio

n o

f th

e s

teepest

do

wn

wa

rd s

lope.

Page 10: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

62 a

nd

2.3.

Fig

ure

In

the c

onto

ur

plot

of

the w

eig

ht

surf

ace

of

Fig

ure

the

dir

ect

ion

of s

teep

est

de

sce

nt

is p

erp

en

dic

ula

r to

the

con

tour

line

s at

ea

ch p

oint

, an

d th

is d

ire

ctio

n do

es n

ot a

lwa

ys p

oin

tto

the m

inim

um

poin

t.

Bec

ause

the

wei

ght

vect

or i

s va

riab

le i

n th

is p

roce

dure

, w

e w

rite

it

as a

nex

plic

it fu

ncti

on o

f th

e ti

mes

tep,

t.

The

init

ial

wei

ght

vect

or i

s de

note

dan

d th

e w

eigh

t ve

ctor

at

times

tep

t is

At e

ach

step

, th

e ne

xt w

eigh

t ve

ctor

is c

alcu

late

d ac

cord

ing

to

1) =

+(2

.10)

whe

re i

s th

e ch

ange

in

at

the

tim

este

p.W

e ar

e lo

okin

g fo

r th

e di

rect

ion

of t

he s

teep

est

desc

ent

at e

ach

poin

t on

the

surf

ace,

so

we

need

to

calc

ulat

e th

e gr

adie

nt o

f th

e su

rfac

e (w

hich

giv

es t

hedi

rect

ion

of t

he s

teep

est

slo

pe).

T

he n

egat

ive

of t

he g

radi

ent

is i

n th

edi

rect

ion

of s

teep

est

desc

ent.

To g

et t

he m

agni

tude

of

the

chan

ge,

mul

tipl

y th

egr

adie

nt b

y a

suita

ble

cons

tant

, T

he a

ppro

pria

te v

alue

for

wil

l be

dis

cuss

edla

ter.

Thi

s pr

oced

ure

resu

lts

in t

he f

ollo

win

g ex

pres

sion

:

(2.1

1)

2.2

A

dal

ine

and

th

e A

dap

tive

Lin

ear

Co

mb

iner

All

tha

t is

nec

essa

ry t

o co

mpl

ete

the

disc

ussi

on i

s to

det

erm

ine

the

valu

e of

at

each

suc

cess

ive

iter

atio

n st

ep.

The

val

ue o

f w

as d

eter

min

ed a

naly

tica

lly

in t

he p

revi

ous

sect

ion.

Equ

atio

n (2

.6)

or E

q. (

2.9)

cou

ld b

e us

ed h

ere

to d

eter

min

e b

ut w

ew

ould

hav

e th

e sa

me

prob

lem

tha

t w

e ha

d w

ith

the

anal

ytic

al d

eter

min

atio

nof

W

e w

ould

nee

d to

kno

w b

oth

R a

nd p

in

adva

nce.

T

his

know

ledg

eis

equ

ival

ent

to k

now

ing

wha

t th

e w

eigh

t su

rfac

e lo

oks

like

in

adva

nce.

To

circ

umve

nt t

his

diff

icul

ty,

we

use

an a

ppro

xim

atio

n fo

r th

e gr

adie

nt t

hat

can

bede

term

ined

fro

m i

nfor

mat

ion

that

is

know

n ex

plic

itly

at

each

ite

ratio

n.Fo

r ea

ch s

tep

in t

he i

tera

tion

pro

cess

, w

e pe

rfor

m t

he f

ollo

win

g:

1. A

pply

an

inpu

t ve

ctor

, t

o th

e A

dalin

e in

puts

.

2.

Det

erm

ine

the

valu

e of

the

err

or s

quar

ed,

usi

ng t

he c

urre

nt v

alue

of

the

wei

ght

vect

or

(2.1

2)

3.

Cal

cula

te a

n ap

prox

imat

ion

to b

y us

ing

as

an a

ppro

xim

atio

nfo

r

(2

.13)

=

(2.1

4)

whe

re w

e ha

ve u

sed

Eq.

to

calc

ulat

e th

e gr

adie

nt e

xpli

citl

y.

4. U

pdat

e th

e w

eigh

t ve

ctor

acc

ordi

ng t

o E

q. u

sing

Eq.

as

the

appr

oxim

atio

n fo

r th

e gr

adie

nt:

+ 1

) =

+

(2.1

5)

5. R

epea

t st

eps

1 th

roug

h 4

wit

h th

e ne

xt i

nput

vec

tor,

unti

l th

e er

ror

has

been

redu

ced

to a

n ac

cept

able

val

ue.

Equ

atio

n (2

.15)

is

an e

xpre

ssio

n of

the

LM

S a

lgor

ithm

. T

he p

aram

eter

dete

rmin

es t

he s

tabi

lity

and

spee

d of

con

verg

ence

of

the

wei

ght

vect

or t

owar

dth

e m

inim

um-e

rror

val

ue.

Bec

ause

an

appr

oxim

atio

n of

the

gra

dien

t ha

s be

en u

sed

in E

q. t

hepa

th t

hat

the

wei

ght

vect

or t

akes

as

it m

oves

dow

n th

e w

eigh

t su

rfac

e to

war

dth

e m

inim

um w

ill

not b

e as

sm

ooth

as

that

ind

icat

ed i

n Fi

gure

Fig

ure

show

s an

exa

mpl

e of

how

a s

earc

h pa

th m

ight

loo

k w

ith

the

LM

S al

gori

thm

of

Eq.

(2.

15).

Cha

nges

in

the

wei

ght

vect

or m

ust

be k

ept

rela

tive

ly s

mal

l on

eac

hite

ratio

n.

If c

hang

es a

re t

oo l

arge

, th

e w

eigh

t ve

ctor

cou

ld w

ande

r ab

out

the

surf

ace,

nev

er f

indi

ng t

he m

inim

um,

or f

indi

ng i

t on

ly b

y ac

cide

nt r

athe

r th

anas

a r

esul

t of

a s

tead

y co

nver

genc

e to

war

d it

. T

he f

unct

ion

of t

he p

aram

eter

is t

o pr

even

t th

is a

imle

ss s

earc

hing

. In

the

nex

t se

ctio

n, w

e sh

all

disc

uss

the

para

met

er,

and

oth

er p

ract

ical

con

side

rati

ons.

Page 11: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

64

Ad

alin

e a

nd

Fig

ure

T

he h

ypo

the

tica

l pat

h t

ake

n b

y a

we

igh

t ve

cto

r a

s it

sea

rch

es

for

the

min

imu

m

err

or

usi

ng t

he

alg

ori

thm

is

no

t a

smo

oth

cu

rve b

eca

use

the

gra

die

nt

is b

ein

g a

pp

roxi

ma

ted

at e

ach p

oint

. N

ote a

lso t

hat

step

siz

es

get

smal

ler

as t

hem

inim

um

-err

or

solu

tion is

ap

pro

ach

ed

.

2.2.

2 P

ract

ical

Con

side

ratio

ns

The

re a

re s

ever

al q

uest

ions

to

cons

ider

whe

n w

e ar

e at

tem

ptin

g to

use

the

AL

Cto

sol

ve a

par

ticu

lar

prob

lem

:

• H

ow m

any

trai

ning

vec

tors

are

req

uire

d to

sol

ve a

par

ticu

lar

prob

lem

?

• H

ow i

s th

e ex

pect

ed o

utpu

t ge

nera

ted

for

each

tra

inin

g ve

ctor

?

• W

hat

is t

he a

ppro

pria

te d

imen

sion

of

the

wei

ght

vect

or?

• W

hat

shou

ld b

e th

e in

itia

l va

lues

for

the

wei

ghts

?

• Is

a b

ias

wei

ght

requ

ired

?

• W

hat

happ

ens

if t

he s

igna

l st

atis

tics

var

y w

ith

tim

e?

2.2

an

d t

he

Ad

apti

ve L

inea

r C

om

bin

er65

• W

hat

is t

he a

ppro

pria

te v

alue

for

• H

ow d

o w

e de

term

ine

whe

n to

sto

p tr

aini

ng?

The

ans

wer

s to

the

se q

uest

ions

dep

end

on t

he s

peci

fic

prob

lem

bei

ng a

ddre

ssed

,so

it

is d

iffi

cult

to

give

wel

l-de

fine

d re

spon

ses

that

app

ly i

n al

l ca

ses.

Mor

eove

r,fo

r a

spec

ific

cas

e, t

he a

nsw

ers

are

not

nece

ssar

ily

inde

pend

ent.

Con

side

r th

e di

men

sion

of

the

wei

ght

vect

or.

If t

here

are

a w

ell-

defi

ned

num

ber

of f

rom

mul

tipl

e t

here

wou

ld b

e on

e w

eigh

tfo

r eac

h in

put.

The

ques

tion

wou

ld b

e w

heth

er to

add

a b

ias

wei

ght.

Figu

rede

pict

s th

is c

ase,

wit

h th

e bi

as t

erm

add

ed,

in a

som

ewha

t st

anda

rd f

orm

tha

tsh

ows

the

vari

abil

ity

of t

he w

eigh

ts,

the

erro

r te

rm,

and

the

feed

back

fro

mth

e ou

tput

to

the

wei

ghts

. A

s fo

r th

e bi

as t

erm

its

elf,

inc

ludi

ng i

t so

met

imes

help

s co

nver

genc

e of

the

wei

ghts

to

an a

ccep

tabl

e so

luti

on.

It i

s pe

rhap

s be

stth

ough

t of

as

an e

xtra

deg

ree

of fr

eedo

m,

and

its

use

is l

arge

ly a

mat

ter

ofex

peri

men

tatio

n w

ith t

he s

peci

fic

appl

icat

ion.

A s

itua

tion

dif

fere

nt f

rom

the

pre

viou

s pa

ragr

aph

aris

es i

f th

ere

is o

nly

asi

ngle

inp

ut s

igna

l, sa

y fr

om a

sin

gle

elec

troc

ardi

ogra

ph (

EK

G)

sens

or.

For

= 1

(bi

as in

put)

des

ired

outp

ut

Fig

ure

2.1

3

This

figure

show

s a s

tandard

dia

gra

m o

f the A

LC

with

multi

ple

inpu

ts a

nd

a bi

as t

erm

. W

eigh

ts a

re i

nd

ica

ted

as v

ari

ab

lere

sist

ors

to

em

phas

ize

the

adap

tive

natu

re

of

the

devi

ce.

Calc

ula

tion o

f the e

rror,

is s

how

n e

xp

licitly

as the

additi

on

of

a n

egativ

e o

f th

e o

utp

ut

sig

na

l to

th

e d

esir

ed o

utp

ut

valu

e.

Page 12: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

66A

dal

ine

and

exam

ple,

an

AL

C c

an b

e us

ed t

o re

mov

e no

ise

from

the

inp

ut s

igna

l in

ord

er t

ogi

ve a

cle

aner

sig

nal a

t the

out

put.

