30
Academy of Sciences Institute of Photonics and Electronics v.v.i. Technology of Optical Fibers www.ufe.cz, I.Kasik

Academy of Sciences Institute of Photonics and Electronics

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Academy of Sciences Institute of Photonics and Electronics

Academy of Sciences

Institute of Photonics and Electronics v.v.i.

Technology of Optical Fibers

www.ufe.cz, I.Kasik

Page 2: Academy of Sciences Institute of Photonics and Electronics

Optical fiber

n2

n1

W. Snell 1580-1626J. Tyndall 1820-1893

* dielectric* mostly circular* d >> L

* n1 > n2

* total reflection

VSCHT – KMI, 2016

Page 3: Academy of Sciences Institute of Photonics and Electronics

Optical fiber

Nobel prize 2009

Ch.K.Kao

Optical losses in optical fibers (intrinsic, extrinsic)

[Profimedia]

[Wiki]

VSCHT – KMI, 2016

Page 4: Academy of Sciences Institute of Photonics and Electronics

Optical fiber

- high-purity- silica basedmaterials,max. impuritiesacceptable in ppb (10-9)

Conventional glassmaking =>

ULTRA-PURE TECHNOLOGIES

VSCHT – KMI, 2016

Page 5: Academy of Sciences Institute of Photonics and Electronics

Optical fiber preparation - technology

MCVD

2. Fiber drawing

1. Preform

VSCHT – KMI, 2016

Page 6: Academy of Sciences Institute of Photonics and Electronics

Preform preparation - MCVD

MCVD – (Modified) Chemical Vapor Deposition1. Deposition of layers

1700°C

O +2

Substrate tube

Glassy layers

SiCl4

2100°C

2. Collapse

GAS MIXTURE GLASS - PREFORM

SiO2destilled

� Sequential sintering of thin glassy layers (of thickness 1-20 µm) onto inner wall of silica substrate resulting in bulk material – preform . A (g) + B(g) = AB (s)

� high purity (~ 101 ppb) high precision (better than 1 %)

VSCHT – KMI, 2016

Page 7: Academy of Sciences Institute of Photonics and Electronics

MCVD

Microphoto of cross section of produced preform

Tomography of the refractive-index profile of preform

� High purity material due to FO-Optipur purity starting materials.

� High quenching rate ranging from 102 to 103 °C/s !

VSCHT – KMI, 2016

Page 8: Academy of Sciences Institute of Photonics and Electronics

MCVD process model

0 5 10 15 20 25 30 35 40 45

1.45

1.46

1.47

1.48

1.49

1.50

1.51 SnO

PbO

Sb2O

3

F

B2O

3

P2O

5

GeO2

Al2O

3

TiO2

ZrO2

Re

fra

ctive

in

de

x (

63

3n

m,

20

°C)

Dopant content [mole %]

[A.B. Chynoweth, 1979, M. Shimizu, 1986, Y. Ohmori, 1983, S. H. Wemple, 1973, H. Wehr1986, I. Kasik, 2005, K. Sanada, 1980, M. M. Karim 1994]

VSCHT – KMI, 2016

Page 9: Academy of Sciences Institute of Photonics and Electronics

MCVD model

Process parameters :Variable :- flow rates (Si, Ge, P, B, F, Ox …)- deposition temperatureAdjustable :- temperature of starting materials (liquids)- burner speed- pressure- rotation speed of the substrate tube- substrate tube dimensions

[McChesney and Nagel, 1982, Wood, 1987, Kirchhof, 1986]

VSCHT – KMI, 2016

Page 10: Academy of Sciences Institute of Photonics and Electronics

Other CVD technologies

OVD

VAD

MFC

H /O

fuel2 2

Sootpreform

SiCl

+dopants4

H /O fuel2 2

SiCl

+dopants4

FLAME

Sintering

Sintering

Preform

Preform

VSCHT – KMI, 2016

Page 11: Academy of Sciences Institute of Photonics and Electronics

Drawing of optical fiber from preforms

� Diameter

80-1000 µm

� Temperature

1800-2100°C

Preform

Graphite furnace

Fiber

Feedback

Spool

Coatingdie

Curing furnace

Diameter

� No textile

� No thermo-insulation

VSCHT – KMI, 2016

Page 12: Academy of Sciences Institute of Photonics and Electronics

ComparisonCVD (Chemical) x PVD (Physical)

MCVD DC magnetron sputtering

OVD etc. vacuum evaporation etc.

