AD797 Datasheet

Embed Size (px)

Citation preview

  • 8/3/2019 AD797 Datasheet

    1/20

    Ultralow DistortionUltralow Noise Op Am

    AD797

    Rev. GInformation furnished by Analog Devices is believed to be accurate and reliable. However, noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or otherrights of third parties that may result from its use. Specifications subject to change without notice. Nolicense is granted by implication or otherwise under any patent or patent rights of Analog Devices.Trademarks and registered trademarks are the property of their respective owners.

    One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.Tel: 781.329.4700 www.analog.comFax: 781.461.3113 2008 Analog Devices, Inc. All rights reserved

    FEATURESLow noise0.9 nV/Hz typical (1.2 nV/Hz maximum) input voltage

    noise at 1 kHz50 nV p-p input voltage noise, 0.1 Hz to 10 HzLow distortion

    120 dB total harmonic distortion at 20 kHzExcellent ac characteristics

    800 ns settling time to 16 bits (10 V step)110 MHz gain bandwidth (G = 1000)8 MHz bandwidth (G = 10)280 kHz full power bandwidth at 20 V p-p20 V/s slew rate

    Excellent dc precision

    80 V maximum input offset voltage1.0 V/C VOS driftSpecified for 5 V and 15 V power suppliesHigh output drive current of 50 mA

    APPLICATIONSProfessional audio preamplifiersIR, CCD, and sonar imaging systemsSpectrum analyzersUltrasound preamplifiersSeismic detectors- ADC/DAC buffers

    PIN CONFIGURATION

    AD797

    TOP VIEW

    OFFSET NULL 1

    IN 2

    +IN 3

    VS 4

    DECOMPENSATIONAND DISTORTIONNEUTRALIZATION+VSOUTPUT

    OFFSET NULL

    8

    7

    6

    5 0 0 8 4 6

    - 0 0 1

    Figure 1. 8-Lead Plastic Dual In-Line Package [PDIP] and

    8-Lead Standard Small Outline Package [SOIC]

    GENERAL DESCRIPTIONThe AD797 is a very low noise, low distortion operatiamplifier ideal for use as a preamplifier. The low noise0.9 nV/Hz and low total harmonic distortion of 120audio bandwidths give the AD797 the wide dynamic r

    necessary for preamps in microphones and mixing conFurthermore, the AD797s excellent slew rate of 20 V110 MHz gain bandwidth make it highly suitable for lfrequency ultrasound applications.The AD797 is also useful in infrared (IR) and sonar imapplications, where the widest dynamic range is neceslow distortion and 16-bit settling time of the AD797 mideal for buffering the inputs to - ADCs or the outphigh resolution DACs, especially when the device is ucritical applications such as seismic detection or in spanalyzers. Key features such as a 50 mA output currenand the specified power supply voltage range of 5 V

    make the AD797 an excellent general-purpose amplifi

    0 0 8 4 6

    - 0 0 2

    5

    010M

    3

    1

    100

    2

    10

    4

    1M100k10k1k

    FREQUENCY (Hz)

    I N P U T V O L T A G E N O I S E ( n V / H z )

    Figure 2. AD797 Voltage Noise Spectral Density

    90

    130300k

    120

    300100

    110

    100

    100k30k10k3k1kFREQUENCY (Hz)

    T H D ( d B )

    0.001

    0.0003

    0.0001

    T H D ( % )

    MEASUREMENTLIMIT

    Figure 3. THD vs. Frequency

  • 8/3/2019 AD797 Datasheet

    2/20

    AD797

    Rev. G | Page 2 of 20

    TABLE OF CONTENTSFeatures .............................................................................................. 1

    Applications ....................................................................................... 1

    Pin Configuration ............................................................................. 1

    General Description ......................................................................... 1 Revision History ............................................................................... 2

    Specifications ..................................................................................... 3

    Absolute Maximum Ratings ............................................................ 5

    ESD Caution .................................................................................. 5

    Typical Performance Characteristics ............................................. 6

    Theory of Operation ...................................................................... 11

    Noise and Source Impedance Considerations ............................ 12

    Low Frequency Noise ....................................................

    Wideband Noise .............................................................

    Bypassing Considerations ..............................................

    The Noninverting Configuration .................................... The Inverting Configuration ..........................................

    Driving Capacitive Loads ...............................................

    Settling Time ..................................................................