In a

cas

e su

ch a

s th

is o

ne, t

he A

LC

is

arra

nged

in a

con

figu

rati

on k

now

n as

a t

rans

vers

e fi

lter

. In

thi

s co

nfig

urat

ion,

the

inp

utsi

gnal

is

sam

pled

at

seve

ral

poin

ts i

n ti

me,

rat

her

than

fro

m s

ever

al s

enso

rs a

ta

sing

le t

ime.

Fig

ure

sho

ws

the

AL

C a

rran

ged

as a

tra

nsve

rse

filt

er.

For

the

tran

sver

se f

ilte

r, e

ach

addi

tion

al s

ampl

e in

tim

e re

pres

ents

ano

ther

degr

ee o

f fr

eedo

m t

hat

can

be u

sed

to f

it t

he i

nput

sig

nal

to t

he d

esir

ed o

utpu

tsi

gnal

. T

hus,

if

you

cann

ot g

et a

goo

d fi

t w

ith

a sm

all

num

ber

of s

ampl

es,

try

a fe

w m

ore.

O

n th

e ot

her

hand

, if

you

get

good

con

verg

ence

wit

h yo

ur f

irst

Fig

ure

2.1

4 In

an

A

LC

ar

rang

ed

as

a tr

an

sve

rse

filte

r,

the

sam

ple

s a

re p

rovi

de

d b

y n—

1,

pre

sum

ab

ly e

qual

, tim

e d

ela

ys,

T

he

AL

C s

ees

the

sig

na

l at

the

cu

rre

nt

time,

as

we

ll as

its v

alu

e at

th

e p

revi

ou

s n

- 1

sam

ple

tim

es.

W

hen

data

is

initi

ally

applie

d,

rem

em

ber

to w

ait

at

least

for

data

to b

epr

esen

t at

all

of t

he A

LC

's i

nput

s.

2.2

A

dal

ine a

nd

th

e A

dap

tive L

inea

r C

om

bin

er

67

choi

ce,

try

one

wit

h fe

wer

sam

ples

to

see

whe

ther

you

get

a s

igni

fica

nt s

peed

upin

con

verg

ence

and

stil

l ha

ve s

atis

fact

ory

resu

lts (

you

may

be

surp

rise

d to

fin

dth

at t

he r

esul

ts a

re b

ette

r in

som

e ca

ses)

. M

oreo

ver,

the

bia

s w

eigh

t is

pro

babl

ysu

perf

luou

s in

thi

s ca

se.

Ear

lier,

we

allu

ded

to a

rela

tions

hip

betw

een

trai

ning

tim

e an

d th

e di

men

sion

of t

he w

eigh

t ve

ctor

, es

peci

ally

for

the

sof

twar

e si

mul

atio

ns t

hat

we

cons

ider

in t

his

text

: M

ore

wei

ghts

gen

eral

ly m

ean

long

er t

rain

ing

tim

es.

Thi

s eq

uati

onm

ust

be c

onst

antly

bal

ance

d ag

ains

t ot

her

fact

ors,

suc

h as

the

acc

epta

bilit

y of

the

solu

tion.

As

stat

ed i

n th

e pr

evio

us p

arag

raph

, us

ing

mor

e w

eigh

ts d

oes

not

alw

ays

resu

lt in

a b

ette

r so

lutio

n. F

urth

erm

ore,

the

re a

re o

ther

fac

tors

tha

t af

fect

both

the

tra

inin

g ti

me

and

the

acce

ptab

ility

of

the

solu

tion.

The

para

met

er i

s on

e fa

ctor

tha

t ha

s a

sign

ific

ant

effe

ct o

n tr

aini

ng.

If i

s to

o la

rge,

con

verg

ence

wil

l ne

ver

take

pla

ce,

no m

atte

r ho

w l

ong

is t

hetr

aini

ng p

erio

d.

If t

he s

tatis

tics

of t

he i

nput

sig

nal

are

know

n, i

t is

pos

sibl

e to

show

tha

t th

e va

lue

of i

s re

stri

cted

to

the

rang

e

0

whe

re i

s th

e la

rges

t eig

enva

lue

of th

e m

atri

x R

, the

inp

ut c

orre

latio

n m

atri

xdi

scus

sed

in S

ectio

n A

lthou

gh i

t is

not

alw

ays

reas

onab

le t

o ex

pect

thes

e st

atis

tics

to b

e kn

own,

the

re a

re c

ases

whe

re t

hey

can

be e

stim

ated

. T

hete

xt b

y W

idro

w a

nd S

tear

ns c

onta

ins

man

y ex

ampl

es.

In t

his

text

, w

e pr

opos

e a

mor

e he

uris

tic a

ppro

ach:

Pic

k a

valu

e fo

r s

uch

that

a w

eigh

t do

es n

ot c

hang

eby

mor

e th

an a

sm

all

frac

tion

of it

s cu

rren

t val

ue.

Thi

s ru

le i

s ad

mitt

edly

vag

ue,

but

expe

rien

ce a

ppea

rs t

o be

the

bes

t te

ache

r fo

r se

lect

ing

an a

ppro

pria

te v

alue

for

As

trai

ning

pro

ceed

s, t

he e

rror

val

ue w

ill

dim

inis

h (h

opef

ully

), r

esul

ting

in s

mal

ler

and

smal

ler

wei

ght

chan

ges,

and

, he

nce,

in

a sl

ower

con

verg

ence

tow

ard

the

min

imum

of t

he w

eigh

t sur

face

. It

is s

omet

imes

use

ful t

o in

crea

se t

heva

lue

of d

urin

g th

ese

peri

ods

to s

peed

con

verg

ence

. B

ear

in m

ind,

how

ever

,th

at a

lar

ger

may

mea

n th

at t

he w

eigh

ts m

ight

bou

nce

arou

nd t

he b

otto

m o

fth

e w

eigh

t su

rfac

e, g

ivin

g an

ove

rall

erro

r th

at i

s un

acce

ptab

le.

Her

e ag

ain,

expe

rien

ce i

s ne

cess

ary

to e

nabl

e us

to

judg

e ef

fect

ivel

y.O

ne m

etho

d of

com

pens

atin

g fo

r di

ffer

ence

s in

pro

blem

s is

to

use

norm

al-

ized

inp

ut v

ecto

rs.

Inst

ead

of u

se •

A

noth

er t

acti

c is

to

scal

e th

ede

sire

d ou

tput

val

ue.

Thes

e m

etho

ds h

elp

part

icul

arly

whe

n w

e ar

e se

lect

ing

init

ial

wei

ght

valu

es o

r a

valu

e fo

r I

n m

ost

case

s, w

eigh

ts c

an b

e in

itia

lize

d to

rand

om v

alue

s of

sm

all

real

bet

wee

n -1

.0 a

nd T

he v

alue

of

is

usua

lly

best

kep

t si

gnif

ican

tly

less

tha

n 1;

a v

alue

of

or

even

0.0

5 m

aybe

rea

sona

ble

for

som

e b

ut v

alue

s co

nsid

erab

ly le

ss m

ay b

e re

quir

ed.

The

que

stio

n of

whe

n to

sto

p tr

aini

ng i

s la

rgel

y a

mat

ter

of th

e re

quir

emen

tson

the

out

put

of t

he s

yste

m.

You

det

erm

ine

the

amou

nt o

f er

ror

that

you

can

on

the

outp

ut s

igna

l, an

d tr

ain

unti

l th

e ob

serv

ed e

rror

is

cons

iste

ntly

less

tha

n th

e re

quir

ed v

alue

. Si

nce

the

mea

n sq

uare

d er

ror

is t

he v

alue

use

d to

deri

ve t

he t

rain

ing

algo

rith

m,

that

is

the

quan

tity

tha

t us

uall

y de

term

ines

whe

n

Page 13: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

68A

dal

ine

and

Mad

alin

e

a sy

stem

has

con

verg

ed t

o it

s m

inim

um e

rror

sol

utio

n. A

lter

nati

vely

, ob

serv

ing

indi

vidu

al e

rror

s is

oft

en n

eces

sary

, si

nce

the

syst

em p

erfo

rman

ce m

ay h

ave

a re

quir

emen

t th

at n

o er

ror

exce

ed a

cer

tain

am

ount

. N

ever

thel

ess,

a m

ean

squa

red

erro

r th

at f

alls

as

the

iter

atio

n nu

mbe

r in

crea

ses

is p

roba

bly

your

bes

tin

dica

tion

tha

t th

e sy

stem

is

conv

ergi

ng t

owar

d a

solu

tion

.W

e us

uall

y as

sum

e th

at t

he i

nput

sig

nals

are

sta

tist

ical

ly s

tati

onar

y, a

nd,

ther

efor

e,

is e

ssen

tially

a

cons

tant

afte

r th

e op

timum

val

ues

have

been

det

erm

ined

. D

urin

g tr

aini

ng,

wil

l ho

pefu

lly

decr

ease

tow

ard

a st

able

solu

tion.

Su

ppos

e, h

owev

er,

that

the

inp

ut s

igna

l st

atis

tics

chan

ge s

omew

hat

over

tim

e, o

r un

derg

o so

me

disc

onti

nuit

y: A

dditi

onal

tra

inin

g w

ould

be

requ

ired

to c

ompe

nsat

e.O

ne

way

to

deal

w

ith

this

sit

uati

on

is t

o ce

ase

or r

esum

e tr

aini

ng c

on-

diti

onal

ly,

base

d on

the

cur

rent

val

ue o

f

If t

he s

igna

l st

atis

tics

cha

nge,

trai

ning

can

be

rein

itiat

ed u

ntil

is

aga

in r

educ

ed t

o an

acc

epta

ble

valu

e.T

his

met

hod

pres

umes

tha

t a

met

hod

of e

rror

mea

sure

men

t is

ava

ilabl

e.Pr

ovid

ed t

hat t

he i

nput

sig

nals

are

sta

tist

ical

ly s

tati

onar

y, c

hoos

ing

the

num

-be

r of

inp

ut v

ecto

rs t

o us

e du

ring

tra

inin

g m

ay b

e re

lativ

ely

sim

ple.

Y

ou c

anus

e re

al,

inp

uts

as t

rain

ing

vect

ors,

pro

vide

d th

at y

ou k

now

the

desi

red

outp

ut f

or e

ach

inpu

t ve

ctor

. If

it

is p

ossi

ble

to i

dent

ify

a sa

mpl

e of

inpu

t ve

ctor

s th

at a

dequ

atel

y re

prod

uces

the

sta

tistic

al d

istr

ibut

ion

of t

he a

ctua

lin

puts

, it

may

be

poss

ible

to

trai

n on

thi

s se

t in

a s

hort

er t

ime.

Th

e ac

cura

cyof

the

tra

inin

g de

pend

s on

how

wel

l th

e se

lect

ed s

et o

f tr

aini

ng v

ecto

rs m

odel

sth

e di

stri

buti

on o

f th

e en

tire

inpu

t si

gnal

spa

ce.

