6. Dispersi Kasar

Embed Size (px)

Citation preview

  • 7/28/2019 6. Dispersi Kasar

    1/65

  • 7/28/2019 6. Dispersi Kasar

    2/65

  • 7/28/2019 6. Dispersi Kasar

    3/65

    Disperse systems

    Definition:- A substance, the disperse (discontinuous) phase, is

    dispersed as particles over the dispersion medium

    (continuous phase)

    - Phases can be solids, liquids or gasses

    Disperse phase

    (discontinuous phase)

    Dispersie medium

    (continuous phase)

  • 7/28/2019 6. Dispersi Kasar

    4/65

    Suspensions

    Colloids:

    Particle size: 1 nm - 1 mm

    No sedimentation by Brownian movement

    Suspensions:

    Particle size: > 1mmSedimentation

  • 7/28/2019 6. Dispersi Kasar

    5/65

    Suspensions

    Pharmaceutical suspensions are uniform dispersions

    of solid drug particles in a vehicle in which the drughas minimum solubility. Colloidal suspension 1 nm to 0.5 m Coarse suspension 1 to 100 m

    May be for oral, ophthalmic, parenteral, or topical use

    Oral suspensions may be aqueous preparations withflavored, sweetened vehicles or powder productsfor oralsuspension

    Marketed preparations: ready-to-use dry powders which must be reconstituted before

    administration

  • 7/28/2019 6. Dispersi Kasar

    6/65

    SUSPENSIONS

    Examples of Pharmaceutical Suspensions:

    1. Antacid oral suspensions

    2. Antibacterial oral suspension

    3. Dry powders for oral suspension (antibiotic) 4. Analgesic oral suspension

    5. Anthelmentic oral suspension

    6. Anticonvulsant oral suspension

    7. Antifungal oral suspension

  • 7/28/2019 6. Dispersi Kasar

    7/65

    B. Amsden CHEE 440

    Interfacial Phenomena

    flocculation or caking determined by forces of attraction (van der Waals)

    versus forces of repulsion (electrostatic)

    deflocculated repulsion> attraction

    affected by [electrolytes]

    flocculated

    attraction > repulsion

  • 7/28/2019 6. Dispersi Kasar

    8/65

    B. Amsden CHEE 440

    Electrical Properties

    particles may become charged byadsorption of ionic species present in soln or

    preferential adsorption of OH-

    ionization of -COOH or -NH2 group

    -----

    -solid

    +++++

    + hydroxyl ion

  • 7/28/2019 6. Dispersi Kasar

    9/65

    B. Amsden CHEE 440

    Electric Double Layer

    --

    ----

    ++

    ++++

    +

    -+

    +-

    + --

    ++

    -

    +-- ++ -

    +

    +

    gegenion

    Nernst potential

    zeta potential

    tightly

    bounddiffuse

    electroneutralbulk

  • 7/28/2019 6. Dispersi Kasar

    10/65

    Electrical Double Layer

    Surface charge

    ----

    -

    ---+

    +

    ++

    Stern layer (fixed)Zeta potential

    Nernst potential

    Electroneutral solution

  • 7/28/2019 6. Dispersi Kasar

    11/65

    B. Amsden CHEE 440

    Electrical Props contd

    Nernst potential potential difference between the actual

    solid surface and the electroneutral bulk

    Zeta potential

    potential difference between the tightly

    bound layer and the bulk governs electrostatic force of repulsion

    between solid particles

  • 7/28/2019 6. Dispersi Kasar

    12/65

    What are colloids? Colloids are particles of a few mm or smaller suspended in

    a liquid

    Colloids have high surface areas/mass

    When working with colloidal systems it is necessary to control:

    Stability controlled by:

    Surface charges on the particles

    pH and/or ionic strength of the dispersing media

    Selective adsorption of ions

    Particle size

    Colloidal Systems

  • 7/28/2019 6. Dispersi Kasar

    13/65

    If all the particles have a

    large negative or positivezeta potential, they willrepel each other becauseof electrostatic repulsionforces -- stable dispersion

