25
A. Cechet , S. Altieri, T. Barani, L. Cognini, S. Lorenzi, D. Pizzocri, L. Luzzi Politecnico di Milano, Department of Energy, Nuclear Reactors Group PAUL SCHERRER INSTITUTE – 05.11.2019 NuFuel – MMSNF Workshop A burnup model for application in fuel performance codes: methodology, assessment and verification for MOX fuel in thermal and fast neutron spectra

A burn-up module for application in fuel performance codes ......The extension of the model to Lead Cooled Fast Reactors (e.g., Alfred, Myrrha) of interest for Gen-IV and for INSPYRE

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • A. Cechet, S. Altieri, T. Barani, L. Cognini, S. Lorenzi, D. Pizzocri, L. LuzziPolitecnico di Milano, Department of Energy, Nuclear Reactors Group

    PAUL SCHERRER INSTITUTE – 05.11.2019NuFuel – MMSNF Workshop

    A burnup model for application in fuel performance codes: methodology, assessment and verification for MOX fuel in

    thermal and fast neutron spectra

  • • Why burnup module?

    • Statement of the problem

    • Methodology

    • Assessment and Verification

    • Conclusions and future developments

    2

    OUTLINE

  • 3

    Helium behaviorFundamental to assess the fuel performance • Gaseous Swelling• Gas Release

    Actinides evolutionImpact on the evolution of- power distribution in the fuel pin- thermal and mechanical properties - isotope redistribution

    WHY BURNUP MODULE?

    • Evaluation of the local concentrationof relevantisotopes

    • Evaluation of the helium source to be included in the fission gas model

  • State-of-the-art depletion software(SCALE, MONTEBURNS, SERPENT)• Complete• Cross-sections libraries specific to the

    fuel material/reactor type combination• Long computational time

    Novel approach:• Exploit the high-fidelity results from depletion codes• Short computational time• Adaptability to any fuel-reactor combination

    STATEMENT OF THE PROBLEM

    0D stand-alone meso-scale code developed at PolimiGoal: model fuel behavior at grain scale • Designed for coupling with Fuel Performance Code• Burnup module to assess the evolution of actinides

    Fuel Performance Codes• Short computational time• Depletion calculation

    oversimplified

    4

    https://gitlab.com/poliminrg/sciantix

  • METHODOLOGY

    ONLINE

    OFFLINE

    SERPENTSIMULATION

    SCIANTIXSIMULATION

    5

  • METHODOLOGY

    ONLINE

    OFFLINE

    SERPENTSIMULATION

    Average cross sections�𝜎𝜎(𝑖𝑖, 𝑏𝑏𝑏𝑏, 𝑒𝑒0)

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    SCIANTIXSIMULATION

    Relevantsimulationcase

    6

  • METHODOLOGY

    ONLINE

    OFFLINE

    SERPENTSIMULATION

    Average cross sections�𝜎𝜎(𝑖𝑖, 𝑏𝑏𝑏𝑏, 𝑒𝑒0)

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    Bateman Equations

    SCIANTIXSIMULATION

    Relevantsimulationcase

    Relevantsimulationcase

    Interpolator

    7

  • METHODOLOGY

    ONLINE

    OFFLINE

    SERPENTSIMULATION

    Average cross sections�𝜎𝜎(𝑖𝑖, 𝑏𝑏𝑏𝑏, 𝑒𝑒0)

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    Bateman Equations

    SCIANTIXSIMULATION

    Relevantsimulationcase

    Relevantsimulationcase

    Comparison

    Interpolator

    8

  • METHODOLOGY

    Nuclides evolution

    The nuclides concentration evolution

    with burnup, to be used as high-

    fidelity results for the sake of

    verification (23 nuclides)

    cUranium

    Average cross sections�𝜎𝜎(𝑖𝑖, 𝑏𝑏𝑏𝑏, 𝑒𝑒0)

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    Relevantsimulationcase

    cPlutonium

    cNeptunium

    cAmericium

    cCurium

    234 • 235 • 236 • 237 • 238

    237 • 238 • 239

    238 • 239 • 240 • 241 • 242 • 243

    241 • 242 • 242m • 243 • 244

    242 • 243 • 244 • 245

    SERPENTSIMULATION

    OFFLINE

    9Helium

  • c

    METHODOLOGY

    Cross Sections

    Average microscopic cross sections,

    selected for specific reactions, specific

    isotopes representing the training data for

    the burnup model

    Reactions: fission, capture,

    (n,2n),(n,3n),(n,α)

    SERPENTSIMULATION

    Average cross sections�𝜎𝜎(𝑖𝑖, 𝑏𝑏𝑏𝑏, 𝑒𝑒0)