The

oth

er,

rela

ted

ques

tion

is h

ow t

o go

abo

ut d

eter

min

ing

the

desi

red

outp

ut

for

a gi

ven

inpu

t ve

ctor

. A

s w

ith

man

y qu

esti

ons

disc

usse

d in

thi

sse

ctio

n, t

his

depe

nds

on t

he s

peci

fic

deta

ils o

f th

e pr

oble

m.

Fort

unat

ely,

for

som

e pr

oble

ms,

kn

owin

g th

e de

sire

d re

sult

is e

asy

com

pare

d to

fin

ding

an

algo

rith

m f

or t

rans

form

ing

the

inpu

ts i

nto

the

desi

red

resu

lt.

The

AL

C w

ill

ofte

n so

lve

the

diff

icul

t pa

rt.

The

"eas

y" p

art

is l

eft

to t

he e

ngin

eer.

Exe

rcis

e 2.

4:

A l

owpa

ss f

ilte

r ca

n be

con

stru

cted

wit

h an

Ada

line

havi

ng t

wo

wei

ghts

. C

onsi

der

a si

mpl

e ca

se o

f th

e re

mov

al o

f a

rand

om n

oise

fro

m a

cons

tant

sig

nal.

The

con

stan

t si

gnal

lev

el i

s C

=

3,

an

d th

e ra

ndom

noi

sesi

gnal

has

a c

onst

ant

pow

er,

— —

0.0

25.

Ass

ume

that

the

ran

dom

noi

seis

com

plet

ely

wit

h th

e co

nsta

nt in

put s

igna

l. C

alcu

late

the

optim

umw

eigh

t ve

ctor

and

the

mea

n sq

uare

d er

ror

in t

he o

utpu

t af

ter

the

opti

mum

wei

ght

vect

or h

as b

een

foun

d.

By

find

ing

the

eige

nval

ues

of t

he m

atri

x, R

, de

term

ine

the

max

imum

val

ue o

f th

e co

nsta

nt f

or u

se i

n th

e L

MS

algo

rith

m.

2.3

AP

PL

ICA

TIO

NS

O

F

AD

AP

TIV

ES

IGN

AL

PR

OC

ES

SIN

G

Up

to n

ow,

we

have

bee

n co

ncer

ned

wit

h th

e A

dali

ne m

inus

the

thr

esho

ldco

ndit

ion

on t

he o

utpu

t. In

Sec

tion

2.4,

on

the

Mad

alin

e, w

e w

ill

repl

ace

the

thre

shol

d co

ndit

ion

and

exam

ine

netw

orks

of

Ada

lines

. In

thi

s se

ctio

n, w

e w

ill

L

2.3

Ap

plic

atio

ns

of

Ad

apti

ve S

igna

l P

roce

ssin

g

look

at

a fe

w e

xam

ples

of

adap

tive

sig

nal

proc

essi

ng u

sing

onl

y th

e A

LC

por

tion

of t

he A

dali

ne.

2.3.

1 E

cho

Can

cella

tion

in

Tel

epho

ne C

ircu

its

You

may

hav

e ex

peri

ence

d th

e ph

enom

enon

of

echo

in

tele

phon

e co

nver

sati

ons:

you

hear

the

wor

ds y

ou s

peak

int

o th

e m

outh

piec

e a

frac

tion

of

a se

cond

lat

erin

the

ear

phon

e of

the

tele

phon

e. T

he e

cho

tend

s to

be

mos

t no

ticea

ble

on l

ong-

dist

ance

cal

ls,

espe

cial

ly t

hose

ove

r sa

tell

ite

link

s w

here

tra

nsm

issi

on d

elay

s ca

nbe

a s

igni

fica

nt f

ract

ion

of a

sec

ond.

Tele

phon

e ci

rcui

ts

cont

ain

devi

ces

calle

d hy

brid

s th

at

are

inte

nded

to

isol

ate

inco

min

g si

gnal

s fr

om o

utgo

ing

sign

als,

thu

s av

oidi

ng t

he e

cho

effe

ct.

Unf

ortu

nate

ly,

thes

e ci

rcui

ts d

o no

t alw

ays

perf

orm

per

fect

ly,

due

to c

ause

s su

chas

im

peda

nce

mis

mat

ches

, re

sult

ing

in s

ome

echo

bac

k to

the

spe

aker

. E

ven

whe

n th

e ec

ho s

igna

l ha

s be

en a

ttenu

ated

by

a su

bsta

ntia

l am

ount

, it

still

may

be a

udib

le,

and

henc

e an

ann

oyan

ce t

o th

e sp

eake

r.C

erta

in e

cho-

supp

ress

ion

devi

ces

rely

on

rela

ys t

hat

open

and

clo

se c

ircu

its

in t

he o

utgo

ing

lines

so

that

inc

omin

g vo

ice

sign

als

are

not

sent

bac

k to

the

spea

ker.

Whe

n tr

ansm

issi

on d

elay

s ar

e lo

ng,

as w

ith

sate

llit

e co

mm

unic

atio

ns,

thes

e ec

ho s

uppr

esso

rs c

an r

esul

t in

a l

oss

of p

arts

of

wor

ds.

Thi

s ch

oppy

-sp

eech

eff

ect

is p

erha

ps m

ore

fam

ilia

r th

an t

he e

cho

effe

ct.

An

adap

tive

fil

ter

can

be u

sed

to r

emov

e th

e ec

ho e

ffec

t w

itho

ut t

he c

hopp

ines

s of

the

rela

ys u

sed

in o

ther

ech

o su

ppre

ssio

n ci

rcui

ts [

9, 7

J.Fi

gure

is

a b

lock

dia

gram

of

a te

leph

one

circ

uit

wit

h an

ad

aptiv

efi

lter

use

d as

an

echo

-sup

pres

sion

dev

ice.

T

he e

cho

is c

ause

d by

a l

eaka

ge o

fth

e in

com

ing

voic

e si

gnal

to

the

outp

ut l

ine

thro

ugh

the

hybr

id c

ircu

it.

Thi

sle

akag

e ad

ds t

o th

e ou

tput

sig

nal

com

ing

from

the

mic

roph

one.

Th

e ou

tput

of

the

adap

tive

fil

ter,

is

subt

ract

ed f

rom

the

out

goin

g si

gnal

, s

+ w

here

s i

sth

e ou

tgoi

ng p

ure

voic

e si

gnal

and

is

the

nois

e, o

r ec

ho c

ause

d by

lea

kage

of

the

inco

min

g vo

ice

sign

al t

hrou

gh t

he h

ybri

d ci

rcui

t. T

he s

ucce

ss o

f th

e ec

hoca

ncel

latio

n de

pend

s on

how

wel

l th

e ad

aptiv

e fi

lter

can

mim

ic t

he l

eaka

geth

roug

h th

e hy

brid

cir

cuit

.N

otic

e th

at t

he i

nput

to

the

filt

er i

s a

copy

of

the

inco

min

g si

gnal

, n,

and

that

the

err

or i

s a

copy

of

the

outg

oing

sig

nal,

E s

+ -

y

(2.1

6)

We

assu

me

that

y i

s co

rrel

ated

wit

h th

e no

ise,

but

not

wit

h th

e pu

re v

oice

sign

al,

s. I

f th

e qu

anti

ty,

y,

is n

onze

ro,

som

e ec

ho s

till

rem

ains

in

the

out-

goin

g si

gnal

. Sq

uari

ng a

nd t

akin

g ex

pect

atio

n va

lues

of

both

sid

es o

f E

q.gi

ves

=

+ +

-

(2.1

7)

= +

-

(2.1

8)

Equ

atio

n (2

.18)

fol

low

s, s

ince

s i

s no

t co

rrel

ated

wit

h ei

ther

y o

r r

esul

ting

in t

he l

ast

term

in

Eq.

bei

ng e

qual

to

zero

.

Page 14: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

70

Ad

alin

e an

d

Voi

ce s nois

e,

Hyb

ridci

rcui

tA

dapt

ive

filte

r

To earp

hone

Figu

re 2

.15

1

Ada

ptiv

efil

ter

r

Hyb

ridci

rcui

t

eT

oea

rpho

ne

Voi

cesi

gnal

Th

is f

igu

re

is a

sc

he

ma

tic o

f a

tele

ph

on

e ci

rcu

it us

ing

anad

aptiv

e fil

ter

to c

ance

l ec

ho.

The

ada

ptiv

e fil

ter

is d

epic

ted

as a

box

; th

e sl

ante

d ar

row

rep

rese

nts

the

adju

stab

le w

eigh

ts.

The

sign

al p

ower

, {.

s2 }, i

s de

term

ined

by

the

sour

ce o

f th

e vo

ice

say,

som

e am

plif

ier

at t

he t

elep

hone

sw

itch

ing

stat

ion

loca

l to

the

sen

der.

Thu

s,

is n

ot d

irec

tly a

ffec

ted

by c

hang

es i

n

The

adap

tive

filte

r at

tem

pts

to m

inim

ize

and

, in

doi

ng s

o,

min

imiz

es

((n'

- t

he p

ower

of

the

unca

ncel

ed n

oise

on

the

outg

oing

lin

e.Si

nce

ther

e is

onl

y on

e in

put

to t

he a

dapt

ive

filt

er,

the

devi

ce w

ould

be

conf

igur

ed a

s a

tran

sver

se f

ilte

r. W

idro

w a

nd S

tear

ns [

9] s

ugge

st s

ampl

ing

the

inco

min

g si

gnal

at

a ra

te o

f 8

KH

z an

d us

ing

128

wei

ght

valu

es.

2.3.

2 O

ther

Ap

plic

atio

ns

Rat

her

than

go

into

the

det

ails

of t

he m

any

appl

icat

ions

tha

t can

be

addr

esse

d by

thes

e ad

aptiv

e fi

lter

s, w

e re

fer

you

once

aga

in t

o th

e ex

cell

ent

text

by

Wid

row

and

Stea

rns.

In

thi

s se

ctio

n, w

e sh

all

sim

ply

sugg

est

a fe

w b

road

are

as w

here

adap

tive

filte

rs c

an b

e us

ed i

n ad

ditio

n to

the

ech

o-ca

ncel

latio

n ap

plic

atio

n w

eha

ve d

iscu

ssed

.Fi

gure

sho

ws

an a

dapt

ive

filt

er th

at i

s us

ed p

redi

ct th

e fu

ture

val

ue o

fa

sign

al b

ased

on

its

pres

ent

valu

e. A

sec

ond

exam

ple

is s

how

n in

Fig

ure

In t

his

exam

ple,

the

ada

ptiv

e fi

lter

lea

rns

to r

epro

duce

the

out

put

from

som

epl

ant

base

d on

inp

uts

to t

he s

yste

m.

