12
1 㟁ẼᏛ ⏘ᴗᛂ⏝㒊㛛 ࣓ࢫࢡࢽไᚚᢏ⾡ጤဨ ⢭ᐦ㸭ᐇୡ⏺ࢫࢡ ᒇᕤᴗᏛ㸦ᒇᕷ㸧㸪2015 12 2 ᐇ㛫㐺㠀⥺ᙧᶵᲔࢸࢫࢩ ண ไᚚ ி㒔ᏛᏛ㝔ሗᏛ◊✲⛉ ࢸࢫࢩ⛉Ꮫᑓᨷ ሯ ᩄஅ [email protected] 2 㐺ไᚚᇶ♏ 㐺ไᚚၥ㢟㸪␃᮲௳ 㠀⥺ᙧண ไᚚ ண ไᚚ≉ᚩ ᐇ㛫㐺 ၥ㢟ᛶ㉁⏝ Ѝ 㛫ኚ㏣㊧ Ѝ ຠ⋡ⓗ ᛂ⏝ 㸪⯪⯧ ⏕ࢻᘧฎ⌮ C ⮬ࡢ⏕ᡂ 㐺ไᚚᇶ♏ 3 㐺ไᚚᇶ♏ 㐺ไᚚၥ㢟㸪␃᮲௳ 㠀⥺ᙧண ไᚚ ண ไᚚ≉ᚩ ᐇ㛫㐺 ၥ㢟ᛶ㉁⏝ Ѝ 㛫ኚ㏣㊧ Ѝ ຠ⋡ⓗ ᛂ⏝ 㸪⯪⯧ ⏕ࢻᘧฎ⌮ C ⮬ࡢ⏕ᡂ 㐺ไᚚᇶ♏ 4 㐺ไᚚၥ㢟 ࢸࢫࢩᣊ᮰᮲௳ୗ㸪ホ౯㛵 ไᚚධຊồ㸬 ᆅ⌫ᑠᝨ㣕ࡍࡤ㸪ᡤせ㛫ࡣࡓᾘ㈝⇞ ࡋࡔࡓ㸪᥎ຊࡉࡁไ㝈࠶ࡀ⮬㌴ࡢࡁᡤせ㛫 ᑠ ࡋࡔࡓࢸࢫゅ㸪㥑ไຊ㸪ᦶ᧿ຊไ㝈࠶ࡀ┠ᶆᅇ㌿㐩㛫 ᑠ ࡋࡔࡓ㛤ᗘ㸪⇞ᩱᄇᑕ㔞㸪ฟᡂศ࠶ࡀ

8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

1

2015 12 2

[email protected]

2

C

3

C

4

Page 2: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

5

T x(T )

x(t) = f(x(t), u(t))

x(0) = x0 (given)

J = ϕ(x(T )) +∫ T

0L(x(t), u(t))dt

C(x(t), u(t)) = 0

x(t) u(t)

C ≤ 0 C + v2 = 0 v:

J u

6

x = f(x, u), x(0) = x0,

λ = −

(∂H

∂x

)T

(x, u, λ, μ), λ(T ) =

(∂ϕ

∂x

)T

(x(T )),

∂H

∂u(x, u, λ, μ) = 0,

C(x, u) = 0.

H(x, u, λ, μ) = L(x, u) + λTf(x, u) + μTC(x, u) ,

λ μ

[Animation]

7

C

8

Model Predictive Control (MPC)

Page 3: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

9

Model Predictive Control (MPC)

10

x(t) = f(x(t), u(t))

J = ϕ(x(t+ T )) +∫ t+T

tL(x(τ), u(τ))dτ

C(x(t), u(t)) = 0

C ≤ 0 C + v2 = 0 v:

x(t)

uopt(τ ; t, x(t)) (t ≤ τ ≤ t+ T )

u(t) = uopt(t; t, x(t)) · · ·

11

t

t t+T

u

Receding Horizon

recede · · ·

12

Page 4: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

13

C

14

t T

U(t) = [u∗T0 (t), μ∗T0 (t), u∗T1 (t), μ∗T

1 (t), . . . , u∗TN−1(t), μ∗TN−1(t)]