    Distortion Reduction ......................................................

    Outline Dimensions ...........................................................

    Ordering Guide ..............................................................

    REVISION HISTORY9/08Rev. F to Rev. G

    Changes to Input Common-Mode Voltage Range Parameter,Table 1 ................................................................................................ 31/08Rev. E to Rev. F

    Changes to Absolute Maximum Ratings ....................................... 5Change to Equation 1 ..................................................................... 12Changes to the Noninverting Configuration Section ................ 13Updated Outline Dimensions ....................................................... 19Changes to Ordering Guide .......................................................... 207/05Rev. D to Rev. E

    Updated Figure 1 Caption ............................................................... 1Deleted Metallization Photo ........................................................... 6Changes to Equation 1 ................................................................... 12Updated Outline Dimensions ....................................................... 19Changes to Ordering Guide .......................................................... 20

    10/02Rev. C to Rev. D

    Deleted 8-Lead CERDIP Package (Q-8) ......................... UEdits to Specifications .......................................................Edits to Absolute Maximum Ratings .................................Edits to Ordering Guide ....................................................Edits to Table I ..................................................................Deleted Operational Amplifiers Graphic ...........................Updated Outline Dimensions .............................................

  • 8/3/2019 AD797 Datasheet

    3/20

    AD79

    Rev. G | Page 3 of 20

    SPECIFICATIONSTA = 25C and VS= 15 V dc, unless otherwise noted.

    Table 1.Supply AD797A AD797B

    Parameter Conditions Voltage (V) Min Typ Max Min Typ Max UnitINPUT OFFSET VOLTAGE 5 V, 15 V 25 80 10 40 TMINto TMAX 50 125/180 30 60 V

    Offset Voltage Drift 5 V, 15 V 0.2 1.0 0.2 0.6 VINPUT BIAS CURRENT 5 V, 15 V 0.25 1.5 0.25 0.9

    TMINto TMAX 0.5 3.0 0.25 2.0 AINPUT OFFSET CURRENT 5 V, 15 V 100 400 80 200

    TMINto TMAX 120 600/700 120 300 nAOPEN-LOOP GAIN VOUT= 10 V 15 V 1 20 2 20 V/

    RLOAD= 2 k 1 6 2 10 V/VTMINto TMAX 1 15 2 15 V/VRLOAD= 600 1 5 2 7 V/VTMINto TMAX 14,000 20,000 14,000 20,000 V/V@ 20 kHz1

    DYNAMIC PERFORMANCEGain Bandwidth Product G = 1000 15 V 110 110 MH

    G = 10002 15 V 450 450 MHz3 dB Bandwidth G = 10 15 V 8 8 MHFull Power Bandwidth1 VOUT= 20 V p-p,

    RLOAD= 1 k15 V 280 280 kHz

    Slew Rate RLOAD= 1 k 15 V 12.5 20 12.5 20 V/Settling Time to 0.0015% 10 V step 15 V 800 1200 800 1200 ns

    COMMON-MODE REJECTION VCM= CMVR 5 V, 15 V 114 130 120 130 dBTMINto TMAX 110 120 114 120 dB

    POWER SUPPLY REJECTION VS = 5 V to 18 V 114 130 120 114 dBTMINto TMAX 110 120 130 120 dB

    INPUT VOLTAGE NOISE f = 0.1 Hz to 10 Hz 15 V 50 50 f = 10 Hz 15 V 1.7 1.7 2.5 nV/f = 1 kHz 15 V 0.9 1.2 0.9 1.2 nVf = 10 Hz to 1 MHz 15 V 1.0 1.3 1.0 1.2 V