Thi

s co

nfig

urat

ion

has

man

y us

es a

s an

adap

tive

con

trol

sys

tem

. T

he p

lant

cou

ld r

epre

sent

man

y th

ings

, in

clud

ing

ahu

man

ope

rato

r. I

n th

at c

ase,

the

ada

ptiv

e fi

lter

cou

ld l

earn

how

to

resp

ond

toch

angi

ng c

ondi

tion

s by

wat

chin

g th

e hu

man

ope

rato

r. E

vent

uall

y, s

uch

a de

vice

mig

ht r

esul

t in

an

auto

mat

ed c

ontr

ol s

yste

m,

leav

ing

the

hum

an f

ree

for

mor

eim

port

ant

Ano

ther

use

ful

appl

icat

ion

of t

hese

dev

ices

is

in

adap

tive

bea

m-f

orm

ing

ante

nna

arra

ys.

Alt

houg

h th

e te

rm a

nten

na i

s us

uall

y as

soci

ated

wit

h el

ectr

o-

as

trai

ning

ano

ther

ada

ptiv

e fi

lter

wit

h th

e St

anda

rd &

Poo

rs 5

00.

2.3

Ap

plic

atio

ns o

f A

dap

tive S

igna

l P

roce

ssin

g71

Cur

rent

sig

nal

Pre

dict

ion o

f

curr

ent

sign

al

Pas

t sig

nal

Fig

ure

2.1

6

Th

is s

chem

atic

show

s an

adaptiv

e f

ilter

used

to p

redic

t si

gnal

valu

es.

The

input s

ignal u

sed to

tra

in the n

etw

ork

is a

dela

yed

valu

e of

the

actu

al s

igna

l; th

at i

s, i

t is

the

sig

nal

at s

ome

past

time.

The

exp

ecte

d ou

tput

is

the

curr

ent

valu

e of

the

sig

nal.

The

ada

ptiv

e fil

ter

atte

mpt

s to

min

imiz

e th

e e

rro

r be

twee

n its

outp

ut a

nd t

he c

urre

nt s

igna

l, ba

sed

on a

n in

put

of th

e si

gnal

valu

e fr

om s

ome

time

in t

he p

ast.

Onc

e th

e fil

ter

is c

orr

ect

lypr

edic

ting

the

curr

ent

sign

al

base

d on

the

pa

st s

igna

l, th

ecu

rrent

sign

al c

an b

e u

sed d

ire

ctly

as

an i

nput

with

out

the

dela

y.

The f

ilter

will

then m

ake

a p

redic

tion o

f th

e f

utu

resi

gnal

valu

e.

Inpu

t si

gnal

s

Pre

dict

ion

of

plan

t ou

tput

Figu

reT

his

e

xam

ple

sh

ow

s an

a

da

ptiv

e fil

ter

used

to

m

odel

th

eo

utp

ut

fro

m a

sys

tem

, ca

lled t

he

pla

nt.

Inputs

to t

he f

ilter

are

the

sam

e as

tho

se t

o th

e pl

ant.

The

filt

er

ad

just

s its

wei

ghts

base

d o

n t

he d

iffere

nce

bet

wee

n i

ts o

utp

ut

and t

he

outp

ut

ofth

e p

lant.

Page 15: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

72A

dal

ine

and

mag

neti

c ra

diat

ion,

we

broa

den

the

defi

niti

on h

ere

to i

nclu

de a

ny s

pati

al a

rray

of s

enso

rs.

The

bas

ic t

ask

here

is

to l

earn

to

stee

r th

e ar

ray.

At

any

give

n ti

me,

a si

gnal

may

be

arri

ving

fro

m a

ny g

iven

dir

ectio

n, b

ut a

nten

nae

usua

lly

are

dire

ctio

nal

in t

heir

rec

epti

on c

hara

cter

isti

cs:

The

y re

spon

d to

sig

nals

in

som

edi

rect

ions

, bu

t no

t in

oth

ers.

T

he a

nten

na a

rray

wit

h ad

aptiv

e fi

lter

s le

arns

to

adju

st i

ts d

irec

tion

al c

hara

cter

isti

cs i

n or

der

to r

espo

nd t

o th

e in

com

ing

sign

alno

mat

ter

wha

t th

e di

rect

ion

is,

whi

le r

educ

ing

its

resp

onse

to

unw

ante

d no

ise

sign

als

com

ing

in f

rom

oth

er d

irec

tion

s.O

f co

urse

, w

e ha

ve o

nly

touc

hed

on t

he n

umbe

r of

app

licat

ions

for

the

sede

vice

s.

Unl

ike

man

y ot

her

neur

al-n

etw

ork

arch

itec

ture

s, t

his

is a

rel

ativ

ely

mat

ure

devi

ce w

ith

a lo

ng h

isto

ry o

f su

cces

s.

In t

he n

ext

sect

ion,

we

repl

ace

the

bina

ry o

utpu

t co

ndit

ion

on t

he A

LC

cir

cuit

so

that

the

lat

ter

beco

mes

, on

ceag

ain,

the

com

plet

e A

dali

ne.

2.4

TH

E M

AD

AL

INE

As

you

can

see

from

the

dis

cuss

ion

in C

hapt

er 1

, th

e A

dalin

e re

sem

bles

the

perc

eptr

on c

lose

ly;

it a

lso

has

som

e of

the

sam

e li

mit

atio

ns a

s th

e pe

rcep

tron

.Fo

r ex

ampl

e, a

tw

o-in

put

Ada

line

can

not

com

pute

the

XO

R f

unct

ion.

C

om-

bini

ng A

dalin

es i

n a

laye

red

stru

ctur

e ca

n ov

erco

me

this

dif

ficu

lty,

as

we

did

inC

hapt

er 1

wit

h th

e pe

rcep

tron

. Su

ch a

str

uctu

re i

s il

lust

rate

d in

Fig

ure

2.18

.

Exe

rcis

e 2.

5:

Wha

t lo

gic

func

tion

is

bein

g co

mpu

ted

by t

he s

ingl

e A

dali

ne i

nth

e ou

tput

lay

er o

f Fi

gure

Con

stru

ct a

thr

ee-i

nput

Ada

line

that

com

pute

sth

e m

ajor

ity

func

tion

.

2.4.

1 M

adal

ine

Arc

hit

ectu

re

Mad

alin

e is

the

acr

onym

for

Man

y A

dali

nes.

Arr

ange

d in

a m

ulti

laye

red

arch

i-te

ctur

e as

ill

ustr

ated

in

Figu

re 2

.19,

the

Mad

alin

e re

sem

bles

the

gen

eral

neu

ral-

netw

ork

stru

ctur

e sh

own

in C

hapt

er I

n th

is c

onfi

gura

tion

, th

e M

adal

ine

coul

dbe

pre

sent

ed w

ith

a la

rge-

dim

ensi

onal

inp

ut t

he p

ixel

val

ues

from

a ra

ster

sca

n.

Wit

h su

itab

le t

rain

ing,

the

net

wor

k co

uld

be t

augh

t to

res

pond

wit

h a

bina

ry o

n on

e of

sev

eral

out

put

node

s, e

ach

of w

hich

cor

resp

onds

to

a di

ffer

ent

cate

gory

of

inpu

t im

age.

E

xam

ples

of

such

cat

egor

izat

ion

are

dog,

arm

adil

lo,

jave

lina

} an

d {F

logg

er,

Tom

Cat

, E

agle

,

In s

uch

ane

twor

k, e

ach

of f

our

node

s in

the

out

put

laye

r co

rres

pond

s to

a s

ingl

e cl

ass.

For

a gi

ven

inpu

t pa

ttern

, a

node

wou

ld h

ave

a o

utpu

t if

the

inp

ut p

atte

rnco

rres

pond

ed t

o th

e cl

ass

repr

esen

ted

by t

hat

part

icul

ar n

ode.

T

he o

ther

thr

eeno

des

wou

ld h

ave

a o

utpu

t. If

the

inp

ut p

atte

rn w

ere

not

a m

embe

r of

any

know

n cl

ass,

the

res

ults

fro

m t

he n

etw

ork

coul

d be

am

bigu

ous.

To t

rain

su

ch

a ne

twor

k,

we

mig

ht b

e te

mpt

ed t

o be

gin

wit

h th

e L

MS

algo

rith

m a

t th

e ou

tput

lay

er.

Sinc

e th

e ne

twor

k is

pre

sum

ably

tra

ined

wit

hpr

evio

usly

ide

ntif

ied

inpu

t pa

tter

ns,

the

desi

red

outp

ut v

ecto

r is

kno

wn.

W

hat

2.4

T

he M

adal

ine

73

Fig

ure

2.1

8 M

an

y A

da

line

s (t

he

Ma

da

line

) ca

n

com

pu

te

the

X

OR

fun

ctio

n o

f tw

o i

np

uts

. N

ote t

he a

dd

itio

n o

f th

e b

ias

term

s to

ea

ch A

da

line

. A

pos

itive

an

alo

g ou

tput

fro

m a

n A

LC

re

sults

in a

+1 o

utpu

t fro

m t

he a

sso

cia

ted A

da

line

; a n

eg

ativ

e a

na

log

outp

ut r

esu

lts i

n a

Lik

ew

ise

, a

ny

inpu

ts t

o th

e d

evi

ce t

ha

ta

re b

ina

ry i

n na

ture

mus

t us

e ±1

ra

the

r th

an

1 an

d 0.

we

do n

ot k

now

is

the

desi

red

outp

ut f

or a

giv

en n

ode

on o

ne o

f th

e hi

dden

laye

rs.

Furt

herm

ore,

the

LM

S al

gori

thm

wou

ld o

pera

te o

n th

e an

alog

out

puts

of t

he A

LC

, no

t on

the

bip

olar

out

put

valu

es o

f th

e A

dali

ne.

For

thes

e re

ason

s,a

diff

eren

t tr

aini

ng s

trat

egy

has

been

dev

elop

ed f

or t

he M

adal

ine.

2.4

.2

Th

e T

rain

ing

Alg

ori

thm

It i

s po

ssib

le t

o de

vise

a m

etho

d of

tra

inin

g a

str

uctu

re b

ased

on

the

LM

S al

gori

thm

; ho

wev

er,

the

met

hod

reli

es o

n re

plac

ing

the

line

ar t

hres

hold

outp

ut f

unct

ion

wit

h a

cont

inuo

usly

dif

fere

ntia

ble

func

tion

(th

e th

resh

old

func

-tio

n is

dis

cont

inuo

us a

t 0;

hen

ce,

it is

not

dif

fere

ntia

ble

ther

e).

We

tak

e up

the

stud

y of

thi

s m

etho

d in

the

nex

t ch

apte

r.

For

now

, w

e co

nsid

er a

met

hod

know

n as

Mad

alin

e ru

le I

I (M

RII

). T

he o

rigi

nal

Mad

alin

e ru

le w

as a

n ea

rlie

r

Page 16: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

74

Adal

ine a

nd

Mad

alin

e

Out

put l

ayer

of

Hid

den la

yer

of M

adal

ines

Figu

re

Man

y A

da

line

s ca

n b

e jo

ine

d in

a l

ayer

ed n

eura

l ne

twor

ksu

ch a

s th

is o

ne.

met

hod

that

we

shal

l no

t di

scus

s he

re.

