24

ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

  • Upload
    letram

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,
Page 2: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,
Page 3: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,
Page 4: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,
Page 5: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

i

ABSTRACT

This project focuses on the development of Tyre Lifting System for mobile robot.

Mainly, the Tyre Lifting System development consists of three main parts:

mechanical part, electrical and electronic part, and programming part. As for

mechanical part is a base design, and any mechanical relevant part while for

electronic part is a circuit design for sensor and PIC16F877A. The development for

the lifting tyre platform used machining process and fabrication. The electronic

circuit constructed and then attached to a microcontroller which acts as the tyre

lifting main controller for the tyre movement.The main idea of the mechanism is to

lift the tyres when detecting an obstacle. The inputs are received from sensors which

are mounted at the mobile robot platform. In this project, microcontroller is used to

perform the step of lifting tyre sequence.

Page 6: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

ii

ABSTRAK

Projek ini menumpukan pada pembangunan sistem mengangkat tayar dinamik untuk

robot mudah alih. Pembangunan sistem mengangkat tayar mengandungi tiga

bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik, dan bahagian

pengaturcaraan. Bahagian mekanikal meliputi reka bentuk badan, reka dan mana-

mana bahagian berkaitan mekanikal manakala untuk bahagian elektronik meliputi

rekabentuk litar untuk penderia dan mikropengawal. Pembangunan untuk platform

mengangkat tayar mengunakan proses mesin dan proses pembuatan. Litar elektronik

dibina dan disambungkan dengan mikropengawal dan bertindak sebagai pengawal

utama untuk pergerakan mengangkat tayar. Mekanisme utama sistem ini adalah

untuk mengangkat tayar apabila mengesan halangan. Input-input diterima dari

pengesan-pengesan yang dipasang pada platform robot mudah alih. Dalam projek ini,

mikropengawal digunakan untuk mengawal proses mengangkat tayar.

Page 7: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

iii

DEDICATION

Specially dedicated to

my beloved parents who have encouraged, guided and inspired me

throughout my journey of education

Page 8: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

iv

ACKNOWLEDGEMENT

Alhamdulillah, praise be to Allah for His blessings and giving me the strength along

the challenging journey of completing the project. Primarily, I would like to take this

opportunity to express my deepest gratitude towards my project supervisor, thank my

supervisor, Mr. Mohd Hisham b. Nordin who has persistently and determinedly

assisted me during the project. It would have been very hard to complete this project

without the passionate supports and guidance encouragement and advices given by

him.

My outmost thanks also go to my family who has given me support throughout my

academic years. Without them, I might not be able to become who I am today. I am

grateful to have love affection and care from all of my family members as well. My

fellow friends should also be recognized for their continuous support and

encouragement.

My sincere appreciation also extends to my entire course mate and others who have

provided assistance at various occasions. Their views and tips are useful definitely.

Last but not least, thanks to individuals that has contributed either directly or

indirectly to make this thesis project.

