8
196 IZVESTIYA VUZ. RADIOFIZIi<A A GENERALIZED STOCHASTIC APPROXIMATION PROBLEM V. A. Brusin Izvestiya VUZ. Radiofizika, Vol. 11, No. 3, pp. 353-367, 1968 UDC 621.391.192.5 Discrete and continuous versionsof a generalized stochastic approxi- mation problem are formulated. It is shownthat this problem can be solved by the Robbins-Murtto algorithm which converges in probabil- ity. The problem of stochastic approximation was first formulated and solved by Robbins and Munro [1]. Having arisen in connection with regressional analy- sis, the problem consists in setting up an iterative process that converges in probability to the root of the equation E w(~)=0, where w(x) is a random func- tion of argument x, and E is the mathematical ex- x pectation of this random function for the stated value of the argument. Robbins and Munro found such a pro- cess and demonstrated its convergence in probability to the root, subject to certain restrictions on the ran- dom function w(x). Paper [1] was the forerunner of many studies of stochastic approximation. A fairly complete survey of these papers is to be found in the journal Avtomatika i Telemekhanika, No. 4, 1966. Two years ago, these papers came to the attention of specialists working in the field of applied cyber- netics. As was first pointed out by Tsypkin [2], the stochastic approximation problem proves to be closely connected with several present-day problems of cy- bernetics, e.g., pattern recognition, dual control, etc. Tsypkin [2] also interpreted stochastic approxi- mation as a problem of the (stochastic) stability of a certain type of nonlinear nonautonomous stochastic sampling control system (see Fig. la). Subsequently, the Robbins-Munro problem was generalized to the case of continuous search which corresponds to the analogous continuous control system (see Fig. 2a). The present paper gives a further generalization of the Robbins-Munro problem to problems associated with more complicated control systems. Figure lb shows the control system corresponding to the dis- crete version of the problem, and Fig. 2b is for the continuous version. It has been proved that the Rob- bins-Munro algorithm for the "classical" problem of stochastic approximation also solves the above gen- eralized problem for the same restrictions on the ran- dom quantity ~. The discrete case is considered in detail. For the continuous case, in view of the analogy, it suffices to formulate the problem and quote the basic results. 1. FORMULATION OF PROBLEM FOR DISCRETE CASE Let us consider a nonlinear stochastic object with controlled input {Un}, uncontrolled stochastic signal (in}, and output {Vn} (n = -1, 0, 1, 2,...). The output signal {vn~ is related to the input vari- ables via a difference equation v~, = w,,_q (q >0) , (1) w,, = r + %, (2) Tox, + Tlx,,-1 +.. + T~x .... "court + + ~ltt.-t +. + ~u .... (3) where {Xn}, {Wn} are "internal" variables in the ob- ject. The block diagram of the object is given in Fig. lb. The state of the object (1) through (3) at instant k is given (see [3]) by the s-dimensional vector (xk, Xk- 1, .... Xk-s+l). We will assume that at instant n = 0 the object is in the state M~ given by (Xo o, xo_t ..... .~_~+,) (4a) and that u. = 0 (n ~< 0). (5) Moreover, the following properties of the object will be postulated. NONLINEARITY OF go (x) I) There is a | such that ~(~) = 0, (6a) and when x # | we have ~(x) (x -- O) ~ 0. (6b) 2) For all x there is an R < co such that I v(x)! ~< R. (6c) 3) For arbitrary 6 > 0 there is a A(5) > 0 such that i ? (x) l ~ A, (6d) when Ix - @1 > 6. LINEAR PART OF OBJECT 1) The roots of the polynomial T~(z) ~ Tozs + Tlz s-l -]- . .. + Ts (7a) lie inside the unit circle. s 2) ro + o, ~ ~ + o. (7b) 0 RANDOM PROCESS {In} The random process {in} = in(A) is defined in the usual way as a function of two variables, namely the integers n and )% where ~ is an element of a set A on which is defined a (y-algebra and the probability mea- sure P(~), also called the probability space (see [4]).

A generalized stochastic approximation problem

Embed Size (px)

Citation preview

Page 1: A generalized stochastic approximation problem

196 IZVESTIYA VUZ. RADIOFIZIi<A

A GENERALIZED STOCHASTIC APPROXIMATION PROBLEM

V. A. Brus in

Izvest iya VUZ. Radiofizika, Vol. 11, No. 3, pp. 353-367, 1968

UDC 621.391.192.5

Discrete and continuous versions of a generalized stochastic approxi- mation problem are formulated. It is shown that this problem can be solved by the Robbins-Murtto algorithm which converges in probabil- ity.

The problem of stochastic approximation was f i r s t formulated and solved by Robbins and Munro [1]. Having a r i sen in connection with r eg ress iona l analy- s is , the problem consis ts in set t ing up an i tera t ive process that converges in probabi l i ty to the root of the equation E w(~)=0, where w(x) is a random func-

tion of a rgument x, and E is the mathemat ica l ex- x

pectation of this random function for the stated value of the argument . Robbins and Munro found such a pro- cess and demonstra ted its convergence in probabi l i ty to the root, subject to ce r ta in res t r i c t ions on the ran - dom function w(x).