Det

ails

can

be

foun

d in

ref

eren

ces

give

nat

the

end

of

this

cha

pter

. r

esem

bles

a p

roce

dure

wit

h ad

ded

inte

llige

nce

in t

hefo

rm o

f a

min

imum

dis

turb

ance

pri

ncip

le.

Sinc

e th

e ou

tput

of

the

netw

ork

is a

ser

ies

of b

ipol

ar u

nits

, tr

aini

ng a

mou

nts

to r

educ

ing

the

num

ber

of i

ncor

-re

ct o

utpu

t no

des

for

each

tra

inin

g in

put

patte

rn.

The

min

imum

dis

turb

ance

prin

cipl

e en

forc

es t

he n

otio

n th

at t

hose

nod

es t

hat

can

affe

ct t

he o

utpu

t er

ror

whi

le i

ncur

ring

the

lea

st c

hang

e in

the

ir w

eigh

ts s

houl

d ha

ve p

rece

denc

e in

the

lear

ning

pro

cedu

re.

Thi

s pr

inci

ple

is e

mbo

died

in

the

foll

owin

g al

gori

thm

:

1.

App

ly a

tra

inin

g ve

ctor

to

the

inpu

ts o

f th

e M

adal

ine

and

prop

agat

e it

thro

ugh

to t

he o

utpu

t un

its.

2. C

ount

the

num

ber

of i

ncor

rect

val

ues

in t

he o

utpu

t la

yer;

cal

l th

is n

umbe

rth

e er

ror.

3.

For

all

units

on

the

outp

ut l

ayer

,

a.

Sele

ct t

he f

irst

pre

viou

sly

unse

lect

ed n

ode

who

se a

nalo

g ou

tput

is

clos

-es

t to

zer

o.

(Thi

s no

de i

s th

e no

de t

hat

can

reve

rse

its

bipo

lar

outp

ut

2.4

T

he M

adal

ine

75

wit

h th

e le

ast

chan

ge i

n it

s t

he t

erm

min

imum

dis

tur-

banc

e.)

b. C

hang

e th

e w

eigh

ts o

n th

e se

lect

ed u

nit

such

tha

t th

e bi

pola

r ou

tput

of

the

unit

cha

nges

.c.

Pr

opag

ate

the

inpu

t ve

ctor

for

war

d fr

om t

he i

nput

s to

the

out

puts

onc

eag

ain.

d. I

f th

e w

eigh

t ch

ange

res

ults

in

a re

duct

ion

in t

he n

umbe

r of

err

ors,

acce

pt t

he w

eigh

t ch

ange

; ot

herw

ise,

res

tore

the

ori

gina

l

4. R

epea

t st

ep 3

for

all

laye

rs e

xcep

t th

e in

put

laye

r.

5.

For

all

unit

s on

the

out

put

laye

r,a.

Sel

ect

the

prev

ious

ly u

nsel

ecte

d pa

ir o

f un

its

who

se a

nalo

g ou

tput

s ar

ecl

oses

t to

zer

o.b.

App

ly a

wei

ght

corr

ectio

n to

bot

h un

its,

in

orde

r to

cha

nge

the

bipo

lar

outp

ut o

f ea

ch.

c.

Prop

agat

e th

e in

put

vect

or f

orw

ard

from

the

inp

uts

to t

he o

utpu

ts.

d. I

f th

e w

eigh

t ch

ange

res

ults

in

a re

duct

ion

in t

he n

umbe

r of

err

ors,

acce

pt t

he w

eigh

t ch

ange

; ot

herw

ise,

res

tore

the

ori

gina

l w

eigh

ts.

6. R

epea

t st

ep 5

for

all

laye

rs e

xcep

t th

e in

put

laye

r.

If n

eces

sary

, th

e se

quen

ce i

n st

eps

5 an

d 6

can

be r

epea

ted

wit

h tr

iple

tsof

uni

ts,

or q

uadr

uple

ts o

f un

its,

or

even

lar

ger

com

bina

tions

, un

til

satis

fact

ory

resu

lts a

re o

btai

ned.

Pr

elim

inar

y in

dica

tions

are

tha

t pa

irs

are

adeq

uate

for

mod

est-

size

d ne

twor

ks w

ith

up t

o 25

uni

ts p

er l

ayer

At

the

time

of t

his

wri

ting,

the

was

stil

l un

derg

oing

exp

erim

enta

tion

to d

eter

min

e its

con

verg

ence

cha

ract

eris

tics

and

oth

er p

rope

rtie

s.

Mor

eove

r, a

new

lea

rnin

g al

gori

thm

, h

as b

een

deve

lope

d. i

s si

mil

ar t

o M

RII

,bu

t the

ind

ivid

ual u

nits

hav

e a

cont

inuo

us o

utpu

t fun

ctio

n, r

athe

r th

an th

e bi

pola

rth

resh

old

func

tion

In

the

next

sec

tion,

we

shal

l us

e a

Mad

alin

e ar

chite

ctur

eto

exa

min

e a

spec

ific

pro

blem

in

patte

rn r

ecog

niti

on.

2.4.

3 A

Mad

alin

e fo

r T

ran

slat

ion

-In

vari

ant

Pat

tern

Rec

og

niti

on

Var

ious

Mad

alin

e st

ruct

ures

hav

e be

en u

sed

rece

ntly

to

dem

onst

rate

the

app

li-

cabi

lity

of

this

arc

hite

ctur

e to

ada

ptiv

e pa

ttern

rec

ogni

tion

havi

ng t

he p

rope

rtie

sof

tra

nsla

tion

inv

aria

nce,

rot

atio

n in

vari

ance

, an

d sc

ale

inva

rian

ce.

The

se t

hree

prop

ertie

s ar

e es

sent

ial

to a

ny r

obus

t sy

stem

tha

t w

ould

be

calle

d on

to

rec-

ogni

ze o

bjec

ts i

n th

e fi

eld

of v

iew

of

opti

cal

or i

nfra

red

sens

ors,

for

exa

mpl

e.R

emem

ber,

how

ever

, th

at e

ven

hum

ans

do n

ot a

lway

s in

stan

tly

reco

gniz

e ob

-je

cts

that

hav

e be

en r

otat

ed t

o un

fam

ilia

r or

ient

atio

ns,

or t

hat

have

bee

n sc

aled

sign

ific

antl

y sm

alle

r or

lar

ger

than

the

ir e

very

day

size

. T

he p

oint

is

that

the

rem

ay b

e al

tern

ativ

es t

o tr

aini

ng i

n in

stan

tane

ous

reco

gniti

on a

t al

l an

gles

and

scal

e fa

ctor

s.

Be

that

as

it m

ay,

it i

s po

ssib

le t

o bu

ild

neur

al-n

etw

ork

devi

ces

that

exh

ibit

the

se c

hara

cter

isti

cs t

o so

me

degr

ee.

Page 17: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

76

Ad

alin

e a

nd

Figu

re 2

.20

show

s a

port

ion

of a

net

wor

k th

at i

s us

ed t

o im

plem

ent

tran

sla-

tion

-inv

aria

nt r

ecog

niti

on o

f a

patte

rn T

he r

etin

a is

a 5

-by-

5-pi

xel

arra

y on

whi

ch b

it-m

appe

d re

pres

enta

tion

of p

atte

rns,

suc

h as

the

let

ters

of

the

alph

abet

,ca

n be

pla

ced.

T

he p

orti

on o

f th

e ne

twor

k sh

own

is c

alle

d a

slab

. U

nlik

e a

laye

r, a

sla

b do

es n

ot c

omm

unic

ate

wit

h ot

her

slab

s in

the

net

wor

k, a

s w

ill

bese

en s

hort

ly.

Eac

h A

dali

ne i

n th

e sl

ab r

ecei

ves

the

iden

tical

25

inpu

ts f

rom

the

retin

a, a

nd c

ompu

tes

a bi

pola

r ou

tput

in

the

usua

l fa

shio

n; h

owev

er,

the

wei

ghts

on t

he 2

5 A

dali

nes

shar

e a

uniq

ue r

elat

ions

hip.

Con

side

r th

e w

eigh

ts o

n th

e to

p-le

ft A

dalin

e as

bei

ng a

rran

ged

in a

squ

are

mat

rix

dupl

icat

ing

the

pixe

l ar

ray

on t

he r

etin

a.

The

Ada

line

to

the

imm

edia

te

Mad

alin

e sl

ab

Ret

ina

Figu

re 2

.20

T

his

sin

gle

sla

b of

Ad

alin

es

will

giv

e th

e s

ame

outp

ut

(eith

er+

1

or -1

) fo

r a p

art

icula

r patte

rn o

n t

he r

etin

a,

regard

less

of

the

ho

rizo

nta

l or

vert

ica

l a

lign

me

nt

of th

at

pattern

on

the

retin

a.

All

25

ind

ivid

ua

l A

da

line

s a

re c

on

ne

cte

d t

o a

single

Adalin

e t

hat

com

pute

s th

e m

ajo

rity

fu

nct

ion

: If

mos

tof

the i

nputs

are

+1,

the m

ajo

rity

ele

ment

resp

onds

with

a+

1

outp

ut.

The n

etw

ork

de

rive

s its

tra

nsl

atio

n-i

nva

ria

nce

pro

pe

rtie

s fr

om

th

e

pa

rtic

ula

r co

nfig

ura

tion

of

the

weig

hts

.S

ee the t

ext

for

deta

ils.

2.4

T

he M

adal

ine

77

righ

t of

the

top

-lef

t pi

xel

has

the

iden

tica

l se

t of

wei

ght

valu

es,

but

tran

slat

edon

e pi

xel

to t

he r

ight

: T

he r

ight

mos

t co

lum

n of

wei

ghts

on

the

firs

t un

it w

raps

arou

nd t

o th

e le

ft t

o be

com

e th

e le

ftm

ost

colu

mn

on t

he s

econ

d un

it.

Sim

ilar

ly,

the

unit

bel

ow t

he t

op-l

eft

unit

als

o ha

s th

e id

enti

cal

wei

ghts

, bu

t tr

ansl

ated

one

pixe

l do

wn.

T

he b

otto

m r

ow o

f w

eigh

ts o

n th

e fi

rst

unit

bec

omes

the

top

row

of

the

unit

und

er i

t. T

his

tran

slat

ion

cont

inue

s ac

ross

eac

h ro

w a

nd d

own

each

col

umn

in a

sim

ilar

man

ner.

Fig

ure

2.21

ill

ustr

ates

som

e of

thes

e w

eigh

tm

atri

ces.

B

ecau

se o

f th

is r

elat

ions

hip

amon

g th

e w

eigh

t m

atri

ces,

a

sing

lepa

tter

n on

the

ret

ina

wil

l el

icit

iden

tical

res

pons

es f

rom

the

sla

b, i

ndep

ende

nt

Key

wei

ght m

atrix

: top

row

, le

ft co

lum

n W

eigh

t m

atrix

: top

row

, 2n

d co

lum

nw

w

w

w

12

13

14

15

Wei

ght m

atrix

: 2n

d ro

w,

left

colu

mn

W

W

W

W51

52

53

45

W

W

W

W22

23

24

25

w12

W13

35 4544

W32

33

34

35

W

W42

43

44

45

Wei

ght m

atrix

: 5th

row

, 5t

h co

lum

n

Fig

ure

2.2

1

The w

eig

ht

matr

ix i

n t

he u

pper

left i

s th

e k

ey w

eig

ht

matr

ix.

