20
1 Lindseth, et al. A New 449 MHz Wind Profiler Radar: Antenna and Amplifier Design Brad Lindseth 1,2 , W. O. J. Brown 1 , S. A. Cohn 1 , J. R. Jordan 3 , T. Hock 1 , N. Lopez 4,2 , J. Hoversten 2 , Z. Popovic 2 1 EOL, NCAR, Boulder, CO, United States 2 ECEE, University of Colorado, Boulder, CO, United States 3 NOAA, Boulder, CO, United States 4 MIT Lincoln Laboratory, Lexington, MA, United States

A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

1

Lindseth, et al.

A New 449 MHz Wind Profiler Radar:

Antenna and Amplifier Design

Brad Lindseth1,2, W. O. J. Brown1, S. A. Cohn1, J. R. Jordan3, T. Hock1, N. Lopez4,2, J. Hoversten2, Z. Popovic2

1EOL, NCAR, Boulder, CO, United States2ECEE, University of Colorado, Boulder, CO, United States3NOAA, Boulder, CO, United States4MIT Lincoln Laboratory, Lexington, MA, United States

Page 2: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

2

Lindseth, et al.

Current Profiling Capability

• Three deployable boundary layer 915 MHz Wind Profilers with RASS• Winds to ~3 km (virtual temperature to ~1 km)

60-100 m height resolution Options: MAPR, Mobile-ISS, ship-borne, sodar, ceilometer

44 ISS deployments since 199230-min time resolution with ISS1-min time resolution with 915 MHz MAPR spaced antenna system

MISS

MAPR

Integrated Sounding System (ISS)

Page 3: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

3

Lindseth, et al.

New Wind Profiler Improvements

• Use 449 MHz frequency because it is more sensitive to clear air turbulence than 915 MHz. This will allow sensing beyond 3 km.

• Design (NOAA) and evaluate (NCAR) new antenna with better sidelobe performance

• Explore high power amplifier solutions• Upgrade other components such as

circulators and LNAs

Page 4: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

4

Lindseth, et al.

Nine antennas could make 3 Boundary Layer profilers,Power x Aperture for 4km Max. Range

Or 7 antennas could make 1Mid-Troposphere profiler7km Max. Range

Modular Antenna System: Easily Scalable

Page 5: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

5

Lindseth, et al.

• Single Pulse Radar Equation for SNR for Bragg scatter from a clear air target can be written as

• Single pulse SNR is very low, coherent pulse integration and spectral averaging are used to increase SNR

Background

APCLkTRc

RAPSNR tnsys

at

223/1

2

421.0

Doviak and Zrnic

Page 6: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

6

Lindseth, et al.

Radar Specifications

150mRange resolution

1 m/sVelocity precision

1 minuteTime resolution

6 kW or moreRF power

54 or 162 circular patch arrayAntenna

DopplerVertical velocity method

4-bit complementary code (phase modulation)

Pulse code

Spaced AntennaHorizontal velocity method

4km to 7km (depending on power x aperture

Last range gate

100-150mFirst range gate449 MHzFrequency

Page 7: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

7

Lindseth, et al.

MAPR 64 Square Patch Array (915 MHz)

MAPR Antenna

• Theoretical array factor pattern, assumes no mutual coupling

•Edge of plot is at horizon, center is zenith

• Sidelobe level: 20 dB down from main beam at horizon

Array Layout

1 m

1 m

(Dan Law, NOAA)

dB

Page 8: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

8

Lindseth, et al.

New 449 MHz 54 Circular Patch Array

3-element 2.887-lambda array of 18-element 0.667-lambda subarrays

Normalized Radiation Pattern-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

Array Layout

• Sidelobe level: 40 dB down from main beam at horizon

449 Antenna

3 m

3 m

dB

Page 9: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

9

Lindseth, et al.

Patch Antennas

• Copper patches on foam dielectric with aluminum ground plane

Page 10: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

10

Lindseth, et al.

Antenna Verification

449 MHz antenna sidelobemeasurements

Sidelobes at horizon are at least 33 dB lower than main beam

Modular Profiler Antenna Sidelobe Levels (Receiver polarization oriented horizontally)

-60

-55

-50

-45

-40

-35

-30

-25

-180 -90 0 90 180

Antenna Azimuth Angle (degrees)

Side

lobe

leve

l (dB

dow

n fr

om

mai

n be

am)

Receiver atHorizontal

Receiver at 12.6degrees

Receiver at 20degrees

Sidelobes at Horizon at least 33 dB down

Page 11: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

11

Lindseth, et al.

