20
QRA CFD OPT A New Approach for Facility Siting using Mapping Risks on the plant and Grid Selection Optimization Seungho Jung, Dedy Ng , Hans J. Pasman, and M. Sam Mannan 1 1

A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

  • Upload
    buinhi

  • View
    218

  • Download
    5

Embed Size (px)

Citation preview

Page 1: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

QRA

CFD

OPT

A New Approach for Facility Siting using Mapping Risks on the plant and

Grid Selection Optimization

Seungho Jung, Dedy Ng, Hans J. Pasman, and M. Sam Mannan

11

Page 2: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Contents

2

Introduction

Problem statement

Motivation

Research objectives

Flowchart of the Proposed Methodology

Overall theme

Consequence analysis –

Building type

Case study with CPQRA example (distillation column)

Description for case study

Optimization formulations

Constraints (Recommended separation distance)

Results & Discussion

Conclusion & Future work

Page 3: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Problem Statement

Process Design

Equipment Layout

+ Piping Route

Facility Layout

3

Page 4: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Motivation

BP Texas city (2005) Trailers

Pasadena (1989)

control room

Bhopal (1984)

affecting to nearby residential area

San Juanico disaster (1984)

residential areadomino effect

Separation DistanceHazardous point vs. Occupied buildings

Residential Area

4www.abc.net.au/news/photos/2007/10/26/2070854.htm http://www.acusafe.com/Incidents/PasadentTexas1989/incident-pasadenatexas1989.html www.ens-newswire.com/.2004-11-30-10.asp upload.wikimedia.org/.../250px-Gaskessel_gr.jpg

Page 5: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Research Objectives

Combine economic concept and safety concept

Facility layout optimization using QRA

Aim for realistic prediction!

Help in a decision-making for safer siting & layout

Develop a layout optimization model

Optimization (MINLP, MILP)

GAMS, AMPL

5

Page 6: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Flowchart of the Proposed Methodology

ReleaseFrequency

Event Tree Analysis

ConsequenceAnalysis

Building 

Type Risk(Hazard)

Score on Grids

Cost Optimization

PipingManagementLand

FLACS‐CFD code

Price of Buildings Risk Cost

http://www.gexcon.co.uk/products_explo.html

Selection of 

the grid

Protection Device

6

Page 7: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Consequence Analysis

Jet fire

D. C.

• Receptor

Iso-ovepressure

0 500 1000 1500

Integrate these scenarios to get the Risk Map7

Vapor Cloud Explosion(VCE)

Boiling Liquid Expansion 

Vapor Explsion(BLEVE)

Page 8: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

* Building Type – Different Probit

Models

Event Tree Analysis

ConsequenceAnalysis

Building 

Type Risk(Hazard)

Score on Grids

ReleaseFrequency

(Salzano, 2006)

Example Classification of Buildings

CCPS, Guidelines for

Evaluating Process Plant Buildings for External Explosions and Fires

)ln(Pr opBA

8

Incident outcome frequency X Lifetime of the plant X Probability

of structural damage X W.F.

Risk Score =

Risk(Hazard)Score on Grids

Page 9: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Case Study – C6

distillation column

Description‐ A distillation column is used to     separate hexane and heptane Incident outcome frequency via ETA

9

AICHE/CCPS (2007) Guidelines for chemical process quantitative risk analysis

Page 10: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Grid selection method

G01 G02 G03 G04 G05 G06 G07 G08 G09 G10

G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

G21 G22 G23 G24 G25 G26 G27 G28 G29 G30

G31 G32 G33 G34 G35 G36 G37 G38 G39 G40

G41 G42 G43 G44 G47 G48 G49 G50

G51 G52 G53 G54 G57 G58 G59 G60

G61 G62 G63 G64 G65 G66 G67 G68 G69 G70

G71 G72 G73 G74 G75 G76 G77 G78 G79 G80

G81 G82 G83 G84 G85 G86 G87 G88 G89 G90

G91 G92 G93 G94 G95 G96 G97 G98 G99 G100

100 grids

10m x 10m for each grid

The center of map (marked in black) indicates the location of 

hazardous process units (process plant building)