Paper [1] was the fo r e runne r of many studies of stochastic approximation. A fa i r ly complete survey of these papers is to be found in the journal Avtomatika i Telemekhanika, No. 4, 1966.

Two years ago, these papers came to the at tention of specia l i s t s working in the field of applied cyber - net ics . As was f i r s t pointed out by Tsypkin [2], the stochastic approximation problem proves to be closely connected with severa l p resen t -day problems of cy- berne t ics , e . g . , pa t tern recognit ion, dual control , etc. Tsypkin [2] also in terpre ted stochast ic approxi- mation as a problem of the (stochastic) s tabi l i ty of a cer ta in type of nonl inear nonautonomous stochast ic sampl ing control sys tem (see Fig. la). Subsequently, the Robbins-Munro problem was general ized to the case of continuous search which cor responds to the analogous continuous control sys tem (see Fig. 2a).

The p resen t paper gives a fur ther genera l iza t ion of the Robbins-Munro problem to problems associated with more complicated control sys tems . F igure lb shows the control sys tem corresponding to the d i s - cre te ve r s ion of the problem, and Fig. 2b is for the continuous vers ion . It has been proved that the Rob- b ins -Munro algori thm for the "c lass ica l" problem of stochastic approximation also solves the above gen- eral ized problem for the same res t r i c t ions on the r an - dom quanti ty ~.

The d isc re te case is considered in detail . For the continuous case, in view of the analogy, it suffices to formulate the problem and quote the bas ic resu l t s .

1. FORMULATION OF PROBLEM FOR DISCRETE CASE

Let us consider a nonl inear s tochast ic object with controlled input {Un}, uncontrol led s tochast ic s ignal (in}, and output {Vn} (n = - 1 , 0, 1, 2 , . . . ) .

The output s ignal {vn~ is related to the input va r i - ables via a difference equation

v~, = w,,_q (q > 0 ) , (1)

w,, = r + %, (2)

Tox , + Tlx, ,-1 + . . �9 + T~x . . . . "court +

+ ~ltt.-t + . �9 �9 + ~ u . . . . (3)

where {Xn}, {Wn} are "internal" variables in the ob-

ject.

The block d iagram of the object is given in Fig. lb . The state of the object (1) through (3) at ins tant k is given (see [3]) by the s -d imens iona l vector (x k, Xk- 1,

. . . . Xk-s+l). We wil l a ssume that at ins tant n = 0 the object is in

the state M ~ given by

(Xo o, xo_t . . . . . .~_~+,) (4a) and that

u. = 0 (n ~< 0) . (5)

Moreover, the following proper t ies of the object will be postulated.

NONLINEARITY OF go (x)

I) There is a | such that

~(~) = 0 , (6a)

and when x # | we have

~(x) (x -- O) ~ 0. (6b)

2) For all x there is an R < co such that

I v(x)! ~< R. (6c)

3) For a r b i t r a r y 6 > 0 there is a A(5) > 0 such that

i ? (x) l ~ A, (6d)

when Ix - @1 > 6.

LINEAR PART OF OBJECT

1) The roots of the polynomial

T~(z) ~ To zs + T l z s- l -]- . . . + Ts (7a)

l ie inside the unit c i rc le . s

2) ro + o, ~ ~ + o. (7b) 0

RANDOM PROCESS {In}

The random process {in} = in(A) is defined in the usual way as a function of two var iab les , namely the in tegers n and )% where ~ is an e lement of a set A on which is defined a (y-algebra and the probabi l i ty mea- sure P(~), also called the probabi l i ty space (see [4]).

Page 2: A generalized stochastic approximation problem

RADIOPHYSICS AND QUANTUM ELECTRONICS 197

For a fixed ~ in A we have a function of the va r i - able n. This const i tutes a rea l iza t ion of the random process .

According to (1), (2) the output process v n, and w n also, are random processes on the same probabi l i ty space A. (Thus s t r i c t ly speaking we should wri te Vn(k ) and Wn(A)). Let A0 be a subse t of A, and let E

h0

denote the conditional mathemat ica l expectation on A0, i . e .

Moreover , ~k will denote the (k + 1) -d imensional vec- tor (~0 . . . . . ~k), and ~ s (k)wil 1 denote the mathemat i -

cal expectation of s(X) on the set A(~k) defined by the conditions ~i(~) = ~i (i = 0, 1 . . . . . k).