T

u(t) = u∗0(t) C = 0 μ∗i

� Δτ �= Δt

15

J(U(t), (t), t) = ϕ(x∗N(t)) +∑N−1

i=0 L(x∗i (t), u∗i (t))Δτ

x∗0(t) = x(t)

x∗i+1(t) = x∗i (t) + f(x∗i (t), u∗i (t))Δτ

λ∗N (t) =(∂ϕ∂x

)T(x∗N(t))

λ∗i (t) = λ∗i+1(t) +(∂H∂x

)T(x∗i (t), u

∗i (t), λ

∗i+1(t), μ

∗i (t))Δτ

∂H∂u

(x∗i (t), u∗i (t), λ

∗i+1(t), μ

∗i (t)) = 0

C(x∗i (t), u∗i (t)) = 0

H(x, λ, u, μ) = L+ λTf + μTC

x∗i (t), λ∗i (t) U(t) x∗0(t) = x(t)

16

F (U(t), x(t), t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂H∂u

(x∗0(t), u∗0(t), λ

∗1(t), μ

∗0(t))

C(x∗0(t), u∗0(t))

...

∂H∂u

(x∗N−1(t), u∗N−1(t), λ

∗N (t), μ

∗N−1(t))

C(x∗N−1(t), u∗N−1(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦= 0

U(t) = [u∗T0 (t), μ∗T0 (t), u∗T1 (t), μ∗T

1 (t), . . . , u∗TN−1(t), μ∗TN−1(t)]

T

F (U, x, t) 0 U

Page 5: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

17

F (U(t), x(t), t) = 0

18

t U(t) F (U(t), x(t), t) = 0

⇔d

dtF (U(t), x(t), t) = 0, F (U(0), x(0), 0) = 0

⇔d

dtF (U(t), x(t), t) = −ζF (U(t), x(t), t), F (U(0), x(0), 0) = 0

ζ > 0 F �= 0 F = 0

⇔U =

(∂F∂U

)−1 (−ζF − ∂F

∂xx− ∂F

∂t

),

F (U(0), x(0), 0) = 0

U(t)

U(t)

F(U,x(t),t)=0

t

U

U(t)

19

Continuation/GMRES

x(t)

U 1 ∂F∂UU = −ζF − ∂F

∂xx− ∂F

∂t

U(t) U(t) U(t+Δt) = U(t) + U(t)Δt

1 1

1 GMRES

� T 0 U(0)

( ’02; O. ’04)

20

1

GMRES

1

Page 6: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

21

C

22

2

q2

q1

s1

s2

l1

l2

m1

m2

u1

u2

J1

J2

x = [q1 q2 q1 q2]T

u = [u1 u2]T

J =1

2(x(t+ T )− xf )

TSf (x(t+ T )− xf )

+1

2

∫ t+T

t((x− xf )

TQ(x− xf ) + uTRu)dτ

( ’02; O. ’04)

23

μ

u1 2 |u1| ≤ u1max

[Animation 1: |u1| ≤ 5 ] [Animation 2: |u1| ≤ 2.5 ]

24

0 20 40 60 80 1000

10

20

30

40

50

60

70

80

90

100

Number of Grids on the Horizon, N

Ave

rage

Com

puta

tiona

l Tim

e pe

r Upd

ate

[ms]

C/GMRES

L−BFGS

Truncated Newton

N [ms]

L-BFGS, Truncated Newton · · ·

CPU: PentiumII 300 MHz, Tf = 0.2 [s], GMRES k = 2

Page 7: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

25

356 [mm] 212 [mm], 142 [mm], 0.894 [kg]

(Seguchi, O. ’03)

26

x = [x y θ x y θ]T ∈ R6

u = [u1 u2]T ∈ {umin, 0, umax}

2

J =1

2(x(t+ T )− xf )

TSf (x(t+ T )− xf)