Page 9: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

v

TABLE OF CONTENT

Abstract i

Abstrak ii

Dedication iii

Acknowledgement iv

Table of Content v

List of Table viii

List of Figures ix

List Abbreviations x

1.0 INTRODUCTION 1

1.1 Background 1

1.2 Problem statement 2

1.3 Objectives 2

1.4 Scope of Project 2

2.0 LITERATURE REVIEW 3

2.1 Introduction 3

2.2 Mobile Robot 3

2.2.1 Classification 4

2.2.2 Mobile Robot Navigation 4

2.2.2.1 Manual robot or Tele-Op 4

2.2.2.2 Guarded tele-op 5

2.2.2.3 Line-following robot 5

2.2.2.4 Autonomously randomized robot 5

2.2.2.5 Autonomously guided robot 5

2.2.2.6 Sliding autonomy 6

2.3 Movement 6

2.4 Lifting Tire Mechanisms 7

2.5 Detection Mechanism 10

2.6 Programmable controller 10

Page 10: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

vi

2.6.1 Microcontroller 11

2.6.1.1 Central Processing Unit (CPU) 11

2.6.2 Programmable Logic Controller (PLC) 13

2.7 Summary of Chapter 2 13

3.0 METHODOLOGY 14

3.1 Introduction 14

3.2 Development process flowchart 15

3.2.1 Explanation of the development process flowchart 16

3.2.2 PSM 1 and 2 Gantt Chart 17

3.2.3 Fabrication Process for The Platform 18

3.2.4 Circuit Design 18 3.2.5 Programming 18 3.2.6 Testing And Analysis 19

3.3 Parts Selection 20

3.3.1 Mechanical Structure Parts 20

3.3.1.1 Tire 20

3.3.1.2 Aluminium Angle 21

3.3.1.3 Acrylic 22

3.3.2 Electrical and Electronic Parts 23

3.3.2.1 Battery 23

3.3.2.2 DC Motor 24

3.3.2.3 Microcontroller 25

3.3.2.4 Relay 26

3.3.2.5 Limit switch 27

3.3.2.6 Transistor 28

3.3.2.7 Protoboard 29

3.3.2.8 Voltage Regulator 30

3.3.2.9 Capacitor 31

3.4 Preliminary Design of the Project 32

3.4.1 Design 32

3.4.2 Block Diagram 33

Page 11: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

vii

4.0 DESIGN AND DEVELOPMENT 34

4.1 Tire Lifting Platform Development 34

4.1.1 Tire lifting base design 35

4.1.1.1 Base machining process 36

4.1.2 Tire Lifting Handle Design 39

4.1.3 Sensor 41

4.2 Tire Lifting Electronic Circuit Development 43

4.3 Programming Development 46

4.3.1 Write program using microC 8.2 47

4.3.2 Simulating using Proteus ISIS 7.6 SP4 for PIC16F8777A 52

4.4 Conclusion 55

5.0 RESULT AND DISCUSSION 56

5.1 Result 56

5.2 Tire Lifting System Experiment 57

5.2.1 Initial Testing 57

5.2.1.1 Stability 57

5.2.2 Circuit testing 59

5.2.3 Obstacle Sensor Experiment 60

5.3 Discussion 64

5.3.1 Initial testing Discussion 64

5.3.1.1 Stability Discussion 64

5.3.2 Circuit discussion 65

5.3.3 Obstacle Sensor Discussion 65

5.4 Conclusion 66

6.0 CONCLUSION AND FUTURE WORK 67

REFERENCES 68

Page 12: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

viii

LIST OF TABLES

2.1 Advantages and Disadvantages of Programmable Control 13

4.1 Electronic Component 44

4.2 Input 44

4.3 Output 45

5.1 Size of The Cable Wire’s Casing 63

Page 13: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

ix

LIST OF FIGURES

2.1 Moving Patterns on Stairs. 8

2.2 Mobile robot with Forklift-Wheels. 8

2.3 Active obstacle passing mechanism in a magnetic wheeled wall 9

climbing robot

2.4 Magnetic wheeled robot Fischer 9

3.1 Development Flow Chart 15

3.2 PSM 1 and PSM 2 Gantt chart. 17

3.3 Tire 19

3.4 Aluminium angle 21

3.5 Acrylic 22

3.6 12 volt valve regulated lead-acid rechargeable battery 23

3.7 12 volt geared dc motor. 24

3.8 PIC start up kit 25

3.9 12V Relay 26

3.10 limit switch 27

3.11 Transistor 28

3.12 Protoboard 29

3.13 Voltage Regulator 30

3.14 Capacitor 31

3.15 Design 32

3.16 System block Diagram 33

4.1 Engineering drawing of the tire lifting platform 35

4.2 Cutting using Hand Saw 36

4.3 Assemble the base 36

4.4 Drilling the Hole 37

4.5 Hole for the DC motor 37

4.6 Mount the motor 37

4.7 Motor with the base 37

Page 14: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

x

4.8 56 cm aluminium angle 38

4.9 Battery holder 38

4.10 closed view of the battery holder 38

4.11 lifting handle part 39

4.12 assemble of the tire 39

4.13 lifting handle 39

4.14 drilling the acrylic 40

4.15 hole for the 40

4.16 making the thread 40

4.17 coupling part 40

4.18 L shape of the acrylic 41

4.19 Attachment of the sensor 41

4.20 2 piece of the sensor holder 41

4.21 limit switch attached. 42

4.22 limit switch position 42

4.23 closed view of the limit switch 42

4.24 electronic circuit 44

4.25 main command in microc 47

4.26 starting the microC 49

4.27 new project 49

4.28 setup the project 50

4.29 writing the program 50

4.30 build the project 51

4.31 success message 51

4.32 start the proteus 52

4.33 ‘P’ symbol 52

4.34 search the component 53

4.35 placed the PIC 53

4.36 circuit diagram 54

4.37 select the hex file 54

4.38 simulation of the circuit 55

Page 15: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

xi

5.1 tire lifting platform 56

5.2 front tires lift 58

5.3 middle tires lift 58

5.4 back tires lift 58

5.5 11.48V 59

5.6 4.99V 59

5.7 5V input 60

5.8 small and round obstacle 61

5.9 medium and square obstacle 61

5.10 high level obstacle 61

5.11 failed detection of obstacle 62

5.12 measurements the height 62

5.13 measurements the width 63

5.14 The actual size of the obstacle 64

Page 16: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

xii

LIST OF ABBREVIATIONS

AGV - Automated Guided Vehicle

ALU - Arithmetic Logic Unit

CPU - Central Processing Unit

D.C. - Direct Current

I / O - Input / Output

IR - Infrared

LED - Light Emitting Diode

PC - Program Counter

PCB - Printed Circuit Board

PIC - Peripheral Interfaces Controllers

Page 17: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

1

CHAPTER 1

INTRODUCTION

1.1 Background

A mobile robot is an automatic machine that is capable of movement in a given

environment. Mobile robots have the capability to move around in their environment and

are not fixed to one physical location. Mobile robotics the branch of robotics concerned

with movable robot systems that are able to locomote within an environment or terrain.