The r e s t r i c t i on on the random process {~k} can now be formulated as

E ~ , ~ = 0 ( ] = l + q , 2q-q . . . . , n),

n - ]

E ~ < o ~ < ~ ( n = o , ~, 2, ) (8)

Now the given object is defined by Eqs. (1)-(5), (6a)-(6d), (Ta), (7b), and (8). At each instant of t ime n, the value of the output w n is known and the input u n can be p resc r ibed . The general ized s tochast ic approx- imat ion problem consis ts in finding an a lgor i thm f

a,, = f ( v ~ - l , v n - 2 . . . . ; u n - 1 , u , - 2 , �9 . . ) , (9)

that is independent of the values of the object p a r a m - e ters and such that the process {Un} converges to the root | of the equation

~(x) = o . (lO)

A more p rec i se formulat ion of the problem is as fol- lows: to find an algori thm (9) such that the random process {Xn}, generated by {Un} in accordance with (2) and (3), converges in probabi l i ty [4] to the root of equation (10), i . e . ,

(p) llm [Xn} = O. (11)

tg

In w167 3 below it will be shown that this problem is solved by the Robbins-Munro algori thm [1]:

un+l = Un - - 7nvn (n = O, 1 .... ), (12a)

where {Yn} is a s i gn - inva r i an t sequence (or contains only a finite number of changes in sign) such that

co ca

E T~ = co, E ~ ] < co . (13a) rz=O n=O

2. SOLUTION OF THE GENERALIZED STOCHASTIC

APPROXIMATION PROBLEM (DISCRETE VERSION)

Consider the recursive formula

= - (E r,) (12b)

where Yn > O. Condition (13a) will be satisfied when n -> 0, and it will be assumed that

Tn = 0 (when n ~ O ) . (13b)

In v i r tue of (1) and (3) the algori thm (12a) generates the random process {Xn(k)} where k belongs to A. The block d iagram of sys tem (1)-(3), (12b) is shown in Fig. lb . We have the following theorem.

Theorem 1. The random process [Xn(k)} generated by the algori thm (12b), (13a) converges in probabil i ty to the value |

Before proving the theorem we will set down some resu l t s f rom the theory of l inear difference equations and prove some l emmas .

It follows from (1)-(4a), (12b), and (13b) that

To(x~ - - x,~-0 +

-~- T l (xn- -1 - - x n - 2 ) q . . . . - k T + ( x . . . . - - x . . . . 1) =

=--P(~oY,-I-q-P~lY, 2 q q - . . . + % ~ y n - s - q I) ; (14a)

y. = ~.~,. = 7,,(,e(z.) -~ ~ . ) ,

x(0) = x0, x_ , = x ~ - l . . . . . x_~+t = x ~ (4b)

where for s impl ic i ty of notation the p a r a m e t e r X in xi(k ) has been omitted and the abbreviat ion ,o = sgn x

x ( S " ' / 2 r i ) i s used.

F rom (14a) it follows [3] that

~l--q--1

x n = - - p ~ H ( n - - m)y m -4- C o ( N o ) q- f ( t ~ , N o ) , , (15a) r n = 0

where H(n) is the inverse z - t r a n s f o r m of

l Y / ( z ) = "%z s - k "~tz ~ - 1 + �9 . . -}- %, (i6a) z q ( z - - 1) (Toz" + T ~ z ~ - ' + . . . + T D '

and the function C0(M0), f ( n , Mo) sat isfy the re la t ion

If(n, No) I< C,(M.)!'~[,* , (17a)

where ~ is the root of g rea tes t magnitude of the poly- nomial Ts(z), and

0

c0-,0, c , - , 0 (when Z = HNoll- ,0) . (17b) i = - - s + l

Let Q be an in teger g rea t e r than I + q and N* = s + + Q. We define the random process fin(k) (X E A, n = = . . . , - 1 , 0 , 1 , 2 . . . . ) such that

~o(x~ - - x,._,) +

: -- P(~oY~-I-q+ :lY~-2-q+ . . . + ' : ~ Y , ~ - ~ - t - q ) , (14b)

' ~ ( ~ ( x D + ~)

Yk = ~k(M~, Q)

0

where

( if k ~ N*)

( i f 0 < k ~ < , v * ) ,

(if k ~ 0)

(18)

Page 3: A generalized stochastic approximation problem

198 I Z V E S T I Y A VUZ. RADIOFIZIKA

and the funct ion ~2 is such that

.q (~) = 0

(k = N* - - s - - q - - 1 . . . . . N* - - I, N*) ; (20)

XO = ~ ' - -1 = �9 �9 �9 = X - s + l ~ 0 ,

X N * - - i = X - - i ' - O ( i = 0 , 1 . . . . , s - - l ) . (21)

Condi t ion (20) m e a n s that a f t e r N* s t eps the c o n t r o l func t ion Yk = ~2k d r i v e s s y s t e m (14b) f r o m the z e r o in i t i a l s t a t e M0 = (0 . . . . . 0) into the s t a t e I~IN, which ,

z o ~ ( x ] ]r v,

a

b

Fig. 1

a p a r t f r o m a phase shi f t | c o r r e s p o n d s to s t a t e M 0 of the in i t i a l s y s t e m . This s t a t e is i d e n t i c a l l y z e r o on the fo l lowing s e q u e n c e of s t eps s + q + 1.

Such a con t ro l a lways e x i s t s (with c o r r e s p o n d i n g Q) if the s y s t e m is " c o m p l e t e l y c o n t r o l l a b l e " in the s e n s e of K a l m a n [5]. Condi t ions (7b) g u a r a n t e e th is p r o p e r t y .