+1

2

∫ t+T

t((x− xf )

TQ(x− xf ) + uTRu)dτ

27

0 10 20 30

−0.4

−0.2

0

0.2

0.4

Time [s]

x [m

]

0 10 20 30

−0.4

−0.2

0

0.2

0.4

Time [s]

y [m

]

0 10 20 30−1

−0.5

0

0.5

1

Time [s]

θ [ra

d]

0 10 20 30−0.2

0

0.2

0.4

Time [s]

u 1 [N]

0 10 20 30−0.2

0

0.2

0.4

Time [s]

u 2 [N]

CPU: Athlon 900 MHz, Tf = 1 [s],

1/120 [s] CCD

[Movie 1: θ(0) = −π ] [Movie 2: θ(0) = π/2 ] [Movie 3: disturbance ]

28

x

y

u

v

Ψ

N

X

Y

(x,y)

WPi

WPi+1

xi

yi

xi+1

yi+1

Guide Point

L

Ship

Target Point

x = [x, u, y, v, ψ, r,X, Y,N ]T

u = [Xr, Yr, Nr]T

J = 12(x(t+ T )− xref )

TSf (x(t+ T )− xref )

+ 12

∫ t+Tt ((x− xref )

TQ(x− xref ) + uTRu)dτ

( ’02, ’08)

Page 8: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

29

-4 -2 0 2 4 6 8 10 12

-4

-2

0

2

4

6

8

10

x [m]

y [m]

-4 -2 0 2 4 6 8 10 12

-4

-2

0

2

4

6

8

10

x [m]

y [m]

3.5 [m], 0.59 [m], 200 [kg] 0.1 [sec], 30 [sec]

30

(90× 30m 3m) ( ’05, ’08) [More]

31

(Independent System Operator; ISO)

( ’14)

32

n

• d s

• v(d) c(s)

• HEMS (Home Energy Management System)

ISO

• λ

Page 9: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

33

ISO

00

J = xT(t+ T )Q1x(t+ T )︸ ︷︷ ︸+∫ t+T

t

(xT(τ)Q2x(τ)︸ ︷︷ ︸+

n∑i=1

Φi(λi))dτ

Φi = −r1(λisi − ci(si)︸ ︷︷ ︸ + vi(di)− λidi︸ ︷︷ ︸

)+ r2

(si − di︸ ︷︷ ︸

)2

vi(di) = 2√di, ci(si) = s2i /2

34

10

θi

(i = 1, · · · , 10)

λi

(i = 1, · · · , 10)

0.33 ms ⇒

35

(Okazaki, O. ’06)

MuPAL-α

( ’05, ’06, ’09)

( ’10)

LHC (Noga et al. ’10, ’11)

(Hashimoto et al. ’10, ’12)

Moving Horizon Receding Horizon

36

C

Page 10: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

37

Maple C

Mathematica

38

39

C

∂H/∂u

40

Page 11: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

41

http://www.symlab.sys.i.kyoto-u.ac.jp/˜ohtsuka/index j.htm

42

[1] A. E. Bryson, Jr. and Y.-C. Ho, Applied Optimal Control, Hemisphere (1975)

[2] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, 2ndEd., SIAM (2010)

[3] , , (2011)

[4] J. M. Maciejowski , , , , (2005)

[5] L. Magni, D. M. Raimondo, and F. Allgower (Eds.), Nonlinear Model Predictive Control:Towards New Challenging Applications, Springer (2009)

[6] J. B. Rawlings, and D. Q. Mayne, Model Predictive Control: Theory and Design, Nob HillPublishing (2009)

[7] , , (2015)

GMRES

[8] S. L. Richter and R. A. DeCarlo, “Continuation Methods: Theory and Applications,”IEEE Trans. on Automatic Control, Vol. AC-28, No. 6, pp. 660–665 (1983)

[9] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM (1995)

[10] H. A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, CambridgeUniversity Press (2003)