    INPUT CURRENT NOISE f = 1 kHz 15 V 2.0 2.0 INPUT COMMON-MODE VOLTAGE RANGE 15 V 11 12 11 12

    5 V 2.5 3 2.5 3 VOUTPUT VOLTAGE SWING RLOAD= 2 k 15 V 12 13 12 13 V

    RLOAD= 600 15 V 11 13 11 13 VRLOAD= 600 5 V 2.5 3 2.5 3 V

    Short-Circuit Current 5 V, 15 V 80 80 mAOutput Current3 5 V, 15 V 30 50 30 50 mA

    TOTAL HARMONIC DISTORTION RLOAD= 1 k, CN = 50 pF,f = 250 kHz, 3 V rms

    15 V 98 90 98 90 dB

    RLOAD= 1 k,f = 20 kHz, 3 V rms

    15 V 120 110 120 110 dB

    INPUT CHARACTERISTICSInput Resistance

    Differential 7.5 7.5 kCommon Mode 100 100 M

    Input CapacitanceDifferential4 20 20 pFCommon Mode 5 5 pF

  • 8/3/2019 AD797 Datasheet

    4/20

    AD797

    Rev. G | Page 4 of 20

    Supply AD797A AD797BParameter Conditions Voltage (V) Min Typ Max Min Typ Max UnitOUTPUT RESISTANCE AV= 1, f = 1 kHz 3 3 mPOWER SUPPLY

    Operating Range 5 18 5 18 VQuiescent Current 5 V, 15 V 8.2 10.5 8.2 10.5 mA

    1 Full power bandwidth = slew rate/2 VPEAK .2 Specified using external decompensation capacitor.3 Output current for |VS VOUT| > 4 V, AOL> 200 k.4 Differential input capacitance consists of 1.5 pF package capacitance and 18.5 pF from the input differential pair.

  • 8/3/2019 AD797 Datasheet

    5/20

    AD79

    Rev. G | Page 5 of 20

    ABSOLUTE MAXIMUM RATINGSTable 2.Parameter RatingsSupply Voltage 18 V

    Internal Power Dissipation @ 25C1

    PDIP 1.3 W (TA 25C)/JA SOIC 0.9 W (TA 25C)/JA

    Input Voltage VS Differential Input Voltage2 0.7 VOutput Short-Circuit Duration Indefinite within

    maximum internalpower dissipation

    Storage Temperature Range(N, R Suffix)

    65C to +125C

    Operating Temperature Range 40C to +85C Lead Temperature Range

    (Soldering 60 sec)300C

    1JA= 95C/W for the 8-lead PDIP; 155C/W for the 8-lead SOIC.2The AD797 inputs are protected by back-to-back diodes. To achieve lownoise, internal current-limiting resistors are not incorporated into the designof this amplifier. If the differential input voltage exceeds 0.7 V, the inputcurrent should be limited to less than 25 mA by series protection resistors.Note, however, that this degrades the low noise performance of the device.

    Stresses above those listed under Absolute Maximum may cause permanent damage to the device. This is a rating only; functional operation of the device at theseother conditions above those indicated in the operatiosection of this specification is not implied. Exposure tmaximum rating conditions for extended periods maydevice reliability.

    ESD CAUTION

  • 8/3/2019 AD797 Datasheet

    6/20

    AD797

    Rev. G | Page 6 of 20

    TYPICAL PERFORMANCE CHARACTERISTICS

    0 0 8 4 6

    - 0 0 4

    20

    00 20

    15

    5

    5

    10

    10 15

    I N P U T C O M M O N - M

    O D E R A N G E ( V )

    SUPPLY VOLTAGE (V)

    Figure 4. Input Common-Mode Voltage Range vs. Supply Voltage

    0 0 8 4 6

    - 0 0

    5

    O U T P U T V O L T A G E S W I N G ( V )

    20

    00 20

    15

    5

    5

    10

    10 15

    SUPPLY VOLTAGE (V)

    VOUT+VOUT

    Figure 5. Output Voltage Swing vs. Supply Voltage

    0 0 8 4 6

    - 0 0 6

    O U T P U T V O L T A G E S W I N G ( V p - p

    )

    LOAD RESISTANCE ( )

    30

    10

    010 100 10k1k

    20

    VS = 5

    VS = 15V

    Figure 6. Output Voltage Swing vs. Load Resistance

    0 0 8 4 6

    - 0 0 7

    HORIZONTAL SCALE (5sec/DIV)

    V E R T I C A L S C A L E ( 0

    . 0 1 V / D I V )

    Figure 7. 0.1 Hz to 10 Hz Noise

    0 0 8 4 6

    - 0 0 8

    TEMPERATURE (C)

    I N P U T B I A S C U R R E N T ( A )

    60 40 100 120806040200 20 2.0

    1.5

    1.0

    0.5

    0

    Figure 8. Input Bias Current vs. Temperature

    0 0 8 4 6

    - 0 0 9

    TEMPERATURE (C)

    S H O R T - C I R C U I T C U R R E N T ( m A )