It can be shown that when n > N*

X n ( X ) = X a t _ N , ( t , ) - - (~) . (22)

Thus , when n > N* the r e a l i z a t i o n s of the s t o c h a s t i c p r o c e s s Rn(X) s a t i s fy the s y s t e m of equa t ions (14b) and (18)-(20) wi th the in i t ia l cond i t ions (21) at the ins tan t n --: N*. A c c o r d i n g to the un iquenes s t h e o r e m t h e s e condi t ions un ique ly d e t e r m i n e Xn(it) fo r n > N* and fo r X E A .

In v i r t u e of (19), the change of v a r i a b l e s Yn = = Yn-N*, Xn = Xn-N* - | arid phase sh i f t ~ = n - N* changes s y s t e m (14b), (18) fo r fi > N* into s y s t e m (14a) fo r n > 0, and the in i t i a l cond i t ions (21) into (4b). In addi t ion, condi t ion (20) is t r a n s f o r m e d into cond i t ion ~ = 0 (H ~ 0). T h e r e f o r e condi t ion (22) wi l l be s a t i s - f ied when n > N*. Hence we have e s t a b l i s h e d the fo l - lowing l e m m a :

L e m m a 1. The c o n v e r g e n c e of the p r o c e s s xn(7~) to | is equ iva l en t to the c o n v e r g e n c e of the p r o c e s s XnQ') def ined by (14b) and (18)-(21) to z e r o .

Now the p roo f of the t h e o r e m r e q u i r e s a d e m o n - s t r a t i o n of the f ac t that

- (p) lira x n = O . ( 2 3 )

We wi l l p r e d e t e r m i n e the r a n d o m p r o c e s s ~n(X) in the i n t e r v a l 0 -< n -<- N* by se t t i ng ~n = 0. In v i r t u e of (8a) and (19), fo r n -> 0 we have

E { ~ - - 0 ( / = l + q , 2 + q . . . . . n ) ,

h

(~,-/ = (~o . . . . . T . - i ) ; n = 1, 2 . . . . ) . ( 2 4 )

Analogous to (15a) - (17b) , fo r the p r o c e s s ~n(X) we have when n > N > 0

n--q--I ~,('L) = - - p ~ H ( n - - r n ) ~m +

m:N--q--I

+ Co(MN) + f ( n -- N, ~I~,), (15b)

w h e r e lVI N is the s t a t e v e c t o r (RN, RN_I . . . . . XN-s+l) and C O and f a r e as in (15a).

To s i m p l i f y the no ta t ion we wi l l t e m p o r a r i l y o m i t the b a r s o v e r v a r i a b l e s x n, Yn, ~n, e t c . , r e m e m b e r - ing that f r o m now on we a r e dea l i ng wi th the a u x i l i a r y p r o c e s s .

Let us write W(z) given in (16a) in the form

koz-q k lg-q W(z) - ~.~ z-- { + K(z)' K(z) = - - , (16b)

Z - - Z t i=l

w h e r e z i a r e the po les of W(z), i . e . , the roo t s of Ts(Z ), w h o s e modu l i a r e l e s s than one, and k 0 = = ~ ~.~/~ T v It is known [3] tha t t h e r e is a cons t an t C 2 such that

SuplK(z)i ~ c~, 1 i" I= " [zl--i ~ - I K(e i'~) d m < C~ (25)

We i n t r o d u c e the notation

YN, r ( n ) = { y~ ( : i f N - < n ~ < T + N ) , (26) 0 i i . f ' n > T . q - N or n < N )

w h e r e YN, T(ejc~ is the F o u r i e r t r a n s f o r m of YN, T(n). F ina l l y we i n t r o d u c e the no ta t ion

N+T

~r(~N-~-~) = E ~ x~ y.0), (27) ~N--q--1 n:N

T

P~ = E ~ x.(x) y.(x) (28) A n=O

L e m m a 2. F o r a r b i t r a r y N -> 0 we have the inequa l - i t i e s

"pT(~N--q--I) < - - - -

~N-q--I n=N

N+T + [E (

~N--q--I n=N

N - - I

r)I=N--Q--I

Page 4: A generalized stochastic approximation problem

RADIOPHYSICS AND QUANTUM ELECTRONICS 199

N+T

+ 2 2. rVCo(~,~ + ~) + n=N

N+T

-t-(2. ,~)1~1'~ [~//-~ Clt2(t~f 1 -{- o.,)l] ~ X

N - I

• (1 + l ~'I)-!;~+ #,',G N~.]+ L(N, N*), (29a) m=N--q--I

where L(N, N*) = 0 when N > N* + q + 1.