Layer thickness

1 – 101 µm 1 - 101 nm

(however, both are reported as “thin layers”)

Deposition rate

HIGH LOW

Products

Layers, bulks Layers only

VSCHT – KMI, 2016

Page 13: Academy of Sciences Institute of Photonics and Electronics

Comparison(M)CVD x conventional

Starting materials

gaseous (g) or liquid (l) (s) solid state

melting point of oxides different melting point comparable

Purification methods

distillation recrystallisation, remelting

Structure of products

Graded - profiles Homogeneous

Material purity

ppb (10–9, i.e. 10 –7 mol%) 10–3 mol% (99,999%)

VSCHT – KMI, 2016

Page 14: Academy of Sciences Institute of Photonics and Electronics

Application

Telecommunicationfibers(cables)

Non-linear optics

Fiber lasers,

amplifiers ...

Fiber sensors

Medical, environmental ...

Special fibers

VSCHT – KMI, 2016

Page 15: Academy of Sciences Institute of Photonics and Electronics

Telecommunications

source detectoramplifierfiber

Fiber amplifier, laser

VSCHT – KMI, 2016

Page 16: Academy of Sciences Institute of Photonics and Electronics

Silica specialty optical fibers for fiber lasers and amplifiers

[C.J. Koester, E. Snitzer, Appl.Opt. (3) 1964, 1182] , [S.B. Poole, J.Lightwave Tech. LT-4

(1986), 870], [E.Desurvire, J.Lightwave Tech. LT-7 (1987), 835]

Active medium

Gas, LiquidSolid state :* semidonductor* glass* OPTICAL FIBER

Mirror100%

Mirror8-99%

,

Er3+

VSCHT – KMI, 2016

Page 17: Academy of Sciences Institute of Photonics and Electronics

tyč (preforma) →

dopované vlákno →

vláknový laser

Stimulated emission → laserAmplification by Stimulated Emission of Radiation

[H. Jelínková, Čs. Časopis pro fyziku, No. 4-5, 2011]

VSCHT – KMI, 2016

Page 18: Academy of Sciences Institute of Photonics and Electronics

Fiber lasers mW → kW

* high conversion efficiency (fiber lasers ~70-90%) - savings* high quality beam (nearly Gaussian, low divergency)* high brightness (high concentration of power)* good thermal management (cooling)* effective pumping * tunability* compactness* size (long resonator in small space)

sun 63 MW/m2

fiber laser 12.7 GW/m2

[IPG]

VSCHT – KMI, 2016

Page 19: Academy of Sciences Institute of Photonics and Electronics

Fiber lasers vers. solid state lasers (SSL)

• High brightness + flexibility

fs pulses 5 PW / 25x25 cmELI Beamlines [1015 W/um2]

CW 40- 100 kW / 10 um2

IPG Photonics [1015 W/ um2]

100 m 1 m 0.1 m

VSCHT – KMI, 2016

Page 20: Academy of Sciences Institute of Photonics and Electronics

Silica (VIS-NIR) specialty optical fibersfor fiber lasers and amplifiers

Dopants

Dopant combination : effective pumping due to energy transfer

High-power lasers : Er (1.5 um), Yb (1.1 um), Tm (1,9 um)

Tra

nspare

ncy

600 800 1000 2000 3000 5000 10000

Wavelength [nm]

VIS NIR IR

SmTm Yb ErTm Tm HoBi

1500

Raman

Sm 650 nm 800 nm 900-950 nm

Yb 970-1040 nm

1320-1400 nm 1470 nm

1550 nm 1550-2050 nm 1950-2250 nm

2800 nm 2860,3000 nm

Tm

Tm

Tm

Nd

NdBi 1100-1300 nm

Er

ErHo

Ho

200

Nd Nd Er Ho

VSCHT – KMI, 2016

Page 21: Academy of Sciences Institute of Photonics and Electronics

0 200 400 600 800 1000 1200 1400 0

40

80

120

160

200

1569

1571

1592

1597

Wavelength [nm]: 70% Output Coupling

10m 11.5m 14.5m 18.5m

Pump Power [mW]

Er3+/Yb3+ : 1000/10 000 ppm, Al2O3-SiO2[Kasik, V. Matejec, J. Kanka, P. Honzatko : Pure and Appl. Opt. 7 (1998) 457-465]

[I. Kasik, V. Matejec, M. Pospisilova, J. Kanka, J. Hora : Proc. SPIE 2777 (1995) 71-79]

Er/Yb fiber for soliton laser at 1 550 nm

VSCHT – KMI, 2016

Page 22: Academy of Sciences Institute of Photonics and Electronics

Monolitic Tm fiber laser at 1951 nm

* 1000 ppm Tm3+, 11mol% Al2O3, 0 mol% P2O5 or GeO2,

* deep-UV inscription of FBG

[P.Peterka, Photonic Technol Lett, 25, 2013, 1623]