Given: 

• a set of facilities, indexed as i = 1,2,…,n

• a set of available locations, Gk ,  

k = 1,2,…,K

• RDk

: Rectilinear Distance of “k”

grid from the center

• RSk

: Risk Score of “k”

grid caused from center

• cost data (piping, connection, construction, protection device)

Determine:

• the location of each facility 

Total of 7 facilities

100 m

100 m

10

Page 11: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Risk Score (RSk

RS for BLEVE RS for VCE

• Receptor

Iso-ovepressure

50 years lifetime was assumed

Probability of Structure 

Damage )ln(92.28.23Pr op

Incident outcome frequency X Lifetime of the plant X Probability

of structural damage X 

W F

RS= 11

Page 12: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Risk Score (RSk

1E‐05 8E‐05 4E‐04 1E‐03 0.002 0.002 1E‐03 4E‐04 8E‐05 1E‐05

8E‐05 6E‐04 0.003 0.007 0.011 0.011 0.007 0.003 6E‐04 8E‐05

4E‐04 0.003 0.011 0.022 0.026 0.026 0.022 0.011 0.003 4E‐04

1E‐03 0.007 0.022 0.028 0.028 0.028 0.028 0.022 0.007 1E‐03

0.002 0.011 0.026 0.028 0.028 0.026 0.011 0.002

0.002 0.011 0.026 0.028 0.028 0.026 0.011 0.002

1E‐03 0.007 0.022 0.028 0.028 0.028 0.028 0.022 0.007 1E‐03

4E‐04 0.003 0.011 0.022 0.026 0.026 0.022 0.011 0.003 4E‐04

8E‐05 6E‐04 0.003 0.007 0.011 0.011 0.007 0.003 6E‐04 8E‐05

1E‐05 8E‐05 4E‐04 1E‐03 0.002 0.002 1E‐03 4E‐04 8E‐05 1E‐05

0.026 0.027 0.028 0.029 0.027 0.026 0.025 0.022 0.02 0.018

0.026 0.029 0.03 0.031 0.03 0.029 0.026 0.023 0.021 0.018

0.027 0.03 0.032 0.033 0.033 0.032 0.028 0.024 0.021 0.018

0.028 0.031 0.034 0.036 0.036 0.035 0.029 0.024 0.021 0.018

0.027 0.03 0.034 0.037 0 0 0.029 0.024 0.02 0.018

0.027 0.03 0.033 0.037 0 0 0.028 0.023 0.02 0.017

0.026 0.028 0.031 0.033 0.032 0.031 0.027 0.023 0.02 0.017

0.025 0.027 0.029 0.029 0.029 0.028 0.025 0.022 0.02 0.017

0.023 0.025 0.026 0.027 0.026 0.025 0.023 0.022 0.02 0.017

0.022 0.023 0.024 0.025 0.024 0.023 0.022 0.02 0.019 0.017

RS for BLEVE RS for VCE

+

Incident outcome frequency X Lifetime of the plant X Probability

of structural damage X 

W.F.

RS=

12

Page 13: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Risk Score (RSk

0.026 0.027 0.028 0.03 0.029 0.028 0.026 0.023 0.02 0.018

0.026 0.029 0.032 0.038 0.041 0.04 0.033 0.026 0.021 0.018

0.027 0.032 0.043 0.055 0.059 0.058 0.05 0.035 0.023 0.018

0.029 0.038 0.056 0.065 0.064 0.063 0.057 0.046 0.028 0.019

0.029 0.041 0.06 0.066 0.057 0.05 0.032 0.019

0.029 0.041 0.059 0.065 0.057 0.05 0.031 0.019

0.027 0.036 0.053 0.061 0.06 0.06 0.055 0.045 0.027 0.018

0.025 0.03 0.04 0.051 0.055 0.054 0.047 0.033 0.023 0.018

0.023 0.026 0.029 0.034 0.037 0.037 0.031 0.025 0.021 0.017

0.022 0.023 0.024 0.026 0.026 0.025 0.023 0.02 0.019 0.017

Integrated Risk Score

Incident outcome frequency X Lifetime of the plant X Probability

of structural damage X 

W.F.