    140

    140

    100

    60

    40

    80

    60

    120

    120100806040200 2040

    SOURCE CURRENTSINK CURRENT

    Figure 9. Short-Circuit Current vs. Temperature

  • 8/3/2019 AD797 Datasheet

    7/20

    AD79

    Rev. G | Page 7 of 20

    0 0 8 4 6

    - 0 1 0

    SUPPLY VOLTAGE (V)

    Q U I E S C E N T S U P P L Y C U R R E N T ( m A )

    205 150 10

    11

    6

    9

    7

    8

    10 +125C

    +25C

    55C

    Figure 10. Quiescent Supply Current vs. Supply Voltage

    0 0 8 4 6

    - 0 1 1

    SUPPLY VOLTAGE (V)

    O U T P U T V O L T A G E ( V r m s

    )

    1 2

    00 20

    9

    3

    5

    6

    10 15

    f = 1kHzRL = 600 G = +10

    Figure 11. Output Voltage vs. Supply Voltage for 0.01% Distortion

    0 0 8 4 6

    - 0 1 2

    STEP SIZE (V)

    S E T T L I N G T I M E ( s )

    1.0

    010

    0.6

    0.2

    2

    0.4

    0

    0.8

    864

    0.0015%

    0.01%

    Figure 12. Settling Time vs. Step Size ()

    0 0 8 4 6

    - 0 1 3

    FREQUENCY (Hz)

    P O W E R S U P P L Y R E J E C T I O N ( d B )

    201M

    80

    40

    10

    60

    1

    120

    100

    100k10k1k100

    140

    50

    75

    100

    125

    150

    175

    200

    CMR

    C O M M O N M O D E R E J E C T I O N ( d B )

    PSR SUPPLY

    PSR+SUPPLY

    Figure 13. Power Supply and Common-Mode Rejection vs. Frequency

    0 0 8 4 6

    - 0 1 4

    OUTPUT LEVEL (V)

    T H D + N O I S E ( d B )

    60

    100

    1200.01 0.1 101

    80

    RL = 600 G = +10f = 10kHzNOISE BW = 100kHz

    VS = 5V

    VS = 15V

    Figure 14. Total Harmonic Distortion (THD) + Noise vs. Output Level

    0 0 8 4 6

    - 0 1 5

    30

    10

    010k 100k 10M1M

    20

    5V SUPPLIES

    15V SUPPLIESRL = 600

    FREQUENCY (Hz)

    O U T P U T V O L T A G E ( V p - p

    )

    Figure 15. Large-Signal Frequency Response

  • 8/3/2019 AD797 Datasheet

    8/20

    AD797

    Rev. G | Page 8 of 20

    0 0 8 4 6

    - 0 1 6

    5

    010M

    3

    1

    100

    2

    10

    4

    1M100k10k1k

    FREQUENCY (Hz)

    I N P U T V O L T A G E N

    O I S E ( n V / H z )

    Figure 16. Input Voltage Noise Spectral Density

    0 0 8

    4 6

    - 0 1 7

    FREQUENCY (Hz)

    O P E N - L

    O O P G A I N ( d B )

    120

    0100M

    60

    20

    1k

    40

    100

    100

    80

    10M1M100k10k

    100

    80

    60

    40

    20

    0

    P H A S E M A R G I N ( D e g r e e s

    )

    PHASE MARGIN

    GAIN

    WITHOUTRS *

    WITHOUTRS *

    WITH RS *

    WITH RS *

    *RS = 100

    *SEE FIGURE 25.

    Figure 17. Open-Loop Gain and Phase Margin vs. Frequency

    0 0 8 4 6

    - 0 1 8

    TEMPERATURE (C)

    I N P U T O F F S E T C U R R E N T ( n A )

    60 140 40 100 120806040200 20

    300

    150

    0

    150

    300

    UNDER COMPENSATED

    OVERCOMPENSATED

    Figure 18. Input Offset Current vs. Temperature

    0 0 8 4 6

    - 0 1 9

    TEMPERATURE (C)

    S L E W

    R A T E ( V / s )

    G A I N / B A N D W I D T H P R O D U C T ( M H z

    ( G =

    1 0 0 0 ) )