In virtue of (15b), (16a), and (26), when N + T -> _ > n _ > N _ > 0

n--q--1 + co ~y x~= --t1% 1 ~ ~,r(m)--p ~ k(n--m) y~,,r(m) +

m ~ -- co fft ~ --oo

-,~ Co(M~) + f (n - - N, m,) --

N--I N--I

N-q--I N--q--I

where k(n) is the inverse t rans form of K(z). Then + c o

;(~-~-~)=-I~01E E • ~N--q--I n=- -oz

n--q--I

X 2. Y ~ v , r ( m ) Y N , r ( n ) -

+oo +(.~

--? E E 2 k ( n - - m ) Y~,r(m)Ym~(n)+ ~ N--q--I --co --oo

N+T N+T

+Co(MN) E ~ Y. + E 2. f ( n - - N ) y . - - ~N--q--i n~-N {N--q--[ n=N

N--I N+T

-!~oI g X y~ } 2 y . - ~N--q--I re=N--q--1 n=N

N+T N--I

--o E ~ E k(n--m)y,nYn. (29b) { N - q - I rl=N m=N q--!

Making use of the P a r s e v a l theorem for latt ice functions [3] and taking account of (25), (26), (6e), and (8), for N > N* + q + 1 we obtain

+ c o + 2 o

~ N - - l l - I - -oo --co

r .<< ~ ] K (e j~ I E I ,~, ~-(e ~~ t 2 d~ < _~ ~N-q-.1

N+T

.< c~ E tV,v,r(e'~')l~a ''o= G ~ E x 2"2 gN--q--! n=N ~N--q ' l

--x

N+T

# < 2c~(~ ~ = ,~) Z r~ (30) X n ' " N

Use of the additional conditions (7a) and (24) y ie lds for N > N * + q + !

N+T N+T

t E Z ~ ( . - N ) y . I - < ( Z # ( ~ - m ~ ~N--q--~ n=N n=N

N+T co

• E 2. y~)',~< C'!"(MN)(Z { ,V--q- -1 m=N k=O

~ I'~) '/~ x

N+T 2~1/2 ~ - X • E Z y,) <V~ q'~(MN)

{N--q--| n=N

N+T

x (1 - - I z l ) - , ; ~ (R ~ + ~,~),,2( N . p l ';~ (31a) \ g,,--t /g] N

N+T N+T

E (y,.) < [E r t ~ N n~N

N--I N+T

E 2. 2., ~,~yo = m-N--q- - I n=N ~'N--q--I

N--I N+T

= E [ 5:y (E 2 . , ~ E x gA,'--q--I N--q--! ~N--I n=N ~N-q--!

N--I N+T

t2/y.)] j-<- E • m=N--q--I {N--I N ~N--q-I

N--I N+T

N--q--i {N--q--| N

N--I N+ T

r e = N - - q - 1 ~N--q--I N

N+T N ~ 1

E 5_', ~ k(,~.-,,,)y,,y,,, ~,V__d_l n~N ot=N~q.-I

N : T ,',,' - - 1

~c 2. ~ i k ( ,~ - 00 :',,'r,. x II N t?l = Nr--q ]

• ] g (%,,+~0,)(%~+~,,,'1 \ ' n - A' " N - q - 1

A ' - I N~T

x ~ I~(n- -m) l'r,,-~,~l E ~" '~ i < R ~'~? • m = N - - q l {N--q--i n='a/

V - I

\~ [ k(n .... m) "(,,7,,, <: RzC~ x x ..d ,n=, .V--q I

N - [ N T 5 3, 9 ~2

• -. :,,,(E~';,) �9 (ze) ;U N- q - 1 n.:.N

Applicat ion of the Parseva! theorem to the f i rs t term in (29b) y ie lds

+~J t~-q--I

E ~ E Y~,. Am) y,~,/.) = ~N-q--I n ~ - - ~ ra=--r

E i e - ' ; ; ~ - I ' F : v 7 ( d ~ ) l 2 d t u ~

:N-q-- . I --~

f; (e-';i"' -" ei''') (ei'~' " 1)-'t E I gtr r x 1

Page 5: A generalized stochastic approximation problem

200 I Z V E S T I Y A VUZ. RADIOFIZIKA

x (d ~ l ~ d,,, = Yu, r +

i. co it

-I- E ~, ~ Yx, r ( m ) y, , , , r (n). (33a) ~N- q--i /~=-c~ ; t ; ~ - - c r

, - q l ~ S i n c e t h e r e i s a contour C~ > C 2 f o r w h i c h , e --

e / ' i i e ~ -- l I -~ f or ~ ~: [ - - ~, ~], it f o l l o w s w h e n N > N * + q + 1 that

N . { - t"

: , , , ,~ <: #~ - < 4 E E y~ < t t = N ~N--q--I

At-} , Y

3 '~) "1 -.< 2(C. , . - - C,.,) ( R ' -: " .~ "z,,, . (33b) N

It i s e a s i l y v e r i f i e d that

+co ~_~ 1 ,V.;.T ' YN, r(m) \' (n) >~ ( ~ y . t ~ (33c)

r n - -- oo ill ~ --~

Sub s t i tu t ion of (33b) and (33c) into (33a) , and s u b s t i - tut ion of i n e q u a l i t i e s ( 3 0 ) - ( 3 3 a ) into (29b) l e a d s to

a

Fig . 2

(29a) f or N > N* + q + 1. It i s e a s i l y s h o w n that the r ight s i d e of (29a) for the c a s e N -< N + q + 1 ca n be obta ined by addi t ion of the c o n s t a n t L > 0.