RS=

13

Page 14: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Objective function

Minimize Total cost {Risk cost + Piping cost}

• FCi : Facility or Building Cost of “i”

• UPi : Piping or relationship cost between i and the center in $ / m 

14

i Type Building Cost ($) UP (Relationship) cost

1 Main control room 1,000,000 10

2 Office 300,000 0.1

3 Maintenance Building 200,000 2

4 Large volume storage (> 38 m3) 150,000 100

5 Small volume storage 1 (< 38 m3) 100,000 100

6 Small volume storage 2 (< 38 m3) 100,000 100

7 Utility 500,000 50

Cost Data

Page 15: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Constraints

Minimum, maximum separation distances

Non‐overlapping

15

Page 16: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Recommended separation distances

On‐Site Building Utilities

Atmospheric & Low 

Pressure Flammable & 

Combustible Storage 

Tanks (up to 1 atm)< 38 m3

Atmospheric & Low 

Pressure Flammable & 

Combustible Storage 

Tanks (up to 1 atm)   > 

38 m3

High Pressure 

Flammable Storage

Office, Lab, 

Maintenance, 

Warehouse

30 15 76 107

Control Room‐Main

30 30 76 107

Control Room‐One Unit

30 15 76 76

4 (Large 

storage)

5 (Small 

storage)

6 (Small 

storage)

7 (Utility)

1 (Main control room) 76 m 30 m 30 m 30 m

2 (Office) 76 m 15 m 15 m 30 m

3 (Maintenance building) 76 m 15 m 15 m 30 m

present case study

AICHE/CCPS (2003). Guidelines for Facility Siting and Layout.

16

Page 17: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

G01 G02 G03 G04 G05 G06 G07 G08 G09 G10

G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

G21 G22 G23 G24 G25 G26 G27 G28 G29 G30

G31 G32 G33 G34 G35 G36 G37 G38 G39 G40

G41 G42 G43 G44 G47 G48 G49 G50

G51 G52 G53 G54 G57 G58 G59 G60

G61 G62 G63 G64 G65 G66 G67 G68 G69 G70

G71 G72 G73 G74 G75 G76 G77 G78 G79 G80

G81 G82 G83 G84 G85 G86 G87 G88 G89 G90

G91 G92 G93 G94 G95 G96 G97 G98 G99 G100

Optimization Results

17

L.

Storage

S.

Storage Utility

S.

Storage

ControlRoom

Office M.B.

Page 18: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

Conclusion

18

Propylene plant case study

Multiple hazardous process plants

Different size of facilities

Different probit functions

Fire & Explosion Simulation using FLACS

Combination of Risk Mapping and Grid Optimization: advance facility layout 

methodology (safety & economics)

Case study for Hexane‐Heptane separation plant was demonstrated to 

obtain the optimal layout of 7 facilities around the hazardous process unit

Adaptable for numerous facilities with swift calculation (MILP)

Future work

Page 19: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

1 James A. Baker, Glenn Erwin, Sharon Priest, Paul V. Tebo, Isadore Rosenthal, Frank L. Bowman, Dennis Hendershot, Nancy Leveson, L. Duane Wilson, Slade Gorton an

d Wiegmann, D.A. THE REPORT OF THE BP U.S. REFINERIES INDEPENDENT SAFETY REVIEW PANEL. 2007).