    60 140 40 100 120806040200 20

    120

    110

    100

    90

    80

    35

    30

    25

    20

    15

    GAIN/BANDWIDTH PRODUCT

    SLEW RATE

    RISING EDGE

    SLEW RATEFALLING EDGE

    Figure 19. Slew Rate and Gain/Bandwidth Product vs. Temperature

    0 0 8 4 6

    - 0 2 0

    LOAD RESISTANCE ( )

    O P E N - L

    O O P G A I N ( d B )

    100 10k1k

    160

    100

    120

    140

    Figure 20. Open-Loop Gain vs. Load Resistance

    0 0 8 4 6

    - 0 2 1

    FREQUENCY (Hz)

    M A G N I T U D E O F O U T P U T I M P E D A N C E ( )

    100

    0.0110 1M

    10

    0.1

    100

    1

    10k 100k1k

    WITHOUT C N*

    WITH C N**SEE FIGURE 32.

    Figure 21. Magnitude of Output Impedance vs. Frequency

  • 8/3/2019 AD797 Datasheet

    9/20

    AD79

    Rev. G | Page 9 of 20

    VOUT

    1k

    1k

    20pF

    VIN

    AD797

    *

    VS

    +VS

    *43

    6

    72

    0 0 8 4 6

    - 0 2 2

    *SEE FIGURE 35.

    Figure 22. Inverter Connection

    0 0 8 4 6

    - 0 2 3

    10090

    10

    0%

    5V

    1s

    Figure 23. Inverter Large-Signal Pulse Response

    0 0 8 4 6

    - 0 2

    4

    100

    90

    10

    0%

    50mV 100ns

    Figure 24. Inverter Small-Signal Pulse Response

    VOUT

    100

    600 VIN

    AD797

    **

    VS

    +VS

    RS *

    *VALUE OF SOURCE RESISTANCE(SEE THE NOISE AND SOURCE IMPEDANCECONSIDERATIONS SECTION).

    *SEE FIGURE 35.

    **43

    6

    72

    0 0 8 4 6

    - 0 2 5

    *

    Figure 25. Follower Connection

    0 0 8 4 6

    - 0 2 6

    10090

    10

    0%

    5V 1s

    Figure 26. Follower Large-Signal Pulse Response

    0 0 8 4 6

    - 0 2

    7

    100

    90

    10

    0%

    50mV 100ns

    Figure 27. Follower Small-Signal Pulse Response

  • 8/3/2019 AD797 Datasheet

    10/20

    AD797

    Rev. G | Page 10 of 20

    0 0 8 4 6

    - 0 2 8

    100

    90

    10

    0%

    50mV 500ns

    Figure 28. 16-Bit Settling Time Positive Input Pulse 0 0 8 4 6

    - 0 2 9

    100

    90

    10

    0%

    50mV 500ns

    Figure 29. 16-Bit Settling Time Negative Input Pulse

  • 8/3/2019 AD797 Datasheet

    11/20

    AD79

    Rev. G | Page 11 of 20

    THEORY OF OPERATIONThe architecture of the AD797 was developed to overcomeinherent limitations in previous amplifier designs. Previousprecision amplifiers used three stages to ensure high open-loopgain (seeFigure 30) at the expense of additional frequency com-pensation components. Slew rate and settling performance areusually compromised, and dynamic performance is not adequatebeyond audio frequencies. As can be seen inFigure 30, the firststage gain is rolled off at high frequencies by the compensationnetwork. Second stage noise and distortion then appears at theinput and degrade performance. The AD797, on the other hand,uses a single ultrahigh gain stage to achieve dc as well as dynamicprecision. As shown in the simplified schematic (Figure 31),Node A, Node B, and Node C track the input voltage, forcingthe operating points of all pairs of devices in the signal path tomatch. By exploiting the inherent matching of devices fabricated onthe same IC chip, high open-loop gain, CMRR, PSRR, and lowVOSare guaranteed by pairwise device matching (that is, NPNto NPN and PNP to PNP), not by an absolute parameter such asbeta and the early voltage.

    R1

    R1

    C1

    g m

    g m

    GAIN = g m R1 5 10 6

    GAIN = g m R1 A2 A3

    C1

    R2

    BUFFER

    BUFFER

    RL

    RL

    VOUT

    VOUT

    a.

    b.