Eye-safe spectral region

VSCHT – KMI, 2016

Page 23: Academy of Sciences Institute of Photonics and Electronics

Tm fiber for amplifier at 1470 nm

1460 1480 1500 1520 1540 1560 1580

-3

-2

-1

0

1

measured net gain numerical simulations

Ga

in/L

oss [

dB

]

W avelength [nm]

[P.Peterka, Opt. & Quantum El., 36 2004, 201], [W.Blanc, Proc. SPIE 6180, 2006, 61800V.1],

[P.Peterka, Optical Materials 30 (2007) 174]

VSCHT – KMI, 2016

Page 24: Academy of Sciences Institute of Photonics and Electronics

Tm/Ho fiber for ASE (1550-2050 nm) source

DFB BA

Out

THDF

C1 C212

3

1

2

3

MP

1400 1600 1800 2000 2200 2400

Wavelength [nm]

−40

−30

−20

−10

0

Spectrum

[dB]

Tm Ho

[P.Honzatko, Optics letters 39 (2014) 3650-3653 ]

1800 ppm Tm3+ /360 ppm Ho3+

VSCHT – KMI, 2016

Page 25: Academy of Sciences Institute of Photonics and Electronics

Optical fiber sensors

Source Detector

Continuous monitoring

of (bio)chemicals andtheir concentration.

Source

Detector

Suitable for :

remote sensing

distributed sensing

flammable or explosives

in high-voltage areas

human body

VSCHT – KMI, 2016

Page 26: Academy of Sciences Institute of Photonics and Electronics

Optical fiber sensors

Zdroj

DetektorØ 18 µm

In vivo detection of pH in small samples (droplets, cells)

VSCHT – KMI, 2016

Page 27: Academy of Sciences Institute of Photonics and Electronics

OPTICAL FIBERS – Materials - UV

� silica fibers - SUPRASIL n200 nm = 1.55 [ceramoptec.de, OceanO, IPE …]

� planar silica, crystalline CaF2 (MgF2) – [edmundoptics, technicalglass …]

VSCHT – KMI, 2016

Page 28: Academy of Sciences Institute of Photonics and Electronics

OPTICAL FIBERS – VIS/NIR, IR

� fluoride glasses [univ-rennes1.fr …] (up to ~4 µm)

� sapphire [CRYTUR] (up to ~4 µm)

� silver-halides AgClxBr1-x (up to 15 µm)

� chalco glasses (Se, As2S3, As2Se3…) [oxford-electronics, orc.soton.ac.uk] (< 20 µm)

� refractive indexes 2-20um ~ 2 – 2.5 >> silicate glasses [LiFaTec]

Silica n633 =1.457 & doped silica n633 = 1.45-1.50 [corning, lucent, ocean_o, IPE]Glass (silicate - Simax, Vycor, Pyrex) n588 =1.5-1.95 [schott, LiFaTec.de, IPE…]Plastic n588 =1.5-1.6 [mitsubishi.com, luceat.it, unlimited-inc.com…]

VSCHT – KMI, 2016

Page 29: Academy of Sciences Institute of Photonics and Electronics

SUMMARY

1. Fiber technology : preparation of structures of high precision from materials of ultra-high purity (impurities in ppbs only). Differencebetween CVD and PVD.

2. Fiber preparation in two steps : preform preparation and fiber drawing. (M)CVDtechnique (preform) makes possible to prepare multilayered tailored structures of suitable level of purity.

3. Fibers conventional (passive) and special (active).

4. Research of optical fibers (CR) :

VSCHT – KMI, 2016

Page 30: Academy of Sciences Institute of Photonics and Electronics

References

� J. M. Senior : Optical fiber communications - Principle and practise, Pearson Education Limited, Harlow, England, 2009.

� A. Mendez, F.T. Morse : Specialty optical fibers handbook,

Elsevier Science & Technol, USA, 2006.� J. Schrofel, K. Novotný : Optické vlnovody, SNTL, 1986 � Saaleh, Fotonika (1 - 4), Matfyzpres

� S. R. Nagel, J. B. McChesney, K. L. Walker : An overview of the MCVD process and performance, IEEE J. Quantum Electron. QE-18 (1982) 459-477

� Peterka - Vláknové lasery

� Československý časopis pro fyziku 1/2010, 4-5/2010, 1/2011� Jemná mechanika a optika (2015)� Sdělovací technika 3/2011

VSCHT – KMI, 2016