Prototype 449 MHz antenna and 915 MHz DBS profiler comparison

Clear air reflectivity from a single prototype 449-MHz antenna panel and a 915-MHz system.

Higher reflectivity clear-air signals from the 449 MHz system after normalizing the two systems during precipitation

13 Dec 2007 Time

Alti

tude

(km

)

Page 12: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

12

Lindseth, et al.

3-Channel System Design

HPA

Existing Amplifier: 2 kW, Class-C, $30,000

~ -150 dBm

Page 13: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

13

Lindseth, et al.

Amplifier Strategy: Use Low Cost LDMOS Transistors and Class-E

mode of operation

100%E

90%C

78%AB

Theoretical Efficiency

Class of Operation

50%A

• High efficiency has benefit of less dissipated heat in transistor

• Higher reliability• More portable,

less heat sink weight

Page 14: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

14

Lindseth, et al.

Class-E design process

(Lopez, 2008)

Class-E ideal circuit

Switch closed: Vout = 0Switch open: Ic > 0

jZ

eC

Z

net

j

ssnet

2.38.2

28. 05.49

AGR09045E LDMOS transistor output capacitance is 23 pF

Class-E output match approximation, include open circuit at 2nd

harmonic

Open circuit at 2nd

harmonic helps create high efficiency “soft-switching” waveforms

(Mader, 1995)

f = 449 MHz

Page 15: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

15

Lindseth, et al.

Class-E transmission line design

Layout of output network using design from Agilent ADSLow impedance Class-E match and open circuit stub at second

harmonic on Rogers 4350B substrate

Znet = 2.8 + 3.2j Ohms

Page 16: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

16

Lindseth, et al.

Class-E lumped element amplifier

449 MHz Low power 1W Class-E amplifier evaluation, Low cost transistors, 80% efficiency.

High efficiency power amplifier evaluation

449 MHz 40W LDMOS amplifier based on a Triquint AGR09045E transistor in Class-E mode. First results: 65% efficiency. ~1 watt per dollar. Expect ~%80 in final design

Z = 2.8 + 3.2j Ohms

Page 17: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

17

Lindseth, et al.

Power Sweep of 449 MHz AGR09045E Power Amplifier Vds=18V

010203040506070

10 15 20 25 30 35

Input Power (dBm)

Pin

(dB

m),

Gai

n (d

B)

010203040506070

PAE

(%)

Gain

OutputPowerPAE

Preliminary data, 10W out at 65% PAE and 10 dB gain

Page 18: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

18

Lindseth, et al.

• Currently evaluating Freescale LDMOS devices. ~$35 per 60W transistor. Less than $1 per watt in parts cost. Preliminary data above, 66% PAE, 25W, 11.8 dB gain

• Future work will combine two transistors to make a >100W amplifier module

Power sweep of 449 MHz Freescale LDMOS Amplifier Vds=20V

010203040506070

10 15 20 25 30 35Input Power (dBm)

Pout

(dB

m),

Gai

n (d

B)

010203040506070

PAE

(%)

GainOutput PowerPAE

Page 19: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

19

Lindseth, et al.

Future Modular Amplifier Configuration

• Amplifier behind each of the 54 patches

• 100W per patch• 5.4 kW total over whole array• 54 * $35 = $1890 in transistor

cost, estimate $10,000 total cost vs. $30,000 for commercial amplifier

Page 20: A New 449 MHz Wind Profiler Radar: Antenna and Amplifier

20

Lindseth, et al.

Summary

• New antenna design for 449 MHz confirmed with measurements

• High power amplifier alternatives are being evaluated, with efficiencies up to 80%

• System performance compared to 915 MHz DBS system• Future work:• Demonstrate spaced antenna horizontal winds with three

antenna system (54 elements)• Demonstrate high efficiency high power amplifier, 80% PAE

and 100W per module• Demonstrate 54 antenna-amplifier element array• Cost: Under $10,000 in parts cost for 54 100W amplifiers