All

othe

r w

eigh

t m

atric

es o

n th

e sl

ab a

re d

eriv

ed f

rom

thi

sm

atr

ix.

The

matr

ix t

o th

e

right

of

the

key

weig

ht

matr

ixre

pre

sents

the m

atr

ix o

n the

direct

ly to

the r

ight o

f the

one w

ith t

he k

ey w

eigh

t m

atr

ix.

Not

ice that

the f

ifth c

olum

nof

the k

ey w

eigh

t m

atrix

has

wra

pped

aro

und t

o b

ecom

e th

efir

st c

olu

mn,

with

the o

ther

colu

mns

shift

ing o

ne s

pace

to

the r

ight.

The m

atr

ix b

elo

w t

he k

ey

weig

ht

matr

ix is

the

one o

n t

he A

da

line d

irect

ly b

elo

w t

he A

da

line w

ith t

he k

ey

we

igh

t m

atr

ix.

The

ma

trix

dia

gonal

to t

he k

ey

weig

ht

matr

ixre

pre

sents

th

e m

atr

ix o

n t

he A

da

line a

t th

e l

ower

rig

ht o

f th

esl

ab.

Page 18: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

78

Adal

ine a

nd

of th

e pa

ttern

's t

rans

lati

onal

pos

itio

n on

the

ret

ina.

We

enco

urag

e yo

u to

ref

lect

on t

his

resu

lt fo

r a

mom

ent

(per

haps

sev

eral

mom

ents

), t

o co

nvin

ce y

ours

elf

ofits

val

idit

y.T

he m

ajor

ity

node

is

a si

ngle

Ada

line

tha

t co

mpu

tes

a bi

nary

out

put

base

don

the

out

puts

of

the

maj

orit

y of

the

Ada

lines

con

nect

ing

to i

t. B

ecau

se o

f th

etr

ansl

atio

nal

rela

tion

ship

am

ong

the

wei

ght

vect

ors,

the

pla

cem

ent

of a

par

ticu

lar

patte

rn a

t an

y lo

catio

n on

the

ret

ina

wil

l re

sult

in t

he i

dent

ical

out

put

from

the

maj

ority

ele

men

t (w

e im

pose

the

res

tric

tion

that

pat

tern

s th

at e

xten

d be

yond

the

reti

na b

ound

arie

s w

ill

wra

p ar

ound

to

the

oppo

site

sid

e, j

ust

as t

he v

ario

usw

eigh

t m

atri

ces

are

deri

ved

from

the

key

wei

ght

Of

cour

se,

a pa

ttern

diff

eren

t fr

om t

he f

irst

may

elic

it a

diff

eren

t re

spon

sefr

om t

he m

ajor

ity e

lem

ent.

Bec

ause

onl

y tw

o re

spon

ses

are

poss

ible

, the

sla

b ca

n di

ffer

entia

te tw

o cl

asse

s on

inpu

t pa

tter

ns.

In t

erm

s of

hyp

ersp

ace,

a s

lab

is c

apab

le o

f di

vidi

ngin

to t

wo

regi

ons.

To o

verc

ome

the

limita

tion

of o

nly

two

poss

ible

cla

sses

, th

e re

tina

can

beco

nnec

ted

to m

ultip

le s

labs

, eac

h ha

ving

dif

fere

nt k

ey w

eigh

t mat

rice

s (W

idro

wan

d W

inte

r's t

erm

for

the

wei

ght

mat

rix

on t

he t

op-l

eft

elem

ent

of e

ach

slab

).G

iven

the

bin

ary

natu

re o

f th

e ou

tput

of

each

sla

b, a

sys

tem

of

n sl

abs

coul

ddi

ffer

enti

ate

2"

diff

eren

t pa

ttern

cla

sses

. Fi

gure

2.2

2 sh

ows

four

suc

h sl

abs

prod

ucin

g a

four

-dim

ensi

onal

out

put c

apab

le o

f dis

tingu

ishi

ng d

iffe

rent

inp

ut-

patte

rn c

lass

es w

ith t

rans

latio

nal

inva

rian

ce.

Let

's r

evie

w t

he b

asic

ope

ratio

n of

the

tra

nsla

tion

inv

aria

nce

netw

ork

inte

rms

of a

spe

cifi

c ex

ampl

e. C

onsi

der t

he le

tters

A P

, as

the

inp

ut p

atte

rns

we

wou

ld l

ike

to i

dent

ify

rega

rdle

ss o

f th

eir

or

left

-rig

ht t

rans

lati

onon

the

5-b

y-5-

pixe

l re

tina.

The

se t

rans

late

d re

tina

patte

rns

are

the

inpu

ts t

o th

esl

abs

of t

he n

etw

ork.

E

ach

retin

a pa

ttern

res

ults

in

an o

utpu

t pa

ttern

fro

m t

hein

vari

ance

net

wor

k th

at m

aps

to o

ne o

f th

e 16

inp

ut c

lass

es (

in t

his

case

, ea

chcl

ass

repr

esen

ts a

let

ter)

. B

y us

ing

a lo

okup

tab

le,

or o

ther

met

hod,

we

can

asso

ciat

e th

e 16

pos

sibl

e ou

tput

s fr

om t

he i

nvar

ianc

e ne

twor

k w

ith o

ne o

f th

e16

pos

sibl

e le

tters

tha

t ca

n be

ide

ntif

ied

by t

he n

etw

ork.

So f

ar,

noth

ing

has

been

sai

d co

ncer

ning

the

val

ues

of t

he w

eigh

ts o

n th

eA

dali

nes

of t

he v

ario

us s

labs

in

the

syst

em.

Tha

t is

bec

ause

it

is n

ot a

ctua

lly

nece

ssar

y to

tra

in t

hose

nod

es i

n th

e us

ual

sens

e.

In f

act,

each

key

wei

ght

mat

rix

can

be c

hose

n at

ran

dom

, pro

vide

d th

at e

ach

inpu

t-pa

ttern

clas

s re

sult

ina

uniq

ue o

utpu

t ve

ctor

fro

m t

he i

nvar

ianc

e ne

twor

k.

Usi

ng t

he e

xam

ple

of t

hepr

evio

us p

arag

raph

, an

y tr

ansl

atio

n of

one

of t

he l

ette

rs s

houl

d re

sult

in t

he s

ame

outp

ut f

rom

the

inv

aria

nce

netw

ork.

Fu

rthe

rmor

e, a

ny p

atte

rn f

rom

a d

iffe

rent

clas

s (i

.e.,

a di

ffer

ent

lette

r) m

ust

resu

lt in

a d

iffe

rent

out

put

vect

or f

rom

the

netw

ork.

Thi

s re

quir

emen

t m

eans

tha

t, if

you

pic

k a

rand

om k

ey w

eigh

t m

atri

xfo

r a

part

icul

ar s

lab

and

find

tha

t tw

o le

tters

giv

e th

e sa

me

outp

ut p

atte

rn,

you

can

sim

ply

pick

a d

iffe

rent

wei

ght

mat

rix.

As

an a

lter

nati

ve t

o ra

ndom

sel

ectio

n of

key

wei

ght

mat

rice

s, i

t m

ay b

epo

ssib

le t

o op

tim

ize

sele

ctio

n by

em

ploy

ing

a tr

aini

ng p

roce

dure

bas

ed o

n th

e I

nves

tiga

tion

s in

thi

s ar

ea a

re o

ngoi

ng a

t th

e ti

me

of t

his

wri

ting

2.5

S

imula

ting

th

e A

dal

ine

79

Ret

ina

Figu

re 2

.22

Eac

h of t

he four

slab

s in

the

sys

tem

depic

ted

her

e w

ill p

roduce

a +

1 o

r a —

1 o

utpu

t va

lue f

or

eve

ry p

atte

rn t

hat

appe

ars

onth

e r

etin

a.

The

outp

ut

vect

or

is a

fo

ur-

dig

it b

ina

ry n

umbe

r,so

the

sys

tem

ca

n p

ote

ntia

lly d

iffe

ren

tiate

up

to 1

6 di

ffere

ntcl

ass

es

of i

nput

pat

tern

s.

L

2.5

SIM

UL

AT

ING

TH

E A

DA

LIN

E

As

we

shal

l fo

r th

e im

plem

enta

tion

of a

ll ot

her

netw

ork

sim

ulat

ors

we

wil

lpr

esen

t, w

e sh

all

begi

n th

is s

ectio

n by

des

crib

ing

how

the

gen

eral

dat

a st

ruc-

ture

s ar

e us

ed t

o m

odel

the

Ada

line

uni

t an

d M

adal

ine

netw

ork.

Onc

e th

e ba

sic

arch

itec

ture

has

bee

n pr

esen

ted,

we

wil

l des

crib

e th

e al

gori

thm

ic p

roce

ss n

eede

dto

pro

paga

te s

igna

ls t

hrou

gh t

he A

dali

ne.

The

sec

tion

conc

lude

s w

ith

a di

scus

-si

on o

f th

e al

gori

thm

s ne

eded

to

caus

e th

e A

dalin

e to

sel

f-ad

apt

acco

rdin

g to

the

lear

ning

law

s de

scri

bed

prev

ious

ly.

2.5.

1 A

dal

ine

Dat

a S

tru

ctu

res

It i

s ap

prop

riat

e th

at t

he A

dali

ne i

s th

e fi

rst

test

of

the

sim

ulat

or d

ata

stru

ctur

esw

e pr

esen

ted

in C

hapt

er 1

for

tw

o re

ason

s:

1.

Sinc

e th

e fo

rwar

d pr

opag

atio

n of

sig

nals

thr

ough

the

sin

gle

Ada

line

is

vir-

tual

ly i

dent

ical

to

the

forw

ard

prop

agat

ion

proc

ess

in m

ost

of t

he o

ther

netw

orks

we

wil

l st

udy,

it

is b

enef

icia

l fo

r us

to

obse

rve

the

Ada

line

to

Page 19: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

80

Ad

alin

e a

nd

gain

a b

ette

r un

ders

tand

ing

of w

hat

is h

appe

ning

in

each

uni

t of

a l

arge

rne

twor

k.

2. B

ecau

se t

he A

dali

ne i

s no

t a

netw

ork,

its

im

plem

enta

tion

exe

rcis

es t

heve

rsat

ility

of

the

netw

ork

stru

ctur

es w

e ha

ve d

efin

ed.

As

we

have

alr

eady

se

en,

the

Ada

line

is

only

a

sing

le p

roce

ssin

g un

it.

The

refo

re,

som

e of

the

gen

eral

ity w

e bu

ilt

into

our

net

wor

k st

ruct

ures

wil

l no

tbe

req

uire

d. S

peci

fica

lly,

the

re w

ill

be n

o re

al n

eed

to h

andl

e m

ulti

ple

unit

s an

dla

yers

of

unit

s fo

r th

e A

dalin

e.