    A2 A3

    C2

    0 0 8 4 6

    - 0 3 0

    Figure 30. Model of AD797 vs. That of a Typical Three-Stage Amplifier

    R2R1 I5

    VOUT

    Q1 Q2+IN IN

    R3

    Q5

    C

    Q6

    I7I1 I4I6

    Q12 Q8

    Q9

    Q11

    Q10Q3 Q7

    Q4

    A B

    CN

    CC

    VSS

    VCC

    0 0 8 4 6

    - 0 3 1

    Figure 31. AD797 Simplified Schematic

    This matching benefits not just dc precision, but, because it holdsup dynamically, both distortion and settling time are also reduced.This single stage has a voltage gain of >5 106 and VOS< 80 V,while at the same time providing a THD + noise of less than120 dB and true 16-bit settling in less than 800 ns.

    The elimination of second-stage noise effects has the abenefit of making the low noise of the AD797 (

  • 8/3/2019 AD797 Datasheet

    12/20

    AD797

    Rev. G | Page 12 of 20

    NOISE AND SOURCE IMPEDANCE CONSIDERATIONSThe AD797 ultralow voltage noise of 0.9 nV/Hz is achievedwith special input transistors running at nearly 1 mA of collectorcurrent. Therefore, it is important to consider the total input-referred noise (eNtotal), which includes contributions from voltage

    noise (eN), current noise (iN), and resistor noise (4 kTRS).2/122 ])(4[ SN SN N RikTRetotal e ++= (1)

    where RS is the total input source resistance.This equation is plotted for the AD797 inFigure 33. Becauseoptimum dc performance is obtained with matched sourceresistances, this case is considered even though it is clear fromEquation 1 that eliminating the balancing source resistancelowers the total noise by reducing the total RS by a factor of 2.At very low source resistance (RS< 50 ), the voltage noise of theamplifier dominates. As source resistance increases, the Johnsonnoise of RS dominates until a higher resistance of RS > 2 k is

    achieved; the current noise component is larger than theresistor noise.

    0 0 8 4 6

    - 0 3 3

    100

    1

    0.1

    10

    10 100 1000 10000

    SOURCE RESISTANCE ( )

    N O I S E ( n V / H z )

    TOTAL NOISE

    RESISTORNOISEONLY

    Figure 33. Noise vs. Source Resistance

    The AD797 is the optimum choice for low noise performance if the source resistance is kept

  • 8/3/2019 AD797 Datasheet

    13/20

    AD79

    Rev. G | Page 13 of 20

    BYPASSING CONSIDERATIONSTaking full advantage of the very wide bandwidth and dynamicrange capabilities of the AD797 requires some precautions.First, multiple bypassing is recommended in any precisionapplication. A 1.0 F to 4.7 F tantalum in parallel with 0.1 F

    ceramic bypass capacitors are sufficient in most applications.When driving heavy loads, a larger demand is placed on thesupply bypassing. In this case, selective use of larger values of tantalum capacitors and damping of their lead inductance withsmall-value (1.1 to 4.7 ) carbon resistors can achieve animprovement.Figure 35summarizes power supply bypassingrecommendations.

    USE SHORTLEAD LENGTHS(200 k/

    Table 4. Values for Follower with Gain Circuit

    Gain R1 R2 CL Noise(Excluding RS)

    2 1 k 1 k 20 pF 3.0 nV/Hz2 300 300 10 pF 1.8 nV/Hz10 33.2 300 5 pF 1.2 nV/Hz20 16.5 316 1.0 nV/Hz>35 10 (G 1) 10 0.98 nV/H

    http://www.analog.com/AD600http://www.analog.com/AD600http://www.analog.com/AD600http://www.analog.com/AD600
  • 8/3/2019 AD797 Datasheet

    14/20

    AD797

    Rev. G | Page 14 of 20

    The I-to-V converter is a special case of the follower configu-ration. When the AD797 is used in an I-to-V converter, forexample as a DAC buffer, the circuit shown inFigure 39shouldbe used. The value of CLdepends on the DAC, and if CLis greaterthan 33 pF, a 100 series resistor is required. A bypassed balancingresistor (RS and CS) can be included to minimize dc errors.