    Negativezeta potential

    Positivezeta potential

    +30 mV

    -30 mV

    0 mV

    STABLE

    STABLE

    NOT STABLE

    Zeta Potential and Dispersion Stability

  • 7/28/2019 6. Dispersi Kasar

    14/65

    Zeta Potential & Dispersion Stability

    If all the particles have a large negative orpositive zeta potential, they will repel each other

    because of electrostatic repulsion force ----

    stable dispersion

    In general, the higher the zeta potential, the morestable the particle dispersion. The dividing lines

    for aqueous dispersion is considered to be

    >+30mV or

  • 7/28/2019 6. Dispersi Kasar

    15/65

    Desirable Features

    particles should settle slowly

    formulation should allow the easyredispersion of sedimented particles

    a flocculated suspension is desirablethan a deflloculated suspension

    a suspension should not be too viscousto reduce the sedimentation rate

  • 7/28/2019 6. Dispersi Kasar

    16/65

    Well Formulated Suspension

    Resuspend easily upon shaking

    Settle slowly after shaking

    Homogeneous mix of drugPhysicallyand chemically stable during its shelf

    life

    Sterile (parenteral, ocular) Gets into syringe (parenteral, ocular)

  • 7/28/2019 6. Dispersi Kasar

    17/65

    Untuk cairan obat luar :

    Produk tersebut harus cukup cair sehingga dapattersebar dengan mudah ke seluruh daerah yangsedang diobati tapi juga tidak boleh sedemikianmudah bergerak sehingga gampang hilang dari

    permukaan dimana obat tersebut digunakan Cairan tersebut harus dapat kering dengan cepat

    dan membentuk suatu lapisan pelindung yangelastis sehingga tidak akan mudah terhapus

    Mempunyai warna dan bau yang nyaman

  • 7/28/2019 6. Dispersi Kasar

    18/65

    Untuk tujuan farmasi :

    Kestabilan fisik suspensi didefinisikan sebagaitidak menggumpal tetap terdistribusi merata diseluruh system.

    Karena kondisi ini jarang terjadi maka dapatdikatakan, jika partikel-partikel tersebutmengendap, maka partikel-partikel tersebut harusmudah disuspensi kembali dengan sedikit

    pengocokan.

  • 7/28/2019 6. Dispersi Kasar

    19/65

    Pengendapan dalam suspensi

    Physical stability

  • 7/28/2019 6. Dispersi Kasar

    20/65

    Theory of Sedimentation

    The factors involved in the rate of velocity of settlingof the particles in a suspension are best expressed inthe equation of the Stokes law

    Stokes equation applies to uniform, perfectly

    spherical particles settling in a very dilute suspensionwith no hindrance or turbulance

    FACTORS TO BE CONSIDERED Particle size

    Density of the vehicle- -polyethylene glycol -polyvinyl pyrolidone -glycerin -sorbitol -sugar.

  • 7/28/2019 6. Dispersi Kasar

    21/65

    Sedimentation rate (1)

    Three forces acting on the falling particle:

    - gravity (constant, )

    - upwards forces (constant, )- friction (increases with increasing speed, )

    Equilibrium of forces constant speed

  • 7/28/2019 6. Dispersi Kasar

    22/65

    Stokes Law

    = kecepatan akhir

    (cm/dt)

    d= diameter partikel sdano= kerapatan

    fase terdisper danmedium pendispersi

    o= viskositas medium

    pendispersi (poise)

    v Stability

    Particles need to comeinto contact (collide) to

    coalesce Therefore, higher

    concentrations (viasettling) promotecoalescence or caking

  • 7/28/2019 6. Dispersi Kasar

    23/65

    External Forces Acting onParticles

    V(-o)g

    2-5 mm

    Gravity Brownian Movement

    Sedimentationequilibrium:Gravity isneutralized byBrownian movement

  • 7/28/2019 6. Dispersi Kasar

    24/65

    Calculations

    Determine the absolute viscosity of syrupusing a ball of radius of 0.2 cm. The densityof the ball is 2.33g/cc and the density of thesyrup is 1.33 g/cc at 250 C. The rate of fallingis 4.35 cm/sec.