Nev

erth

eles

s, w

e w

ill

incl

ude

the

use

of t

hose

stru

ctur

es,

beca

use

we

wou

ld l

ike

to b

e ab

le t

o ex

tend

the

Ada

line

easi

ly i

nto

the

Mad

alin

e.W

e be

gin

by d

efin

ing

our

netw

ork

reco

rd a

s a

stru

ctur

e th

at w

ill c

onta

inal

l th

e pa

ram

eter

s th

at w

ill b

e us

ed g

loba

lly,

as w

ell

as p

oint

ers

to l

ocat

e th

edy

nam

ic a

rray

s th

at w

ill

cont

ain

the

netw

ork

data

. In

the

cas

e of

the

Ada

line,

a go

od c

andi

date

str

uctu

re f

or t

his

reco

rd w

ill t

ake

the

form

record Adaline =

: float;

"layer;

output :

end record

for stability

to input

to output

Not

e th

at,

even

tho

ugh

ther

e is

onl

y on

e un

it in

the

Ada

line,

we

wil

l us

etw

o la

yers

to

mod

el t

he n

etw

ork.

Thu

s, t

he i

np

ut

and

ou

tpu

t po

inte

rs w

illpo

int

to d

iffe

rent

lay

er r

ecor

ds.

We

do t

his

beca

use

we

will

use

the

in

pu

tla

yer

as s

tora

ge f

or h

oldi

ng th

e in

put

sign

al v

ecto

r to

the

Ada

line.

The

re w

ill b

eno

con

nect

ions

ass

ocia

ted

wit

h th

is l

ayer

, as

the

inp

ut w

ill

be p

rovi

ded

by s

ome

othe

r pro

cess

in

the

syst

em (

e.g.

, a

time-

mul

tiple

xed

con

vert

er,

or a

n ar

ray

of s

enso

rs).

Con

vers

ely,

the

ou

tpu

t la

yer

will

con

tain

one

wei

ght

arra

y to

mod

el t

heco

nnec

tions

bet

wee

n th

e in

pu

t an

d th

e o

utp

ut

(rec

all t

hat o

ur d

ata

stru

ctur

espr

esum

e th

at P

Es p

roce

ss i

nput

con

nect

ions

pri

mar

ily).

K

eepi

ng i

n m

ind

that

we

wou

ld l

ike

to e

xten

d th

is s

truc

ture

eas

ily t

o ha

ndle

the

Mad

alin

e ne

twor

k,w

e w

ill

reta

in t

he i

ndir

ectio

n to

the

con

nect

ion

wei

ght

arra

y pr

ovid

ed b

y th

e a

rray

des

crib

ed i

n C

hapt

er

Not

ice

that

, in

the

cas

e of

the

Ada

line,

how

ever

, th

e a

rray

will

con

tain

onl

y on

e va

lue,

the

poin

ter

to t

he i

nput

con

nect

ion

arra

y.T

here

is

one

othe

r th

ing

to c

onsi

der

that

may

var

y be

twee

n A

dalin

e un

its.

As

we

have

see

n pr

evio

usly

, th

ere

are

two

part

s to

the

Ada

line

str

uctu

re:

the

linea

r A

LC

and

the

bip

olar

Ada

line

unit

s.

To

dist

ingu

ish

betw

een

them

, w

ede

fine

an

enum

erat

ed t

ype

to c

lass

ify

each

Ada

line

neu

ron:

type NODE_TYPE :

We

now

hav

e ev

eryt

hing

we

need

to

defi

ne t

he l

ay

er

reco

rd s

truc

ture

for

the

Ada

line

. A

pro

toty

pe s

truc

ture

for

thi

s re

cord

is

as f

ollo

ws.

2.5

Sim

ula

ting

th

e

record layer =

activation : NODE_TYPE

of Adaline

to unit output

weights :

access to weight

end record

Fin

ally

, th

ree

dyna

mic

ally

allo

cate

d ar

rays

are

nee

ded

to c

onta

in t

he o

utpu

tof

the

Ada

line

uni

t, th

e a

nd t

he c

onne

ctio

n w

eig

hts

val

ues.

We

wil

l no

t sp

ecif

y th

e st

ruct

ure

of t

hese

arr

ays,

oth

er t

han

to i

ndic

ate

that

the

ou

ts a

nd w

eig

hts

arr

ays

wil

l bo

th c

onta

in f

loat

ing-

poin

t va

lues

, w

here

as t

he a

rray

will

sto

re m

emor

y ad

dres

ses

and

mus

t th

eref

ore

cont

ain

mem

ory

poin

ter

type

s.

The

entir

e da

ta s

truc

ture

for

the

Ada

line

sim

ulat

or i

sde

pict

ed i

n Fi

gure

2.2

3.

2.5.

2 S

igna

l P

ropa

gatio

n T

hrou

gh t

he A

dalin

e

If s

igna

ls a

re t

o be

pro

paga

ted

thro

ugh

the

Ada

line

suc

cess

full

y, t

wo

acti

viti

esm

ust

occu

r:

We

mus

t ob

tain

the

inp

ut s

igna

l ve

ctor

to

stim

ulat

e th

e A

dali

ne,

and

the

Ada

line

mus

t pe

rfor

m

its

inpu

t-su

mm

atio

n an

d ou

tput

-tra

nsfo

rmat

ion

func

tion

s.

Sinc

e th

e or

igin

of

the

inpu

t si

gnal

vec

tor

is s

omew

hat

appl

icat

ion

spec

ific

, w

e w

ill

pres

ume

that

the

use

r w

ill

prov

ide

the

code

nec

essa

ry t

o ke

epth

e da

ta l

ocat

ed i

n th

e a

rray

in

the

in

pu

ts l

ayer

cur

rent

.W

e sh

all

now

con

cent

rate

on

the

mat

ter

of c

ompu

ting

the

inp

ut s

timul

atio

nva

lue

and

tran

sfor

min

g it

to t

he a

ppro

pria

te o

utpu

t. W

e ca

n ac

com

plis

h th

ista

sk t

hrou

gh t

he a

ppli

cati

on o

f tw

o al

gori

thm

ic f

unct

ions

, w

hich

we

wil

l na

me

and

The

alg

orit

hms

for

thes

e fu

ncti

ons

are

as f

ollo

ws:

weig

hts

Fig

ure

2.2

3 T

he A

da

line s

imu

lato

r d

ata

str

uct

ure

is

sho

wn

.

Page 20: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

82

Adal

ine a

nd

Madalin

e

function

(INPUTS

WEIGHTS

return float

var sum

float;

temp : float;

ins :

wts :

i integer;

begin

sum = 0;

ins = INPUTS;

wts = WEIGHTS'

input

connection

for i = 1 to

do

all weights in

temp = ins[i] *

sum = sum + temp;

modulated

end do

end function;

the modulated

function compute_output (INPUT : float;

ACT : NODE TYPE) return float

begin

if (ACT = linear)

then return (INPUT)

else if

(INPUT >= 0.0)

then return

else return (-1.0)

end function;

the Adaline is a linear

just return the

the input is

return a binary

return a binary

2.5.

3 A

dapt

ing

the

Ada

line

Now

tha

t our

sim

ulat

or c

an f

orw

ard

prop

agat

e si

gnal

inf

orm

atio

n, w

e tu

rn o

ur a

t-te

ntio

n to

the

impl

emen

tatio

n of

the

lear

ning

alg

orith

ms.

Her

e ag

ain

we

assu

me

that

the

inp

ut s

igna

l pa

ttern

is

plac

ed i

n th

e ap

prop

riat

e ar

ray

by a

n ap

plic

atio

n-sp

ecif

ic p

roce

ss.

Dur

ing

trai

ning

, ho

wev

er,

we

wil

l ne

ed t

o kn

ow w

hat

the

targ

et o

utpu

t i

s fo

r ev

ery

inpu

t ve

ctor

, so

tha

t w

e ca

n co

mpu

te t

he e

rror

term

for

the

Ada

line

.R

ecal

l th

at,

duri

ng t

rain

ing,

the

alg

orit

hm r

equi

res

that

the

Ada

line

upda

te

its

wei

ghts

af

ter

ever

y fo

rwar

d pr

opag

atio

n fo

r a

new

in

put

patte

rn.

We

mus

t al

so c

onsi

der

that

the

Ada

line

appl

icat

ion

may

nee

d to

ada

pt t

he

2.5

Sim

ulat

ing

the

S3

Ada

line

whi

le i

t is

run

ning

. B

ased

on

thes

e ob

serv

atio

ns,

ther

e is

no

need

to s

tore

or

accu

mul

ate

erro

rs a

cros

s al

l pa

tter

ns w

ithi

n th

e tr

aini

ng a

lgor

ithm

.T

hus,

we

can

desi

gn t

he t

rain

ing

algo

rith

m m

erel

y to

ada

pt t

he w

eigh

ts f

or a

sing

le p

atte

rn.

How

ever

, th

is d

esig

n de

cisi

on p

lace

s on

the

app

lica

tion

pro

-gr

am

the

resp

onsi

bilit

y fo

r de

term

inin

g w

hen

the

Ada

line

ha

s tr

aine

d su

ffi-

cien

tly. Thi

s ap

proa

ch i

s us

uall

y ac

cept

able

bec

ause

of

the

adva

ntag

es i

t of

fers

ove

rth

e im

plem

enta

tion

of

a se

lf-c

onta

ined

tra

inin

g lo

op.

Spec

ific

ally

, it

mea

ns t

hat

we

can

use

the

sam

e tr

aini

ng f

unct

ion

to a

dapt

the

Ada

line

init

iall

y or

whi

leit

is o

n-li

ne.

The

gen

eral

ity

of t

he a

lgor

ithm

is

a pa

rtic

ular

ly u

sefu

l fe

atur

e,in

tha

t th

e ap

plic

atio

n pr

ogra

m m

erel

y ne

eds

to d

etec

t a

cond

itio

n re

quir

ing

adap

tatio

n.

It c

an t

hen

sam

ple

the

inpu

t th

at c

ause

d th

e er

ror

and

gene

rate

the

corr

ect

resp

onse

"on

the

fly

," p

rovi

ded

we

have

som

e w

ay o

f kn

owin

g th

atth

e er

ror

is i

ncre

asin

g an

d ca

n ge

nera

te t

he c

orre

ct d

esir

ed v

alue

s to

acc

om-

mod

ate

retr

aini

ng.

Thes

e va

lues

, in

tur

n, c

an t

hen

be i

nput

to

the

Ada

line

trai

ning

alg

orit

hm,

thus

ada

ptat

ion

at r

un t

ime.