L e m m a 3. P o s i t i v e c o n s t a n t s C a, C4 e x i s t s u c h that f or a r b i t r a r y N -> 0, T > 0 w e h a v e

N 'i, T

0 < ~ 7,, ~ x.'?(x.) < Cs, (34) n ~= N ~,Y - q - - i

N ; T

E c,. ;,V--q--i :t g

F i r s t w e p r o v e that

N i T

:,,.(,~,,,-,,-!) = E ,',, E /1 " IV %

~ N - q - I

(35)

x , / f ( . r , , )+A(N, N*), (36)

w h e r e A(N, N*) = 0 w h e n N > N*. H e n c e , w h e n N > N*

N-I- T N ~- Y

E E x.y~ = E E ~,:,, ,, ( ,f ,, + ~,,) -= ~N--q--1 ,~=N n-,,}q "~,V-q [

N + T

: :s,-,,,, { E [ E u,,,?,, + n = N ~ N - q - I. -~,'~ q 1

,VIT Ni -T

= E ' r , , E E x,,% = E ' , ' . E .~,,~.(,~,,). (37a) n , N ~,V ,1-1 ~ n - , l - ! ~I=N ~A r q--1

The r e l a t i o n E x,~, = 0 u s e d h e r e i s a e o n s e - ~n--q--I

q u e n c e of the i n d e p e n d e n c e of x n and ~n-j (J = I, 2, . . . . q + 1) and c o n d i t i o n (8) . S i m i l a r l y , w h e n 0 -< N -< -< N* u s e of (18) l e a d s to

N , - T N + T N*- 1

~N- -q - - ] n ~ N n = N * ~,V q.-1 n- ,V

S u b s t i t u t i o n of (36) into (29a) y i e l d s (C~ ~- 2R 2 + 2a 2)

N + T

0 ~ 7. E x,,?,,<A(N, .u FL(N, N* ) - - N ~ N - - q - 1

--XIkol E 2 ~ n - q - 1

N + T

Co(M.) + n = N

N 1

+ r >5 E nz = N - q-- I ..~N_q l

N I - T

NI-T \n "f2 I1:

I I = N

N

N - 1 N + T

+ :~c~ =\' ~,'m I ( =' Y. , "2 l

N q--I n = N

H e n c e , in v i e w of (18) and (21) w e obta in

(38)

T co

, : ,' - + E < 21kol A n = 0 0

0

E N4- I" N + T ' \ 7

(39a)

N

+ 2 E " .7 < C~. (39b) !s

The relation (34) then follows from (35), (36), (37a, b),

(38) , and (39a, b) .

L e m m a 4 . F o r a r b i t r a r y N -> 0

~Ix,, i--x,~]-~O ( a s ' n ....... ) . (40) {g

When n > N + q + 1 it follows from (15b) and (16b) that

n- - q -- 1 n - q -- I

IV q- - ! N- . q - |

Page 6: A generalized stochastic approximation problem

R A D I O P H Y S I C S AND QUANTUM ELECTRONICS

+ Co(MN) + f ( , . - ~, ~ ) ,

and hence

E !x~+,-x,,[~l~ol ~ I y . - ,~ l+ ~,v ~N

n -q

+ %~ !/f in + 1 - m) - - k(,z - - ,'.Oi E l Y,,, i f- ,n = q - 1 ~ N

+ I f ( n : ~ - - u ) - / ( n - ! v ) l .

(41)

Since E l.v,,, ! ~ ( El>' , , , /} ';~ -'~ 1/< r,,, ~" 0 a s m - ~ no, ~N A

it fol lows f r o m the p r o p e r t i e s of k(n), which is the in - t l - -q- - l

X; l te(n - - v e r s e t r a n s f o r m of K(z) in (16b), that In = / ' q - q - 1

- - m ) l ~ l y . , ] " 0 a s n ~ co. This c o m p l e t e s the proof

of (40). Let As , k(n) denote the s u b s e t of A def ined by

Ix,, (?,) I <: ~,

' x,,_~(~.)l :.C ~ . . . . . I x,,_~+~[).) I ~< ~ . (42)

L e m m a 5. F o r a r b i t r a r i l y s m a l l a > 0 and 6 > 0 the re is an N = N(Gd) such that

mcs.~: ~ ( N ) ~ . I - - a (k ::=0, t . . . . . s ) , (43)

w h e r e N can be t aken l a r g e r than any g iven n a t u r a l n u m b e r ~

F i r s t we e s t a b l i s h the va l id i ty of (43) for k = 0. The oo

s e r i e s .:. 1,, ~ xd?,, c o n v e r g e s in v i r t u e of (34). Thus ,

in view of (18) t he r e ex i s t s a s u b s e q u e n c e of i n t e g e r s {ni} such that

a',, i F,q -> 0 ( a s i -> o~) (44 ) A

We wil l denote the above s u b s e q u e n e e of i n t e g e r s by F. In view of (6b), (6d), and (19) we have

E .r A4, 0(lz) A -Q, 0 (n )

> i" x,,~.dP > a ; [ I rues \~,0(n)].