    Determine the velocity of settling of sulfur inwater. The average particle radius is 5.5 m.The density of sulfur and water at 250 C. is1.96 and 0.997 g/c.c., respectively. Theviscosity of water at 250 C. is 0.00895 poise.

  • 7/28/2019 6. Dispersi Kasar

    25/65

    Calculations

    If the height of the bottle is 10 cm how longwill it take to completely settle?

    Particle size determination:From the previous example, calculate the

    average particle size of sulfur.

    What is the necessary viscosity to reduce thesedimentation rate from 0.0071 cm/sec to0.00071 cm/sec?

  • 7/28/2019 6. Dispersi Kasar

    26/65

    State Rate of settling Sedimentation

    volume

    Nature

    Flocculated Fast High Porous, easy toredisperse

    Deflocculated Slow Low Compact, difficultto redisperse

  • 7/28/2019 6. Dispersi Kasar

    27/65

    Deflocculated suspension Flocculated suspension

    - Low sedimentation rate

    - Liquid above sediment

    remains turbid (particles of< 1 mm do not sediment due

    to Brownian movement)

    - Sedimentation is build up

    from the bottom

    - Compact sediment

    difficult to redisperse

    - High sedimentation rate

    - Liquid above sediment is

    clear (also particles< 1 mm sediment)

    - Sedimentation is build up

    from the top

    - Loose sediment easy to

    redisperse

    Deflocculated is also referred to as peptised

    Sedimentation behavior

  • 7/28/2019 6. Dispersi Kasar

    28/65

    Deflocculated suspension Flocculated suspension

    Structures sediment

    o

    u

    V

    VF==Degree of sedimentation:

    Original volume

    Volume sediment

  • 7/28/2019 6. Dispersi Kasar

    29/65

    Settling and Aggregation

    The suspension shall formloose networks offlocksthat settle rapidly, do not

    form cakes and are easyto resuspend.

    Settling and aggregation

    may result in formation ofcakes(suspension) that isdifficult to resuspend orphase separation

    (emulsion)

    flock

    cake

  • 7/28/2019 6. Dispersi Kasar

    30/65

    Sedimentation Volume

    V = Vu /V0 ; ideally, V should be equal to 1.0

  • 7/28/2019 6. Dispersi Kasar

    31/65

    Sedimentation

    Stokes law:

    Take care:

    - Wetting particles (contact angle)

    - Shape of the particles (compare: parachute)

    - High particle concentration

    - Non-Newtonian liquids (yield stress)

    - Convection by differences in temperature

    18d2(s - f)g

    v =

  • 7/28/2019 6. Dispersi Kasar

    32/65

  • 7/28/2019 6. Dispersi Kasar

    33/65

    B. Amsden CHEE 440

    Formulation of Suspensions

    2 common approaches :

    1.use of a structured vehicle

    caking still a problem

    2.flocculation no cake formation

    less common approach is to combineabove

  • 7/28/2019 6. Dispersi Kasar

    34/65

    B. Amsden CHEE 440

    Controlled Flocculation

    electrolytes

    most widely used reduce zeta potential

    decrease force of repulsion

    change pH

    bridge formation

    alcohol

    reduction in zeta potential

    surfactants form adsorbed monolayers on particle surface

    efficacy is dependent on charge, concentration

    ll d l l

  • 7/28/2019 6. Dispersi Kasar

    35/65

    B. Amsden CHEE 440

    Controlled Flocculation

    polymers

    adsorb to particle surface

    bridging

    viscosity, thixotropy

    protective colloid action

    most effective

    S d hi l

  • 7/28/2019 6. Dispersi Kasar

    36/65

    B. Amsden CHEE 440

    Structured Vehicles

    pseudoplastic or plastic dispersion

    medium

    examples

    methylcellulose, bentonitenegatively charged

    increase viscosity

  • 7/28/2019 6. Dispersi Kasar

    37/65

    B. Amsden CHEE 440

    Combined Approach

    possibility of incompatibilities of

    suspending agent and flocculatingagent

    structured vehicles have negativecharge

    incompatible if particle carries anegative charge

  • 7/28/2019 6. Dispersi Kasar

    38/65

  • 7/28/2019 6. Dispersi Kasar

    39/65

    Pertimbangan Rheologi

    Prinsip rheologi bisa diterapkan untukpenyelidikan dari factor-faktor berikut :