F

inal

ly,

it al

so r

e-du

ces

the

hous

ekee

ping

cho

res

that

mus

t be

per

form

ed b

y th

e si

mul

ator

, si

nce

we

wil

l no

t ne

ed t

o m

aint

ain

a lis

t of

exp

ecte

d ou

tput

s fo

r al

l tr

aini

ng p

at-

tern

s. We

mus

t no

w d

efin

e al

gori

thm

s to

com

pute

the

squ

ared

err

or t

erm

the

appr

oxim

atio

n of

the

gra

dien

t of

the

err

or s

urfa

ce,

and

to u

pdat

e th

e co

n-ne

ctio

n w

eigh

ts t

o th

e A

dalin

e.

We

can

agai

n si

mpl

ify

mat

ters

by

com

bin-

ing

the

com

puta

tion

of t

he e

rror

and

the

upd

ate

of t

he c

onne

ctio

n w

eigh

tsin

to

one

func

tion

, as

th

ere

is

no

need

to

co

mpu

te

the

form

er

wit

hout

perf

orm

ing

the

latt

er.

We

now

pr

esen

t th

e al

gori

thm

s to

ac

com

plis

h th

ese

func

tions

:

function

(A : Adaline; TARGET : float)

return float

var tempi : float;

temp2 : float;

err : float;

term for

begin

tempi =

temp2 =

(tempi,

err

absolute (TARGET -

return

end function;

function

(A : Adaline; ERR : float)

return void

var grad : float;

gradient of the

ins :

to inputs

wts :

to weights

i : integer;

Page 21: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

84

Ad

alin

e a

nd

begin

ins =

start of input

= A.

start of

for i = 1 to

do

all connections,

grad = -2 * err *

=

- grad *

end

end

2.5.

4 C

om

ple

ting

the

Ad

alin

e S

imul

ator

The

algo

rith

ms

we

have

jus

t de

fine

d ar

e su

ffic

ient

to

impl

emen

t an

Ada

line

sim

ulat

or i

n bo

th l

earn

ing

and

oper

atio

nal

mod

es.

To o

ffer

a c

lean

int

erfa

ceto

any

ext

erna

l pr

ogra

m t

hat

mus

t ca

ll ou

r si

mul

ator

to

perf

orm

an

Ada

line

func

tion

, w

e ca

n co

mbi

ne t

he m

odul

es w

e ha

ve d

escr

ibed

int

o tw

o hi

gher

-lev

elfu

ncti

ons.

The

se f

unct

ions

will

per

form

the

tw

o ty

pes

of a

ctiv

ities

the

Ada

line

mus

t per

form

: a

nd

function

var tempi : float;

(A : Adaline) return void

begin

tempi =

A.

=

end function;

function adapt_Adaline

return float

var err : float;

(A : Adaline; TARGET : float)

until

begin

input

err =

(A,

(A,

end

2.5.

5

Mad

alin

e S

imu

lato

r Im

ple

men

tatio

n

As

we

have

dis

cuss

ed e

arlie

r, t

he M

adal

ine

netw

ork

is s

impl

y a

colle

ctio

n of

bina

ry A

dali

ne u

nits

, co

nnec

ted

toge

ther

in

a la

yere

d st

ruct

ure.

How

ever

, ev

enth

ough

the

y sh

are

the

sam

e ty

pe o

f pr

oces

sing

uni

t, t

he l

earn

ing

stra

tegi

es

2.5

S

imula

ting

th

e A

dalin

e85

men

ted

for

the

Mad

alin

e ar

e si

gnif

ican

tly

diff

eren

t, a

s de

scri

bed

in S

ectio

n 2.

5.2.

Prov

idin

g th

at a

s a

guid

e, a

long

wit

h th

e di

scus

sion

of t

he d

ata

stru

ctur

es n

eede

d,w

e le

ave

the

algo

rith

m d

evel

opm

ent

for

the

Mad

alin

e ne

twor

k to

you

as

an e

x-er

cise

. In t

his

rega

rd,

you

shou

ld n

ote

that

the

lay

ered

str

uctu

re o

f th

e M

adal

ine

lend

s its

elf d

irec

tly

to o

ur s

imul

ator

dat

a st

ruct

ures

. A

s il

lust

rate

d in

Fig

ure

2.24

,w

e ca

n im

plem

ent

a la

yer

of A

dali

ne u

nits

as

easi

ly a

s w

e cr

eate

d a

sing

leA

dali

ne.

The

maj

or d

iffe

renc

es h

ere

wil

l be

the

len

gth

of t

he a

rray

s in

the

lay

er

reco

rds

(sin

ce t

here

will

be

mor

e th

an o

ne A

dalin

e ou

tput

per

laye

r),

and

the

leng

th a

nd n

umbe

r of

con

nect

ion

arra

ys (

ther

e w

ill b

e on

e w

eig

hts

arra

y fo

r ea

ch A

dalin

e in

the

lay

er,

and

the

arr

ay w

ill b

eex

tend

ed b

y on

e sl

ot f

or e

ach

new

weig

hts

arr

ay).

Sim

ilarl

y, t

here

will

be

mor

e la

yer

reco

rds

as t

he d

epth

of

the

Mad

alin

ein

crea

ses,

an

d, f

or e

ach

laye

r, th

ere

wil

l be

a c

orre

spon

ding

inc

reas

e in

the

num

ber

of w

eig

hts

, an

d a

rray

s.

Bas

ed o

n th

ese

ob-

serv

atio

ns,

one

fact

tha

t be

com

es i

mm

edia

tely

per

cept

ible

is

the

com

bina

tori

algr

owth

of

both

mem

ory

cons

umed

and

com

pute

r ti

me

requ

ired

to

supp

ort

a li

n-ea

r gr

owth

in

netw

ork

size

. T

his

rela

tion

ship

bet

wee

n co

mpu

ter

reso

urce

s an

dm

odel

siz

ing

is t

rue

not

only

for

the

Mad

alin

e, b

ut f

or a

ll A

NS

mod

els

we

wil

lst

udy.

It i

s fo

r the

se r

easo

ns th

at w

e ha

ve s

tress

ed o

ptim

izat

ion

in d

ata

stru

ctur

es.

ou

tpu

ts

Ma

da

lin

e

activation

outs

weights

We

°3

ight p

ou

tpu

ts

we

igh

ts

Fig

ure

2.2

4

Ma

da

line

data

str

uct

ure

s a

re s

ho

wn

.

Page 22: adaline Ada- these networks. ndustry. We will then Adaline ... and madaline.pdf · Adaline and M adaline Signal processing developed as an engineering discipline with the advent of

86

Ada

line

and

Pro

gram

min

g E

xerc

ises

2.1.

Ext

end

the

Ada

line

sim

ulat

or to

inc

lude

the

bia

s un

it,

0, a

s de

scri

bed

in t

hete

xt.

2.2.

Ext

end

the

sim

ulat

or t

o im

plem

ent

a th

ree-

laye

r M

adal

ine

usin

g th

e al

go-

rith

ms

disc

usse

d in

Sec

tion

2.3

.2.

Be

sure

to

use

the

bina

ry A

dali

ne t

ype.

Test

the

oper

atio

n of

you

r si

mul

ator

by

trai

ning

it to

sol

ve th

e X

OR

pro

blem

desc

ribe

d in

the

tex

t.

2.3.

We

have

ind

icat

ed t

hat

the

netw

ork

stab

ility

ter

m,

can

gre

atly

aff

ect

the

abili

ty o

f the

Ada

line

to c

onve

rge

on a

sol

utio

n. U

sing

fou

r di

ffer

ent

valu

esfo

r o

f yo

ur o

wn

choo

sing

, tr

ain

an A

dalin

e to

elim

inat

e no

ise

from

an

inpu

t si

nuso

id r

angi

ng f

rom

0 t

o (

one

way

to

do t

his

is t

o us

e a

scal

edra

ndom

-num

ber

gene

rato

r to

prov

ide

the

nois

e).

Gra

ph th

e cu

rve

of tr

aini

ngite

ratio

ns v

ersu

s

Sugg

este

d R

eadi

ngs

The

auth

orita

tive

text

by

Wid

row

and

Ste

arns

is

the

stan

dard

ref

eren

ce t

o th

em

ater

ial

cont

aine

d in

thi

s ch

apte

r

The

ori

gina

l de

lta-

rule

der

ivat

ion

isco

ntai

ned

in a

196

0 pa

per

by W

idro

w a

nd H

off

[6],

whi

ch i

s al

so r

epri

nted

in

the

colle

ctio

n ed

ited

by A

nder

son

and

Ros

enfe

ld

Bib

liogr

aphy

Jam

es A

. And

erso

n an

d E

dwar

d R

osen

feld

, edi

tors

. F

oun-

datio

ns o

f Res

earc

h. M

IT P

ress

, C

ambr

idge

, M

A,

1988

.

[2]

Dav

id A

ndes

, B

erna

rd W

idro

w,

Mic

hael

and

Eri

c W

an.

Aro

bust

alg

orith

m f

or t

rain

ing

anal

og n

eura

l ne

twor

ks.

In P

roce

edin

gs o

fth

e In

tern

atio

nal

Join

t C

onfe

renc

e on

Neu

ral

Net

wor

ks,

page

s I-

533-

I-53

6, J

anua

ry

1990

.

[3]

Ric

hard

W.

Ham

min

g.

Dig

ital

Filt

ers.

Pr

entic

e-H

all,

Engl

ewoo

d C

liffs

,N

J, 1

983.

[4]

Wilf

red

Kap

lan.

Adv

ance

d C

alcu

lus,

3rd

edi

tion.

Add

ison

-Wes

ley,

Rea

ding

,M

A,

1984

.

[5]

Ala

n V

. O

ppen

heim

ari

d R

onal

d W

. Sc

hafe

r. S

igna

l P

roce

ssin

g.Pr

entic

e-H

all,

Eng

lew

ood

Cli

ffs,

NJ,

19

75.

[6]

Ber

nard

Wid

row

and

Mar

cian

E.

Hof

f. A

dapt

ive

swit

chin

g ci

rcui

ts.

In 7

960

WE

SCO

N C

onve

ntio

n R

ecor

d, N

ew Y

ork,

pag

es 1

960.

IR

E.

[7]

Ber

nard

Wid

row

and

Rod

ney

Win

ter.

Neu

ral

nets

for

ada

ptiv

e fi

lter

ing

and

adap

tive

patte

rn r

ecog

nitio

n. C

ompu

ter,

Mar

ch 1

988.

Bib

liog

rap

hy

[8]

Win

ter

and

Ber

nard

Wid

row

. M

AD

AL

INE

RU

LE

II:

A t

rain

ing

algo

rith

m f

or n

eura

l ne

twor

ks.

In P

roce

edin

gs o

f th

e IE

EE

Sec

ond

In-

tern

atio

nal

Con

fere

nce

on N

etw

orks

, S

an D

iego

, C

A,

July

19

88.

[9]

Ber

nard

Wid

row

and

Sam

uel

D.

Stea

rns.

Ada

ptiv

e Si

gnal

Pro

cess

ing.

Sig

nal

Proc

essi

ng S

erie

s. P

rent

ice-

Hal

l, E

ngle

woo

d C

liff

s, N

J, 1

985.