Mobile robotics and robots are mainly used in research on navigation and exploration,

with applications for autonomous guided vehicles.

A few advantages of mobile robot are it is suitable to transport material. It can be useful

to move in dangerous location. Besides that, it can be use in research and exploration

task. Mobile robot has been use in performing variety of task and can move in different

location. The purpose of this research is to create mechanism of lifting tire for mobile

robot platform.

Page 18: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

2

1.2 Problem Statement

Nowadays, mobile robot faces many critical problems and challenges in the technology

today. The problems that usually occur are the mobile robot not stable when moving

across an obstacle.

This mobile robot has a disadvantage when crossing the cable wire. The wheel will crash

with the obstacle and make the mobile robot unstable. The purpose of this research is to

create mechanism of lifting tire including mechanical structure, circuit and programming

for the lifting system.

1.3 Objectives

The objectives of the project are:

a) To design and create tire lifting system for mobile robot in order to overcome the

small obstacle like cable wire.

1.4 Scope of project

Scope that is covered for this project:

a) Mechanical design for tire lifting system for mobile robot platform.

b) Mechatronics for tire lifting system for mobile robot circuits.

c) Sensors for tire lifting system for mobile robot

d) Programming for PIC.

Page 19: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

3

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews some of the previous works that have been done in the field of

mobile robot technology. This section highlighted the mobile robot, classification, type

of mobile robot navigation, and previous research including mobile robot development,

problem that faced and mechanism of lifting tire, the common applications of lifting tire

method for the mobile robot and analysis on the tire lifting the method as well as design

of effective design for the mobile robot.

2.2 Mobile Robot

Mobile robots have the capability to move around in their environment and are not fixed

to one physical location. Mobile robot is any autonomous mobile machine that interacts

with its environment through sensors, and attempts to achieve some objective or a small

robot that have capability to move around in their environment and not stick to certain

location. It is also can perform desired tasks in unstructured environments without

continuous human guidance.

Page 20: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

4

The autonomous robot are capable of gain information about the environment, work for

an extended period, move either all or part of itself throughout its operating environment

without human assistance and avoid situations that are harmful to peoples, properties,

and itself. It can be found in industry, military, and security environment. Other than

that, it also appears in public consumers for entertainment or to perform certain tasks

like vacuum cleaning or mowing.

2.2.1 Classification

The mobile robot can be classified by the environment in which it travel and device that

they use to move. First the environment in which they travel can be divide by 3 that is

the land or home robot, aerial robots, and underwater robots. Second, the devise that

they use divided into legged robot, wheeled robot, and tracks. In this project, the

development of the project is based on the device use to move that is wheeled robot that

moves in land environment.

2.2.2 Mobile Robot Navigation

There are many types of mobile robot navigation:

2.2.2.1 Manual Remote or Tele-op

A manually tele-op'd robot is totally under control of a driver with a joystick or other

control device. The device may be plugged directly into the robot, may be a wireless

joystick, or may be an accessory to a wireless computer or other controller. A tele-op'd

robot is typically used to keep the operator out of harm's way. Examples of manual

remote robots include Foster-Miller's Talon, iRobot's PackBot and KumoTek's MK-705

Roosterbot.

Page 21: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

5

2.2.2.2 Guarded Tele-op

A guarded tele-op robot has the ability to sense and avoid obstacles but will otherwise

navigate as driven, like a robot under manual tele-op. Few if any mobile robots offer

only guarded tele-op.

2.2.2.3 Line-following Robot

Some of the earliest Automated Guided Vehicles (AGVs) were line following mobile

robots. They might follow a visual line painted or embedded in the floor or ceiling or an

electrical wire in the floor. Most of these robots operated a simple "keep the line in the

center sensor" algorithm. They could not circumnavigate obstacles; they just stopped and

waited when something blocked their path. Many examples of such vehicles are still

sold, by Transbotics, FMC, Egemin, HK Systems and many other companies.

2.2.2.4 Autonomously randomized robot

Autonomous robots with random motion basically bounce off walls, whether those walls

are sensed with physical bumpers like the Roomba cleaners or with electronic sensors

like the Friendly Robotics lawn mower. The simple algorithm of bump and turn 30

degrees leads eventually to coverage of most or all of a floor or yard surface.