It fol lows f r o m (44) that

mes . , : ,0 f f0-* 1 ( a s lz -~ -, , n 6 F ) . (45)

Now we wi l l d e m o n s t r a t e the va l id i ty of (43) for k = s f r o m which fol lows i ts va l id i ty for a r b i t r a r y k -< s.

We wi l l c o n s i d e r the fo l lowing s u b s e t s of A. The s e t Uh(n ) of X E h is def ined such that

[ x . . - ~0 . ) - -&O, ) l < '~. (46)

and the se t US, s(n) is def ined by

A a (n - - s ) ,~ U,, ( n - - s ) :~. . . . . ~ Ua ( n - - I ) . (47a) , 0

a. ~ s

201

It is c l e a r that U6, s(n) C AS, s(n). F r o m w e l l - k n o w n t h e o r e m s in p robab i l i t y theory [4] it fol lows that

rues A~, ~(n) > rues U,.~(n) := rues AA 0 (n - s) :~ $

~.. ]![ rues U2_ ( n - 1). (47b) ] = 1 .r

Let ~ > 0 be a su f f i c i en t ly s m a l l n u m b e r . A c c o r d i n g to (45) a va lue N0 E F can be found such that

rues A,;, o(f f ,) -> t -- 7 . (48)

Making use of L e m m a 4 and the Chebyshev inequa l i ty we can p rove the ex i s t ence of a va lue Nj such that

rues U~ (n - - j) > I - - ~ -z

( n ~ > N i ; i .... 1, 2 , . , . , s). (49)

T h e r e is no loss in g e n e r a l i @ in a s s u m i n ~ Nj_< N0 (J = = 1 ,2 . . . . . s). Now we choose ~ such that (1--~) x x (I--7;, I ) s ~ ( 1 -Q , and se t N(e,5) = N0, w h e n c e ~ i n v iew of (47), i t fol lows that r ue s A<~(,V) .'~ (1 - - a) x x(1 - - ~-J)~ > (l - - ~) as was to be proved . S ince (43) is s a t i s f i ed for al l su f f i c ien t ly l a r g e N E F, the va lue of N m a y be taken to be a r b i t r a r i l y l a rge .

P roo f of T h e o r e m 1. We r e q u i r e to p rove (23), i. e . , [4] for a r b i t r a r y e > 0, 6 > 0 we wish to find a N(e ,5) > 0 such that for n > N

rues &(n) . (1 - - a), (50a)

w h e r e A6(n ) is the se t h E A def ined by the condi t ion

[.v:, i 5. (50b)

Let ~" and ~ be a r b i t r a r i l y s m a l l pos i t ive n u m b e r s . A c c o r d i n g to L e m m a 5 we can choose N('g,6) such that

, . es ~_ (~v) ~ (1 - 7 ) , (51) % s

M o r e o v e r , N can be chosen a r b i t r a r i l y l a rge and in- deed such that N > N* and

co _ N-I ~ ~ (52) y, ~. ~ c~; (N > ,u*)

/ V - - q . q

where C6, C 7 a r e cons t an t s . Le t ~ b e an a r b i t r a r y point in the se t A~ (N). We

wi l l c o n s i d e r inequa l i ty (29a) of L e m m a 2 for N = 17

and ~_ ~ ~~ (7). A c c o r d i n g to (42) we have N ~ q - - I N ~ q - - I

~, ] xi(~,) I .~< s~, and then in v i e w of (17b) we can ~ - - s + l

choose the c o n s t a n t Css -1 such that

I Co(M-) [2 < Cs'~, I CI(M.a)? 4 Cs~. (53) N

Then, f r o m (29a), (35), (36), and (38) it fol lows that

A r + T _ _

tkol E (~Y~ ~" ~ : :~ 'c , , (c~+V~c; )~+ 2

:V- -q- - I

Page 7: A generalized stochastic approximation problem

202 IZ VESTIYA VUZ. RADIOFIZIKA

+ Gc:,Co~7 § I V ~ rc~ (~ - 1 7 b - "-~+

+ RaC~C~] Cr,~. (54)

Now cons ider re la t ion (41)o Squaring both sides and

applying the operator F~ , we obtain

N--,7--1

~r+r E ,,2_ <61ko l -~ E ( E Y . ) * +

N - - q - t N - - q - - I

- o o co

+ 6 ~ k~(n) ~\~ E Y~. + 61 C0(M-)~ l ~ + N--q-- I ~ N--q--I

- i-61G(m-)? + 6 1 k o 1 ' E •

N--q-I

Thus, in v i ewof (25 ) , (51), (52), (53), and (54)for a rb i t r a ry T > 0 we have

~ N " T

N. q--!

' 12C/~+ 12qlk o I ~ C,~Cs~ 7:--_ C~oYo, (55)

where C10 is independent of N, 5, and T. The set A~(N + T,%) is such that A E A and

M4 T a l -q - - I N- -q- l

According to the Chebyshev inequality, it follows f rom (55) that

rues k~(N § T, ~.) - (1 �9 C~,j~,-2). (56b)

With (43), (50b), (56a), and the well-known proper t ies of probabil i ty measure [4] we obtain

,.e~ ~,. (N + r ) (I -- C~o~,'~ ---~) (1 - -7) .