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    Relevantsimulationcase

    cCross section Lookup Table to be

    implemented in the model

    OFFLINE

    10

  • METHODOLOGY

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    Bateman Equations

    SCIANTIXSIMULATION

    Relevantsimulationcase

    Interpolator

    ONLINE11

    The cross section values are collected in lookup tables in function of the enrichment, the burnup, the target isotope, and the nuclear reaction

    const double xsec_capt_table_MOX_PWR[23][6][31]={/*U234*/{/*5.0 %*/ {17.6318, 16.9942, 16.4351, 16.2394, ...},/*6.0 %*/ {17.1904, 16.4657, 16.0427, 15.7761, ...},/*7.0 %*/ {16.6601, 16.0613, 15.6437, 15.3129, ...},/*8.0 %*/ {16.2361, 15.6615, 15.3301, 14.9894, ...},/*9.0 %*/ {15.9639, 15.4080, 15.0226, 14.6763, ...},/*10.0 %*/ {15.6461, 15.1485, 14.6701, 14.3972, ...}},/*U235*/{/*5.0 %*/ {5.1726, 5.0292, 5.0496, 5.0846, ...},/*6.0 %*/ {4.8709, 4.7389, 4.7426, 4.7675, ...},/*7.0 %*/ {4.6361, 4.5222, 4.5161, 4.5301, ...},/*8.0 %*/ {4.4525, 4.3446, 4.3381, 4.3418, ...},/*9.0 %*/ {4.3004, 4.1999, 4.1847, 4.1907, ...},/*10.0 %*/ {4.1693, 4.0760, 4.0667, 4.0626, ...}},/*U236*/{/*5.0 %*/ {8.7434, 8.4190, 8.1292, 7.9253, ...},/*6.0 %*/ {8.6177, 8.2958, 8.0090, 7.7583, ...},/*7.0 %*/ {8.4673, 8.1268, 7.9003, 7.6827, ...},/*8.0 %*/ {8.3140, 8.0433, 7.7865, 7.5616, ...},/*9.0 %*/ {8.2575, 7.9342, 7.6674, 7.3965, ...},/*10.0 %*/ {8.1114, 7.8409, 7.5072, 7.3169, ...}},...

  • METHODOLOGY

    Interpolator tool allows for the calculation of the set of cross sections needed for an online simulation by interpolating the Lookup Table.

    const double xsec_capt_table_MOX_PWR[23][6][31]={/*U234*/{/*5.0 %*/ {17.6318, 16.9942, 16.4351, 16.2394, ...},/*6.0 %*/ {17.1904, 16.4657, 16.0427, 15.7761, ...},/*7.0 %*/ {16.6601, 16.0613, 15.6437, 15.3129, ...},/*8.0 %*/ {16.2361, 15.6615, 15.3301, 14.9894, ...},/*9.0 %*/ {15.9639, 15.4080, 15.0226, 14.6763, ...},/*10.0 %*/ {15.6461, 15.1485, 14.6701, 14.3972, ...}},

    ONLINELever rule performed on the areas

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    Bateman Equations

    SCIANTIXSIMULATION

    Interpolator

    e0 = 5.3%

    bu0 = 12 GWd/tU

    e2 = 6%

    bu2 = 15 GWd/tU

    e1 = 5%

    bu1 = 10 GWd/tU

    Relevantsimulationcase

    12

  • METHODOLOGY

    ONLINE

    0 5 10 15

    5% 5.17 5.02 5.04 5.08 ...

    6% 4.87 4.73 4.74 4.76 ...

    7% 4.63 4.52 4.51 4.53 ...

    8% 4.45 4.34 4.33 4.34 ...

    Lookup Tables

    Bateman Equations

    SCIANTIXSIMULATION

    Interpolator

    Relevantsimulationcase

    13

    𝑑𝑑𝑁𝑁1𝑑𝑑𝑑𝑑

    = �𝑖𝑖

    𝜆𝜆𝑖𝑖𝑁𝑁𝑖𝑖 −�𝑖𝑖

    𝜆𝜆𝑖𝑖𝑁𝑁1 −�𝑖𝑖

    𝜎𝜎𝑖𝑖𝜙𝜙𝑁𝑁1 + �𝑖𝑖

    𝜎𝜎𝑖𝑖𝜙𝜙𝑁𝑁𝑖𝑖

    Α𝑐𝑐 1 = 𝑐𝑐[0]

    𝐹𝐹𝐹𝐹 = �𝐼𝐼

    𝑁𝑁𝐼𝐼[0]𝜎𝜎𝑓𝑓𝑖𝑖

    𝜙𝜙 =𝐹𝐹𝐹𝐹 ∗ 𝜈𝜈𝐹𝐹𝐹𝐹

    Bateman’s equations

    Flux calculation

    Effective fission probability

    Time: implicit Euler scheme

    A matrix: LU factorization(Numerical Methods, Prentice Hall, 1974)

    Solver

  • ASSESSMENT AND VERIFICATION

    Computational time for SCIANTIX comparable to the state-of-the-art FPC

    This is a fundamental requirement for the effective coupling of the burnup model in fuel performance codes