2.2.2.5 Autonomously guided robot

An autonomously guided robot knows at least some information about where it is and

how to reach various goals and or waypoints along the way. "Localization" or

knowledge of its current location is calculated by one or more means, using sensors such

motor encoders, vision, Stereopsis, lasers and global positioning systems. Positioning

systems often use triangulation, relative position and/or Monte-Carlo/Markov

localization to determine the location and orientation of the platform, from which it can

plan a path to its next waypoint or goal. It can gather sensor readings that are time- and

Page 22: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

6

location-stamped, so that a hospital, for instance, can know exactly when and where

radiation levels exceeded permissible levels. Such robots are often part of the wireless

enterprise network, interfaced with other sensing and control systems in the building.

For instance, the PatrolBot security robot responds to alarms, operates elevators and

notifies the command center an incident arises. Other autonomously guided robots

include the SpeciMinder and the Tug delivery robots for hospital labs, though the latter

actually has people at the ready to drive the robot remotely when its autonomy fails. The

Tug sends a letter to its tech support person, who then takes the helm and steers it over

the Internet by looking through a camera low in the base of the robot.

2.2.2.6 Sliding autonomy

More capable robots combine multiple levels of navigation under a system called sliding

autonomy. Most autonomously guided robots, such as the HelpMate hospital robot, also

offer a manual mode. The Mobile Robot Sinside guidance system, which is used in the

ADAM, PatrolBot, Speci-Minder, MapperBot and a number of other robots, offers full

sliding autonomy, from manual to guard to autonomous modes.

2.3 Movement

A recent research study by Mohd Khairul, (2008) showed that the objectives of the

project that he develop to design and construct a mobile robot that can following line and

enable to approach the objective area. The mobile robot programmed able to drive the

mouse straight ahead and to make clean right or left turn at any junction while following

the line in the right speed. Four IR transmitters and receivers placed at the center of the

front detection circuit used to make sure the mobile robot moving by following the line.

The mobile robot can do task like exploration and navigation. Based on the previous

development by the S Datta,R.Ray and dr Banerji, the objective of their research is to

develop a vehicle that can navigate autonomously and transport jobs and tools in

manufacturing environment. As a result, they develop the Autonomous Mobile Robot

Page 23: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

7

with Manipulator for the Manufacturing Environment. Besides that, in 1998, David

P.Anderson also create small mobile robot that can be use to exploring human habitats.

Analysis of the research on a mobile robot for handling hazardous chemical by Khairul

(2008) claim that modification needed in order to improve the mobile robot. First, the

mobile robot need more powerful high torque motor applied with the lighter body

structure to improve the robot movement. Mohd Khairul,K (2008) identified that the

stability is important thing in the design of the robot to give better result of movement.

In addition improvement in programming will give better result in the mobility of the

robot.

2.4 Lifting Tire Mechanisms

Mobile robot has been introduced into the industry to do many tasks. Forecast indicates

that this trend of using mobile robot will continue for the foreseeable future. Early

research, the application research of mobile robots with forklift-driving-wheels capable

to ascend and descend stairs by the Hirofumi and Noriyoshi in 1999 was concern about

the mechanism in lifting the tire of mobile robot.

In a report on a specific case, Hirofumi and Noriyoshi (1999) state that mechanism of

lifting tire for mobile robot can be use to ascending the stair and descend stairs. The

mobile robot with Forklift-Wheels capable to ascend and descend stairs is shown in

figure 2. The FDW robot mobile robot with Forklift-Driving-Wheels capable to ascend

and descend stairs is divided into three parts (Body, Front Forklift-Wheels, and Rear

Forklift-Wheels).Those forklifts have driving wheels. The robot can move up and down

by the front and rear forklifts, and also it can be transferred by using these through the

stairs and the step.

Page 24: ABSTRACT - eprints.utem.edu.myeprints.utem.edu.my/1752/1/Tyre_Lifting_System_For_Mobile_Robot_-_24_pages.pdf · bahagian utama: bahagian mekanikal, bahagian elektrik dan elektronik,

8

This research in develop the mobile robot that can lift the tire is as an alternative method

to cross the obstacle. The Forklift system is a good mechanism to lift the tire. This

system can be useful to be use for the mobile robot to cross the obstacle.

Figure 2.1: Moving patterns on stairs. (Hirofumi and Noriyoshi 1999)

Figure 2.2 Mobile robot with Forklift-Wheels. (Hirofumi and Noriyoshi 1999)

Besides that, the research of a robot that capable to cross the obstacle when climbing the

wall describe by the Fischer, F. Tâche, and R. Siegwart (2007) under the title magnetic

wheeled robots that can pass difficult obstacles (ridge-type).For passing even more

difficult obstacles, some of these robots are equipped with special mechanisms within

their structure. This robot also uses linear movements, but needs fewer actuators and is