[11] T. Ohtsuka, and H. A. Fujii, “Real-Time Optimization Algorithm for NonlinearReceding-Horizon Control”, Automatica, Vol. 33, No. 6, pp. 1147–1154 (1997)

[12] T. Ohtsuka, “Time-Variant Receding-Horizon Control of Nonlinear Systems”, J. of

43

Guidance, Control, and Dynamics, Vol. 21, No. 1, pp. 174–176 (1998)

[13] T. Ohtsuka, “Quasi-Newton-Type Continuation Method for Nonlinear Receding HorizonControl,” J. of Guidance, Control, and Dynamics, Vol. 25, No. 4, pp. 685–692 (2002)

[14] T. Ohtsuka, “A Continuation/GMRES Method for Fast Computation of NonlinearReceding Horizon Control”, Automatica, Vol. 40, No. 4, pp. 563–574 (2004)

[15] Y. Shimizu, T. Ohtsuka, and M. Diehl, “A Real-Time Algorithm for Nonlinear RecedingHorizon Control Using Multiple Shooting and Continuation/Krylov Method,” Int. J. ofRobust and Nonlinear Control, Vol. 19, No. 8, pp. 919–936 (2009)

[16] , , “ Receding Horizon,” , Vol. 25, No. 5, pp. 126–133 (2012)

[17] H. Seguchi, and T. Ohtsuka, “Nonlinear Receding Horizon Control of an UnderactuatedHovercraft,” Int. J. of Robust and Nonlinear Control, Vol. 13, Nos. 3–4, pp. 381–398 (2003)

[18] , , , “ Receding Horizon ,”, Vol. 44, No. 8, pp. 685–691 (2008)

[19] T. Kawabe, H. Nishira, and T. Ohtsuka, “An Optimal Path Generator Using a RecedingHorizon Control Scheme for Intelligent Automobiles,” Proc. of the 2004 IEEE Int. Conf.on Control Applications, pp. 1597–1602 (2004)

[20] , , , “ ,” 11CD-ROM, 163-3-2 (2011)

[21] M. Nanao, and T. Ohtsuka, “Vehicls Dynamics Control for Collision AvoidanceConsidering Physical Limitations,” Proc. of SICE Annual Conf. 2011, pp. 688–693 (2011)

[22] M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Model Predictive Control ofVehicles on Urban Roads for Improved Fuel Economy,” IEEE Trans. on Control Systems

44

Technology, Vol. 21, No. 3, pp. 831–841 (2013)

[23] J. Lee, and M. Yamakita, “Nonlinear Model Predictive Control for ConstrainedMechanical Systems with State Jump,” Proc. of the 2006 IEEE Int. Conf. on ControlApplications, pp. 585–590 (2006)

[24] T. Murao, H. Kawai, and M. Fujita, “Visual Motion Observer-based Stabilizing RecedingHorizon Control via Image Space Navigation Function,” Proc. of the 19th IEEE Int. Conf.on Control Applications, pp. 1648–1653 (2010)

[25] M. Okazaki, and T. Ohtsuka, “Switching Control for Guaranteeing the Safety of a TetheredSatellite,” J. of Guidance, Control, and Dynamics, Vol. 29, No. 4, pp. 822-830 (2006)

[26] , , , , “ — ,”, Vol. 57, No. 669, pp. 285-287 (2009)

[27] M. Saffarian, and F. Fahimi, “Non-Iterative Nonlinear Model Predictive Approach Appliedto the Control of Helicopters’ Group Formation,” Robotics and Autonomous Systems, Vol.57, pp. 749–757 (2009)

[28] , , , , “Receding Horizon ,” , Vol. 96, No. 7, pp. 459–467 (2010)

[29] M. Takekawa, J. Aoki, M. Nakaya, T. Ohtani, and T. Ohtsuka, “An Application ofNonlinear Model Predictive Control Using C/GMRES Method to a pH NeutralizationProcess,” Proc. of SICE Annual Conf. 2010, pp. 1494–1496 (2010)

