27
A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge.

A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Embed Size (px)

Citation preview

Page 1: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

A Photosynthetic Advanced Oxidation Process

Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders

challenge.

Zuhra Omary
Hey, do you think we should include the first part of the title in our proposal to this title?
donald.stangroom
no specifically directed to have a title slide with this info
Page 2: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Waste Water

● Contains various dissolved compounds left over from human use

❖ Includes runoff, leaching, industrial processes, municipal water use, and etc

Page 3: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Oil Sands

Page 4: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

● Uses an extreme process to separate bitumen from sands

● Waste water is largely recycled● What can’t be recycled anymore goes to

tailings ponds, which is about 10% of the overall water used in the process

● Has disturbed some 715 square km of earth

Oil Sands

Page 5: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Tailings Ponds

Water leaches from ponds into local water sources such as the Athabasca riverand groundwater

Page 6: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Toxic Organics

● Organics can mimic hormones similar to how PBC mimics estrogen

❖ Causes cancers and impairs organ function

● Can bioaccumulate and enter the food chain

Page 7: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Toxic Compounds in Tailing Ponds

● Toxic compounds in tailings ponds include Naphthenic acids (NAs) and polycyclic aromatic hydrocarbons (PAHs)

● Naphthenic acids have been shown to cause liver failure, cancer and mimic hormones like estrogen

● Polycyclic Aromatic Hydrocarbons are known to cause cancer and mutations.

Page 8: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Oxidation is setting fire underwater.

● Advanced oxidation process (AOT) is a process of “burning” something in solution using hydroxyl radicals

● Products of AOTs are CO2, water and salts.

Page 9: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Limitations

● The chemicals used are unstable and would need to regularly by replenished.

● Some catalysts can lead to more toxic byproducts before they are mineralized.

Page 10: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Red Tide Algae

Page 11: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Helpful or Harmful?

-Some species of red tide algae are harmful to fish and other marine life.

-Photosynthesis sequesters carbon dioxide. It’s all in the situation.

Page 12: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Hydroxyl Radical Production.

-Red tide algae can be harmful to fish for a variety of reasons production of hydroxyl radicals is one of them.

-Hydroxyl Radicals will break down any organic molecule.In a tailings pond these radicals are helpful.

Page 13: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

NADPH Oxidase.

-Makes hydroxyl radicals indirectly.

-Present in humans and plants.

-Used an immunological defence, a lack of which can be fatal.

Page 14: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Genetics Behind Hydroxyl Production

NADPH Oxidase - Enzyme complex that reduces NADPH to NADP and Oxidize molecular O to superoxide.

Glycocalyx - Holds NADPH oxidase components outside the cell.

H2O2 - Reacts with super oxide to make OH .

Page 15: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Experiments Phase 1.Can the algae alone help mineralize the tailings ponds?

Page 16: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

-Can hydroxyl radical producing algae live in oil sands process affected water (OSPW)?

-Could we modify OSPW to make it more suitable?

-Do they still produce hydroxyl radicals and if so how many?

-How quickly would that allow algae to mineralize organics in tailings ponds? Given the above work.

Page 17: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Conclusions

-If red algae can live in OSPW, great! We can continue phase 1.

-Do they still produce OH radicals and how many? If they do excellent!

-Once we know how much OH. they make in OSPW we can find out how long it would take to “clean” a given volume of OSPW.

Page 18: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Experiments Phase 2.

How do the algae produce OH. ?

Page 19: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

-Protein sequencing of NADPH oxidase complex

-Genome sequencing of NADPH oxidase

-Transfer of NADPH oxidase component proteins to freshwater red algae.

Phase 2

Page 20: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Conclusions.

The sequence of amino acids in the component proteins of NADPH oxidase will allow us to identify the corresponding genes.

Study of the genome itself once sequenced allows for the identification of regulatory pathways involved.

As well as opening the possibility of transfer to other organisms which would allow for remediation of a wide range of aquatic environments.

Page 21: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Genetic Modification.

Transfer of the genetic mechanism for making hydroxyl radicals allows for a wide range of water treatment.

Page 22: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Crispr Cas/9

Prokaryotic defence mechanism for labelling foreign DNA.

Page 23: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

-Allows for the efficient transfer of multiple genes at once.

-NADPH oxidase has 6 component proteins making CRISPR an ideal method.

-Works by using a protein to hack the DNA repair mechanism of the target organism into making desired alterations.

Page 24: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

What Our Process Means for Canada. -Clean water in the Athabasca river.

-A method of removing landfill leachate from ground water.

-Removal of human waste products in various aquatic environments without the need for infrastructure.

Page 25: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge
Page 26: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

In conclusion advanced oxidation techniques can remove numerous organic compounds from water.Currently these process would be very expensive on a large scale.

-Our process solves that problem by sustainably carrying out AOTs.

-It also works without producing any toxic byproducts or greenhouse gasses.

Page 27: A Photosynthetic Advanced Oxidation Process Donnie Stangroom, Zuhra Omary Ryerson University, CaB research leaders challenge

Referencessee research proposal for the exhaustive list of references. All images were obtained from Google Image results.