Abu-hamd Ssrc 2013 p1306

Embed Size (px)

Citation preview

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    1/28

    1

    Metwally Abu-Hamd

    Cairo University, Egypt

    Cairo University

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    2/28

    Outline

    2

    1- Introduction

    2- FEM Model

    3- Comparison with Test Results

    4- Parametric Study

    5- Conclusions

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    3/28

    3

    Common Applications

    Door Framing Bracings

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    4/28

    4

    Failure Modes

    Global BucklingLocal Buckling

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    5/28

    Design Provisions

    5

    AISI Section C4

    Pn= smaller of (Pne, Pnd)

    Pne

    = Nominal strength for yielding, flexural,

    flexural-torsional, and torsional buckling

    according to section C4.1,

    Pnd= Nominal distortional buckling strengthaccording to section C4.2.

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    6/28

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    7/28

    up Members-Provisions for Built

    7

    Section D1.2

    =

    (a/ri) is not to exceed 0.5*(KL/r)o

    (KL/r)o: overall (unmodified) slenderness ratio

    a : longitudinal spacing between intermediate fasteners

    ri: minimum radius of gyration of the full unreduced

    cross-section of the individual component

    Modified Slenderness:

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    8/28

    8

    Previous Work

    Objective of Present Work

    Develop a numerical model that can be used

    to calculate the axial capacity of cold-formed

    built-up I-sections.

    Stone and LaBoubes (2005)

    Whittle (2007) and Biggs (2008)

    Piyawat (2011): Distortional Buckling

    Brueggen and Ramseyer (2003)

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    9/28

    FEM Analysis

    9

    Numerical Model

    1- Eigenvalue analysis: Buckling modes and buckling

    frequencies are the solutions to an eigenvalue

    problem. Elastic material behavior and perfectmember geometry are assumed.

    2- Nonlinear loaddisplacement analysis of the real

    member under the action of applied loads in thepresence of initial geometrical imperfections, residual

    stresses and material nonlinearity.

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    10/28

    10

    Numerical Model

    4-node finite strain shell element of ANSYS

    mesh size: 25 mm10 mm at flat portions

    finer mesh was used at the corners

    material behavior elastic-plastic.

    slope of plastic part assumed at 5 %.

    Von-Mises yield criteria with isotropic hardening.

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    11/28

    Geometric Imperfections

    11

    Modeled as a linear combination of the first localand global

    buckling modesusing a suitable magnitude for each mode

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    12/28

    Residual Stresses due to Manufacturing Processes

    12

    Idealized as a summation of two types:Membrane and Flexural:

    1- Membrane Stresses

    about 8 % Fyat cornersabout 4% Fyfor flat parts

    Opposing this effect, yield stress is increased

    at corner regions by about 15 % due to cold

    work of forming

    Effect on axial buckling strength < 1 %

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    13/28

    Residual Stresses

    13

    2- Flexural residual stresses

    Show a large degree of variation

    Considering these stresses in the FE model

    complicates the analysis considerably as it requiresdefining the through thickness stresses for each layer.

    As the main interest in this paper is to find the

    ultimate axial load capacity, the present analysis

    neglects the effect of flexural residual stresses.This assumption would not be correct when

    considering the deformation behavior and stress

    distribution across the section.

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    14/28

    Boundary Conditions

    14

    Both column ends modeled as hinged ends except for thedisplacement at the loaded end in the direction of the

    applied load.

    Nodes other than the two ends were free to translate and

    rotate in any directions.

    Displacements of the two components coupled at the

    locations of the connecting screws.

    The load was applied as an axial concentrated load at the

    section centeroid at the loaded end.

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    15/28

    Comparison with Test Results

    15

    Axial load capacity of 32 cold-formed columnstested by Stone and Laboube (2005):

    12 Sections 152.4x1.372

    6 Sections 92.1x1.155

    8 Sections 92.1x0.88

    6 Sections 152.4x0.841

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    16/28

    16

    0.00

    0.10

    0.20

    0.30

    0.40

    1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10

    Nom

    inalAxialStrengthFn/Fy

    Nominal Axial Strength Fn/Fy

    TEST

    AISI

    FE

    12 Sections 152.4x1.372

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    17/28

    17

    6 Sections 92.1x1.155

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    1.30 1.35 1.40 1.45 1.50 1.55 1.60

    NominalAxialStrengthFn/Fy

    Slenderness Parameter : c

    TEST

    AISI

    FE

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    18/28

    18

    8 Sections 92.1x0.88

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    1.10 1.15 1.20 1.25 1.30

    NominalAxialStre

    ngthFn/Fy

    Slenderness Parameter : c

    TEST

    AISI

    FE

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    19/28

    19

    6 Sections 15.42x0.841

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70

    NominalAxialStrengthFn/Fy

    Slenderness Parameter : c

    TEST

    AISI

    FE

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    20/28

    20

    StudyParmetric

    Variations in Design Parameters:0.5 < c < 2.5

    Presented Results for Six typical SSMA cross

    sections:400S137-33, 400S137-68, 600S162-33,

    600S162-97, 800S200-33, 800S200-97

    Amplitude of geometric imperfections at 25%

    and 75 %.

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    21/28

    21

    Section 400S137-33

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50

    NominalAxialStre

    ngthFn/Fy

    Slenderness Parameter : c

    AISI

    ANSYS 75%

    ANSYS 25%

    400S137-33

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    22/28

    22

    Section 400S137-68

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50

    NominalAxialStrengthFn/Fy

    Slenderness Parameter : c

    AISI

    ANSYS 25%

    ANSYS 75%

    400S137-68

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    23/28

    23

    Section 600S162-33

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50

    NominalAxialStrengthFn/Fy

    Slenderness Parameter : c

    AISI

    ANSYS 75%

    ANSYS 25%

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    24/28

    24

    Section 600S162-97

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0.50 1.00 1.50 2.00 2.50

    Nom

    inalAxialStrengthFn/Fy

    Slenderness Parameter : c

    AISI

    ANSYS 25%

    ANSYS 75%

    600S162-97

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    25/28

    25

    Section 800S200-33

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50

    NominalAxialStre

    ngthFn/Fy

    Slenderness Parameter : c

    AISI

    ANSYS 75%

    ANSYS 25%

    800S200-33

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    26/28

    26

    Section 800S200-97

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10 2.30 2.50

    Nom

    inalAxialStrengthFn/Fy

    Slenderness Parameter : c

    AISI

    ANSYS 25%

    ANSYS 75%

    800S200-97

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    27/28

    27

    This paper presents a finite element procedurefor calculating the axial buckling strength of cold-

    formed built up I-sections.

    The initial local and overall geometric

    imperfections, nonlinear material properties havebeen included in the model.

    A parametric study of 60 columns was performed

    to investigate the effect of major design parameters

    on the behavior.AISI design rules are generally conservative for

    medium and long members but may overestimate

    the capacity for short members.

    Conclusions

  • 8/13/2019 Abu-hamd Ssrc 2013 p1306

    28/28

    28

    Cairo University