[30] R. Noga, T. Ohtsuka, C. de Prada, E. Blanco, and J. Casas, “Simulation Study onApplication of Nonlinear Model Predictive Control to the Superfluid Helium CryogenicCircuit,” Reprints of the 18th IFAC World Congress, pp. 3647–3652 (2011)

Page 12: 8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £ Ddmec/committee/DMEC8005/presentations/...8)z g Ô ¹ Ý £ D ì6ë q4: ì | 8)z g µ © « ¸ Ò b Ô ¹ Ý £

45

[31] T. Hashimoto, Y. Yoshioka, and T. Ohtsuka, “Receding Horizon Control for Hot Strip MillCooling Systems,” IEEE/ASME Trans. on Mechatronics, Vol. 18, No. 3, pp. 998–1005(2013)

[32] , , , , “ ,”, Vol. 99, No. 4, pp. 275–282 (2013)

[33] , , “ Receding-Horizon ,”C , Vol. 66, No. 652, pp. 3962-3969 (2000)

[34] Y. Azuma, and T. Ohtsuka, “Receding Horizon Nash Game Approach for DistributedNonlinear Control,” Proc. of SICE Annual Conf. 2011, pp. 380–384 (2011)

[35] T. Ohtsuka, and H. A. Fujii, “Nonlinear Receding-Horizon State Estimation by Real-TimeOptimization Technique,” J. of Guidance, Control, and Dynamics, Vol. 19, No. 4,pp. 863–870 (1996)

[36] T. Ohtsuka, “Nonlinear Receding-Horizon State Estimation with Unknown Disturbances,”, Vol. 35, No. 10, pp. 1253–1260 (1999)

[37] T. Ohtsuka, and K. Ohata, “Hardware Experiment of Nonlinear Receding HorizonAdaptive Control,” Proc. of the 38th IEEE Conf. on Decision and Control, pp. 1232-1233(1999)

[38] Y. Soneda, and T. Ohtsuka, “Nonlinear Moving Horizon State Estimation withContinuation/Generalized Minimum Residual Method,” J. of Guidance, Control, andDynamics, Vol. 28, No. 5, pp. 878–884 (2005)

[39] K. Ohsumi, and T. Ohtsuka, “Particle Model Predictive Control for Probability DensityFunctions,” Reprints of the 18th IFAC World Congress, pp. 7993–7998 (2011)

[40] , , “ ,”, Vol. 25, No. 7, pp. 172–180 (2012)

46

[41] N. Fujii, and T. Ohtsuka, “Nonlinear Adaptive Model Predictive Control via Immersionand Invariance Stabilizability,” , Vol. 25, No. 10, pp. 281–288(2012)

[42] T. Hashimoto, Y. Yoshioka, and T. Ohtsuka, “Receding Horizon Control with NumericalSolution for Nonlinear Parabolic Partial Differential Equations,” IEEE Trans. onAutomatic Control, Vol. 58, No. 3, pp. 725–730 (2013)

[43] J. Marutani, and T. Ohtsuka, “A Real-Time Algorithm for Nonlinear Infinite HorizonOptimal Control by Time Axis Transformation Method,” Int. J. of Robust and NonlinearControl, Vol. 23, No. 17, 2013, pp. 1955–1971 (2013)

[44] F. Tahir, and T. Ohtsuka, “Tuning of Performance Index in Nonlinear Model PredictiveControl by the Inverse Linear Quadratic Regulator Design Method,” SICE J. of Control,Measurement, and System Integration, Vol. 6, No. 6, pp. 387–395 (2013)

[45] T. Ohtsuka, and A. Kodama, “Automatic Code Generation System for Nonlinear RecedingHorizon Control,” , Vol. 38, No. 7, pp. 617–623 (2002)

[46] T. Ohtsuka, AutoGenU, http://www.symlab.sys.i.kyoto-u.ac.jp/˜ohtsuka/code/index j.htm, (2000)

[47] , , , “,” 56 , No. 908 (2013)

[48] http://www.maplesoft.com/applications/view.aspx?SID=153555