    7

    *

    *

    V O U T

    +VS

    VS

    AD797

    0 0 8 4 6

    - 0 3 9

    R1

    RS

    IIN

    CS

    6

    3 4

    100

    600

    20pF TO 120pF

    2

    *USE THE POWER SUPPLY BYPASSING SHOWN IN FIGURE 35. Figure 39. I-to-V Converter Connection

    THE INVERTING CONFIGURATIONThe inverting configuration (seeFigure 40) presents a low inputimpedance, R1, to the source. For this reason, the goals of bothlow noise and input buffering are at odds with one another.Nonetheless, the excellent dynamics of the AD797 makesit the preferred choice in many inverting applications, andwith careful selection of feedback resistors, the noise penaltiesare minimal. Some examples are presented inTable 5andFigure 40.

    7

    *

    *

    V OU T

    V IN

    +VS

    VS

    AD797

    0 0 8 4 6

    - 0 4 0

    R2

    RL

    RS

    R1

    CL

    6

    3 4

    2

    *USE THE POWER SUPPLY BYPASSING SHOWN IN FIGURE 35. Figure 40. Inverting Amplifier Connection

    Table 5. Values for Inverting Circuit

    Gain R1 R2 CL Noise(Excluding RS)1 1 k 1 k 20 pF 3.0 nV/Hz1 300 300 10 pF 1.8 nV/Hz10 150 1500 5 pF 1.8 nV/Hz

    DRIVING CAPACITIVE LOADSThe capacitive load driving capabilities of the AD797 aredisplayed inFigure 41. At gains greater than 10, usually nospecial precautions are necessary. If more drive is desirablhowever, the circuit shown inFigure 42should be used. For

    example, this circuit allows a 5000 pF load to be driven clat a noise gain 2.

    0 0 8 4 6

    - 0 4 1

    100nF

    10nF

    1pF100101 1

    1nF

    100pF

    10pF

    CLOSED-LOOP GAIN

    C

    k

    A P A C I T I V E L O A D D R I V E C A P A B I L I T Y

    Figure 41. Capacitive Load Drive Capability vs. Closed-Loop Gain

    7

    *

    *

    V OU T

    V IN

    +VS

    VS

    AD797

    0 0 8 4 6

    - 0 4 2

    C1

    20pF

    200pF

    6

    3 4

    2

    33

    100

    1k

    1k

    *USE THE POWER SUPPLY BYPASSING SHOWN IN FIGURE 35. Figure 42. Recommended Circuit for Driving a High Capacitance Load

    SETTLING TIMEThe AD797 is unique among ultralow noise amplifiers in settles to 16 bits (

  • 8/3/2019 AD797 Datasheet

    15/20

  • 8/3/2019 AD797 Datasheet

    16/20

    AD797

    Rev. G | Page 16 of 20

    Differential Line Receiver

    The differential receiver circuit of Figure 46is useful for many applications, from audio to MRI imaging. The circuit allowsextraction of a low level signal in the presence of common-mode noise. As shown inFigure 47, the AD797 provides this

    function with only 9 nV/Hz noise at the output.Figure 48 shows the AD797 20-bit THD performance over the audio bandand the 16-bit accuracy to 250 kHz.

    **

    **

    AD797

    0 0 8 4 6

    - 0 4 6

    6

    2

    3

    1k

    DIFFERENTIALINPUT

    1k

    1k

    1k

    20pF

    50pF*

    20pF

    VS

    +VS

    4

    7

    8

    V O UT

    OPTIONALUSE THE POWER SUPPLY BYPASSINGSHOWN IN FIGURE 35.

    ***

    Figure 46. Differential Line Receiver

    0 0 8 4 6

    - 0 4 7

    16

    610M

    12

    8

    100

    10

    10

    14

    1M100k10k1k

    FREQUENCY (Hz)

    O U T P U T V O L T A G E

    N O I S E ( n V / H z )

    Figure 47. Output Voltage Noise Spectral Density

    for Differential Line Receiver

    0 0 8 4 6

    - 0 4 8

    FREQUENCY (Hz)

    T H D ( d B )

    T H D

    ( % )

    90

    300k

    120

    130300100

    110

    100

    100k30k10k3k1k

    0.003

    0.0003

    0.001

    0.0001

    WITHOUTOPTIONAL50pF C N

    WITHOPTIONAL

    50pF C N

    MEASUREMENTLIMIT

    Figure 48. Total Harmonic Distortion (THD) vs. Frequency

    for Differential Line Receiver

    A General-Purpose ATE/Instrumentation I/O Driver

    The ultralow noise and distortion of the AD797 can be

    combined with the wide bandwidth, slew rate, and load drof a current feedback amplifier to yield a very wide dynamrange general-purpose driver. The circuit shown inFigure 49 combines the AD797 with the AD811 in just such anapplication. Using the component values shown, this circucapable of better than 90 dB THD with a 5 V, 500 kHz signal. The circuit is, therefore, suitable for driving a highresolution ADC as an output driver in automatic test equip(ATE) systems. Using a 100 kHz sine wave, the circuit dri600 load to a level of 7 V rms with less than 109 dB Tand a 10 k load at less than 117 dB THD.