2 Elizabeth Dole and Scannell, G.F. Phillips 66 Company Houston Chemical Complex Explosion and Fire. 1990).

3 Daniel A. Crowl and Louvar, J.F. Chemical Process Safety. (PH PTR, 2002).

4 Giby Joseph, Mark Kaszniak and Long, L. Lessons after Bhopal: CSB a catalyst for change Journal of Loss Prevention in the Process Industries, 2005, 18(4‐6).

5 AICHE/CCPS. Guidelines for Facility Siting and Layout.

(American Institute of Chemical Enginers, New York, 2003).

6 Mannan, M.S. Lees' Loss prevention in the process industries: Hazard identification, assessment and control. (Elsevier Butterworth‐Heinemann, USA, 2005).

7 Mecklenburgh, J.C. Plant layout: a guide to the layout of process plant and sites. (Wiley, New York, 1973).

8 S. Jayakumar and Reklaitis, G.V. Chemical plant layout via graph partitioning‐II. Multiple levels. Computers & Chemical Engineering, 1996, 20(5), 563‐578.

9 S. Jayakumar and Reklaitis, G.V. Chemical plant layout via graph partitioning‐l. Single level,. Computers & Chemical Engineering, 1994, 18(5), 441‐458.

10 M. C. Georgiadis and Macchietto, S. Layout of process plants:

A novel approach. Computers & Chemical Engineering, 1997, 21(S1), S337‐S342.

11 Derya B. Özyurt and Realff, M.J. Geographic and Process Information for Chemcal Plant Layout Problems. AIChE Journal, 1999, 45(10).

12 Flavio D. Penteado and Ciric, A.R. An MINLP approach for safe

process plant layout. Industrial and Engineering Chemistry Research, 1996, 35(4), 1354‐1361.

13 Dimitrios I. Patsiatzis and Papageorgiou, L.G. Optimal multi‐floor process plant layout. Computers & Chemical Engineering, 2002, 26(4‐5), 575‐583.

14 Dimitrios I. Patsiatzis, Knight, G. and Papageorgiou, L.G. An

MILP approach to safe process plant layout. Trans IChemE Part A: Chemical Engineering and Design, 2004

, 82(A5), 579‐586.

15 AIChE. Dow's Fire & Explosion Index Hazard Classification Guide. (American Institute of Chemical Engineers, New York, USA, 1994).

16 Ken Paterson, Vincent H. Y. Tam, Thanos Moros and Ward‐Gittos, D. The design of BP ETAP platform against gas explosions. Journal of Loss Prevention in the Process 

Industries, 2000, 13(1), 73‐79.

17 Valerio Cozzani, Alessandro Tugnoli and Salzano, E. Prevention of domino effect: From active and passive strategies to inherently safer design. Journal of Hazardous 

Materials, 2007, 139(2), 209‐219.

18 Sanders, R.E. Designs that lacked inherent safety: case histories. Journal of Hazardous Materials, 2003, 104(1‐3), 149‐161.

19 Sumit Anand, Nir Keren, Marietta J. Tretter, Yanjun Wang, T. Michael O'Connor and Mannan, M.S. Harnessing data mining to explore incident databases Journal of 

Hazardous Materials, 2006, 130(1‐2), 33‐41.

20 The Meteorological Resource Center. <http://www.webmet.com/State_pages/met_tx.htm> (accessed December 2008)

21 Dandrieux, A.l., Dusserre, G. and Ollivier, J. Small scale field experiments of chlorine dispersion. Journal of Loss Prevention in the Process Industries, 2002, 15, 5‐10.

22 AICHE/CCPS. Guidelines for Consequence Analysis of Chemical Releases. (American Institute of Chemical Engineers, New York, 1999).

References

19

Page 20: A New Approach for Facility Siting using Mapping Risks on …psc.tamu.edu/files/symposia/2009/presentations/4 Jung... ·  · 2016-11-08A New Approach for Facility Siting using Mapping

QRA

CFD

OPT

Thank you!

20