    viskositas dari suatu suspensi apabilamempengaruhi pengendapan dari partikel-partikel zat terdispersi

    perubahan dalam sifat-sifat aliran dalamsuspensi bila wadahnya dikocok dan dituangdari botol

    kualitas penyebaran dari cairan (lotio) biladigunakan untuk suatu bagian permukaanyang akan diobati

    pembuatan suspensi

  • 7/28/2019 6. Dispersi Kasar

    40/65

  • 7/28/2019 6. Dispersi Kasar

    41/65

    Emulsions

    Dispersed system - two immiscible liquid phases,one of which is dispersed as globules in theother o/w - oleaginous internal phase and an aqueous

    external phase

    w/o - aqueous internal and an oleaginous externalphase

    Microemulsion: Droplets size range 0.01 to 0.1m

    Macroemulsion: Droplets size rangeapproximately 5 m.

  • 7/28/2019 6. Dispersi Kasar

    42/65

    dispersion

    B phase A phase Emulsion solution

    Definition

    An emulsion is a dispersion in which the dispersed phase

    is composed of small globules of a liquid distributed

    throughout a vehicle in which it is immiscible.

  • 7/28/2019 6. Dispersi Kasar

    43/65

    O/W W/O

    Types of emulsions

    W/O/W O/W/O

    Internalphase

    Externalphase

    oil-in-water water-in-oil

    Water in-oil-in-water

    Oil-in-water-

    in-oil

    Internalphase

    Externalphase

    Basic types multiple

  • 7/28/2019 6. Dispersi Kasar

    44/65

    Types of Emulsion

    Oil-in-water emulsion Water-in-oil emulsion

    Water

    Oil

    mm

  • 7/28/2019 6. Dispersi Kasar

    45/65

    Multiple Emulsions

    Water-in-oil-in-water emulsion Oil-in-water-in-oil emulsion

    Water

    Oil

    mm

  • 7/28/2019 6. Dispersi Kasar

    46/65

    Instability emulsions

    Sedimentation Floating

    Combined with coalescence

    cracking of breaking

    Possibly combined with floccu-

    lation (secondary minimum)

    Sedimentation Creaming

  • 7/28/2019 6. Dispersi Kasar

    47/65

    Settling & Creaming

    Stokes Law

    v Stability

    Particles need to come into contact(collide) to coalesce

    Therefore, higher concentrations(via settling) promote coalescenceor caking

  • 7/28/2019 6. Dispersi Kasar

    48/65

    Schematic of the emulsion breakdownprocesses.

  • 7/28/2019 6. Dispersi Kasar

    49/65

    Contoh Soal

    Suatu emulsi o/w mangandung minyakmineral dengan BJ 0,9 terdispers dalam suatufase air yang mempunyai BJ 1,05. Jikapartikel minyak mempunyai diameter rata-

    rata 5 m, fase luar mempunyai viskositas0,5 poise berapakah kecepatan creamingdalam cm per hari ?

  • 7/28/2019 6. Dispersi Kasar

    50/65

    Physical Stability -> Phase Separation

    Phases separation starts with growth in particle size

    Physical contact -> first step in coalescence Flocculation and aggregation

    Come together but do not fuse No disruption of interface Surfactants slow process Fusion of particles -> next step

    Coalescence Come together & fuse Disruption of interface

    Surfactants slow process

    Phase separation (final endpoint) Result of continued coalescence

  • 7/28/2019 6. Dispersi Kasar

    51/65

    Surfactants adsorb at interfaces Interfacial energy decreases(interfacial energy: energy required to create new interface)

    Improvement stability emulsions

    hydrophobic

    hydrophilic

    oil

    water

  • 7/28/2019 6. Dispersi Kasar

    52/65

    Emulsification

    Emulsifier

  • 7/28/2019 6. Dispersi Kasar

    53/65

    Theories of Emulsification:

    1) Surface Tension Theory:- lowering of interfacial tension.