    *

    7

    *

    *

    *

    +VS

    +VS

    VS

    AD797

    0 0 8 4 6

    - 0 4 9

    22pF

    2k

    649

    649

    1k

    R2

    6

    3 4

    2

    7

    AD811 6

    2 4

    3

    VS

    *USE THE POWER SUPPLY BYPASSING SHOWN IN FIGURE 35.

    VOUTVIN

    Figure 49. A General-Purpose ATE/Instrumentation I/O Driver

  • 8/3/2019 AD797 Datasheet

    17/20

  • 8/3/2019 AD797 Datasheet

    18/20

    AD797

    Rev. G | Page 18 of 20

    OUTLINE DIMENSIONS

    COMPLIANT TO JEDEC STANDARDS MS-001CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. 0

    7 0 6 0 6 - A

    0.022 (0.56)0.018 (0.46)0.014 (0.36)

    SEATINGPLANE

    0.015(0.38)MIN

    0.210 (5.33)MAX

    0.150 (3.81)0.130 (3.30)0.115 (2.92)

    0.070 (1.78)0.060 (1.52)0.045 (1.14)

    8

    1 4

    5 0.280 (7.11)0.250 (6.35)0.240 (6.10)

    0.100 (2.54)BSC

    0.400 (10.16)0.365 (9.27)0.355 (9.02)

    0.060 (1.52)MAX

    0.430 (10.92)MAX

    0.014 (0.36)0.010 (0.25)0.008 (0.20)

    0.325 (8.26)0.310 (7.87)0.300 (7.62)

    0.195 (4.95)0.130 (3.30)0.115 (2.92)

    0.015 (0.38)GAUGEPLANE

    0.005 (0.13)MIN

    Figure 55. 8-Lead Plastic Dual In-Line Package [PDIP]

    Narrow Body (N-8)Dimensions shown in inches and (millimeters)

    CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

    COMPLIANT TO JEDEC STANDARDS MS-012-AA

    0 1 2 4 0 7 - A

    0.25 (0.0098)0.17 (0.0067)

    1.27 (0.0500)0.40 (0.0157)

    0.50 (0.0196)0.25 (0.0099)

    45

    80

    1.75 (0.0688)1.35 (0.0532)

    SEATINGPLANE

    0.25 (0.0098)0.10 (0.0040)

    41

    8 5

    5.00 (0.1968)4.80 (0.1890)

    4.00 (0.1574)3.80 (0.1497)

    1.27 (0.0500)BSC

    6.20 (0.2441)5.80 (0.2284)

    0.51 (0.0201)0.31 (0.0122)

    COPLANARITY0.10

    Figure 56. 8-Lead Standard Small Outline Package [SOIC_N]

    Narrow Body (R-8)Dimensions shown in millimeters and (inches)

  • 8/3/2019 AD797 Datasheet

    19/20

    AD79

    Rev. G | Page 19 of 20

    ORDERING GUIDEModel Temperature Range Package Description Package OptionAD797AN 40C to +85C 8-Lead Plastic Dual In-Line Package [PDIP] N-8AD797ANZ1 40C to +85C 8-Lead Plastic Dual In-Line Package [PDIP] N-8AD797AR 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797AR-REEL 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797AR-REEL7 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797ARZ1 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797ARZ-REEL1 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797ARZ-REEL71 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797BR 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797BR-REEL 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797BR-REEL7 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797BRZ1 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797BRZ-REEL1 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8AD797BRZ-REEL71 40C to +85C 8-Lead Standard Small Outline Package [SOIC_N] R-8

    1 Z = RoHS Compliant Part.

  • 8/3/2019 AD797 Datasheet

    20/20

    AD797

    NOTES

    2008 Analog Devices, Inc. All rights reserved. Trademarks andregistered trademarks are the property of their respective owners.

    D00846-0-9/08(G)