    14

    SERPENT SCIANTIX TRANSURANUSIntel®Xeon® E5-2680 Intel®Celeron® n4100 Intel®Celeron® n4100

    CPU usage 8 cores, 16 threads Single Core Single Core2.7 GHz 1 GHz 1 GHz

    Execution Time 15.4 hours 0.3 sec 0.516 sec

  • 15

    ASSESSMENT AND VERIFICATION – CASE STUDIES

    MOX/PWR MOX/SFR

    Initial composition

    Pu239 and U238

    Enrichment steps

    Pu239 from 5% to 10%, in 1% steps

    Results at 5% Pu239

    Burnup max: 150 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡

    Burnup width 5 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡

    Constant power density of 40 kW/kg

    Initial composition

    U235, U238

    Pu238, Pu239, Pu240, Pu241, Pu242

    Enrichment steps

    Pu/HM from 20% to 40%, in 2% steps

    Results at 20% Pu/HM

    Burnup max: 200 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡

    Burnup width 5 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡

    Constant power density of 40 kW/kg

  • ASSESSMENT AND VERIFICATION - URANIUM

    MOX/PWR MOX/SFR

    • Good agreement between SCIANTIX and the reference: RMSE confined between 1% and3% for the MOX/PWR case and between 0.6% and 4% for the MOX/SFR case

    • Comparable performance with TRANSURANUS (Version 2018)

    16

  • ASSESSMENT AND VERIFICATION - NEPTUNIUM

    MOX/PWR MOX/SFR

    • 11% RMSE in MOX/PWR case and 40%in MOX/SFR case

    17

  • ASSESSMENT AND VERIFICATION - PLUTONIUM

    MOX/PWR MOX/SFR

    • Good agreement between SCIANTIX and the reference: RMSE confined between 5% and 34% in MOX/PWR case and between 0.4% and 12% in MOX/SFR case

    18

  • ASSESSMENT AND VERIFICATION - AMERICIUM

    MOX/PWR MOX/SFR

    • RMSE confined between 24% and 62% in the MOX/PWR case and between 20% and 30% in MOX/SFR case

    19

  • ASSESSMENT AND VERIFICATION - CURIUM

    MOX/PWR MOX/SFR

    • Poor agreement between SCIANTIX and the reference due to error propagation in the cross sections: RMSE confined between 36% and 110% in the MOX/PWR case and between 24% and 70% in the MOX/SFR case

    20

  • ASSESSMENT AND VERIFICATION - HELIUM

    MOX/PWR MOX/SFR

    • 21% RMSE in MOX/PWR case and 34% error in MOX/SFR case

    21

  • 22

    ASSESSMENT AND VERIFICATION – OVERVIEW MOX/SFR

    SCIANTIX

    TRANSURANUS

    Comparable performance with state-of-the-art Fuel Performance Code

    Cm 0,2445 0,5035 0,4048 0,6826 1Am 0,2875 0,1929 0,8Pu 0,119 0,037 0,0048 0,0778 0,0056 0,6Np 0,395 0,4U 0,0427 0,0065 0,2He 0,3345 0

    235 237 238 239 240 241 242 243 244 245 4

    Cm 0,1191 0,3027 0,0428 0,4451 1Am 0,1287 0,1921 0,8Pu 0,0338 0,0097 0,0304 0,0076 0,0297 0,6Np 0,7782 0,4U 0,0257 0,0013 0,2He 0,1734 0

    235 237 238 239 240 241 242 243 244 245 4

  • 23

    CONCLUSIONS

    Computational times suitable for FPCs

    Self-consistent model: good prediction of relevant nuclides profilesand Helium compared with SERPENT

    The error with respect to the high-fidelity results is bounded in allthe considered burnup range

    The methodology developed allows easily adapting the model for anyfuel/reactor combination

    Results comparable with state-of-the-art approach (e.g., TUBRNP)

    We implemented the burnup model in SCIANTIX

    We assessed and verified the new burnup module for a selected set ofactinides

    We developed a new methodology for burnup calculations whichcouples the properties of high-fidelity depletion codes and FPCs

    The lookup table and SCIANTIX itself are open-source and thereforeavailable to the public

  • 24

    FUTURE DEVELOPMENTS

    Coupling with Fission Gas Behavior models and Fuel Performance Codes

    The extension of the model to Lead Cooled Fast Reactors (e.g., Alfred,Myrrha) of interest for Gen-IV and for INSPYRE H2020 Project to whichPolitecnico di Milano is participating

    Complete the assessment of the model with intermediate enrichment stepsand inclusion of Fission Products (e.g., Iodine, Caesium, Molibdenum)

  • THANK YOU FOR YOUR KIND ATTENTION

    This work has been partially supported by the ENEN+ project and from the Euratom research and training programme 2014-2018 through the INSPYRE

    project under Grant Agreement No. 754329

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25