    2) Oriented-Wedge Theory:

    - mono molecular layers of emulsifying agentsare curved around a droplet of the internalphase of the emulsion.

    3) Interfacial film theory:

    - A film of emulsifying agent prevents thecontact and coslescing of the dispersedphase.

  • 7/28/2019 6. Dispersi Kasar

    54/65

    Surfactants and Micelles

    Surface active agents have a certain affinity for bothpolar & nonpolar solvents

    Amphiphilic nature adsorb at interfaces

    At a concentration that is characteristic of eachamphiphile, these molecules will aggregate to producemicelles

  • 7/28/2019 6. Dispersi Kasar

    55/65

    Viscositas dari fase luar dapat ditingkatkan tanpamelewati batas-batas konsistensi yang dapat diterimadengan menambah suatu zat pengental (viscosityimprover atau thickening agent)

    Ukuran partikel dari bola-bola bisa dikurangi denganmenghomogenkannya.

    Ini merupakan dasar untuk kestabilan terhadap creamingdari corpus yang homogen.

  • 7/28/2019 6. Dispersi Kasar

    56/65

    Stability

    Phase Inversion O/W W/O

    Change water washable, etc. E.g. divalent salts Ca++, Mg++ in hard water

    Inversi juga bisa dihasilkan dengan mengubah perbandingandengan penambahan volume fase internal.

  • 7/28/2019 6. Dispersi Kasar

    57/65

    Sifat Rheologi Emulsi

    Kebanyakan emulsi, kecuali emulsi encer,menunjukkan aliran Non Newton

    Faktor-faktor prinsip yang mempengaruhi sifat-sifataliran dari emulsi adalah sifat viskositas yangberhubungan dengan fase terdispers, fase kontinu

    dan zat pengemulsi

  • 7/28/2019 6. Dispersi Kasar

    58/65

  • 7/28/2019 6. Dispersi Kasar

    59/65

    Pengurangan ukuran partikel rata-rata akanmenaikkan viskositas.

    Makin luas distribusi ukuran partikel, makin rendahviskositasnya jika dibandingkan dengan system yangmemiliki ukuran partikel rata-rata serupa tetapi dengandistribusi ukuran partikel yang lebih sempit.

    Makin tinggi konsentrasi zat pengemulsi, akan makintinggi pula viskositas produk tersebut.

  • 7/28/2019 6. Dispersi Kasar

    60/65

  • 7/28/2019 6. Dispersi Kasar

    61/65

    Example:

    Determine the absolute viscosity of syrup using a

    ball of radius of 0.2 cm. The density of the ball is2.33g/cc and the density of the syrup is 1.33 g/cc at250 C. The rate of falling is 4.35 cm/sec.

    v = 2r2 (D - d) g/9n

    n= 2r2 (D - d) g/9v

    = 2 (0.2)(0.2) [2.33 - 1.33] 980/9(4.35)

    = 2.0 poise

  • 7/28/2019 6. Dispersi Kasar

    62/65

  • 7/28/2019 6. Dispersi Kasar

    63/65

    If the height of the bottle is 10 cmhow long will it take to completelysettle?

    1/x = 7.1*10-3/10

    x = 1408 sec = 23.5 appprox. 24minutes

    It sediment too fast. Increase viscosityto reduce the sedimentation.

  • 7/28/2019 6. Dispersi Kasar

    64/65

    Particle size determination:

    From the previous example, calculate theaverage particle size of sulfur.

    v = 2r2 (D - d) g/9n

    r2= v9n /2 (D - d) g

    = (0.0071)(9)(0.00895)/2(1.96 -0.997)980

    r = 5.5*10-4 cm

    diameter = 11*10-4 cm

  • 7/28/2019 6. Dispersi Kasar

    65/65

    What is the necessary viscosity to reduce thesedimentation rate from 0.0071 cm/sec to0.00071 cm/sec?

    v = 2r2 (D - d) g/9n

    = 2r2 (D - d)g/9v

    = 2 (5.5*10-4)2 (1.96 - 0.997)(980)/9(0.00071)

    = 0.0894 poise