By choosing ~ and "6 so smal l that

(1. c f i 2 ~)(I ~) : -~(1--~). we obtain (50a), thus complet ing the proof of the the- orem.

3. CONTINUOUS VERSION OF THE GENERALIZED STOCHASTIC APPROXIMATION PROBLEM

Let us de te rmine the continuous analogs of (1)-(3), (4a), (45), (5), (6a)-(6d), (7a), (75), and (8).

Let u(t) be the controlled input signal , ~(t) be the uncontrol led stochastic input, and v(t) be the ou tpu t signal. Let x(t), w(t) denote the continuous analogs of Xn, w n in the d i sc re te case. The governing equations for the object are

~;(t) .... w ( t - q ) , (57) ~,(t) = .:(x(t)) + ~(t), (58)

Tox< ,~) + T~x(~-'~ + . . . + T~ -

= % u (~ ', ~ ,u ( ~ - b + . . . + % u . ( 5 9 )

The state M t of the object at ins tant t is descr ibed by the s -d imens iona l vector (x(t), x(l)(t) . . . . . x(S-0(t)). The nonl inear function q0(x) is s t i l l subject to condi- tions (6a)-(6d).

F u r t he r we will assume that the following condi- t ions s i m i l a r to (7a), (7b) are imposed on the non- l inear par t of the object (59):

1) The zeros Xi(i = 1, 2 . . . . . s) of the polynomial Tops + Tip s-1 + . . . + T s are in the lef t-hand half- plane

t?ek~ ~ 0 (i - 1, 2 , . . . , s). (60)

2) The condition of complete control labi l i ty [5] is sat isf ied. As shown in [6J, this r equ i res that

%~.i~" ~-' -.~}~--.~ ~ + . �9 -I- -~s ~- 0 ( i = l , 2, . . . , s ) . ( 6 1 )

By analogy with the d i sc re te ve rs ion we define the c lass of random processes }(t, ~) (X ~ A) [4]. We wilt assume that there is a v > 0 such that for a r b i t r a ry t > v and an a r b i t r a r i l y rea l iza t ion ~*(t) we have

~(t, ).) = 0 , (62) ,:*(t-9

where E is the conditional averaging operator on ~*(f--~)

the set A[~*(t - u)] defined by the condition

} (s, k) = !* (s) (.when 0 -~ s ~< (t -- v)) (63)

Moreover, for all t >- 0 the following inequali ty holds:

}2(t, i,) .<.: 32 < c~ , (64) A

The stochast ic approximation problem for the con- tinnous vers ion is formulated as follows: to cons t ruc t the algori thm

~(t) =d[u(s), v(s); 0 -< s < t] ,

which (a) is independent of the p a r a m e t e r s of the ob- ject, and (b) is such that the random process x(t, X) (t > 0, X E A) generated by this algori thm in accordance with (57)-(59) converges in probabi l i ty to |

For this problem there is a resu l t s i m i l a r to The- orem 1:

Theorem 2. The algori thm

where

co c~

~(t} > 0, S ~,' (t) dt = ~ , S y(t) dt < 0% {~ + ql >i ~, 0 0

and subject to conditions (6)-(64) solves the stochast ic approximation problem.

The proof of this theorem is a lmost ident ical with that of Theorem 1 with the lat t ice functions replaced

Page 8: A generalized stochastic approximation problem

RADIOPHYSICS AND QUANTUM ELECTRONICS

by continuous functions and the summat ion signs r e - placed by in tegra l s , e tc .*

*The formula t ion of Lemmas 4, 5 in w is some- what different:

Lemma 4a. For a r b i t r a r y T > 0 and t o > 0

E F,~:(t+ r}--x(t)l~.0 (as t - -~ ) . (t~--,~)

Lemma 5a. Let the set As(t ) A be defined by

Then for a r b i t r a r i l y smal l e > 0, 5 > 0 a suff ici- ently large value of T(e,6) > 0 can be found such that mesAs (T ) -> (i - e).

The proof is based on the convergence of the inte- o~

gral ,f •( t )x( t ) ,~, (t) d~ a n d Lemma 4a, 0

203

REFERENCES

I. Robbins and Monro, Ann. Math. Star., 22, 400, 1951.

2. Ya. Z. Tsypkin, Avtomatika i telemekhanika, 27, no. i, 23, 1966.

3. Ya. Z. Tsypkin, Theory of Linear Sampling Systems [in Russian], Fizmatgiz, Moscow, 1963.

4. J. L. Doob, Stochastic Processes [Russian translation], IL, Moscow, 1956.

5. R. E. Kalman, Proceedings of International Congress of IFAC, izd. AN SSSR, Moscow, 1961.

6. V. M. l~opov, Avtomatika i telemekhanika, 24, no. i, 3, 1963.

27 Apr i l 1967 Scientific Research Inst i tute for Applied Mathematics and Cyber- net ics , Gor 'k i i Univers i ty