6-01-interpolasi langsung-sjk.pdf

  • Upload
    annas04

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    1/15

    Direct Method of

    Interpolation

    1

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    2/15

    What is Interpolation ? , , , , n, n ,

    value of x that is not given.

    2Figure 1 Interpolation of discrete.

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    3/15

    Interpolants

    Polynomials are the most commonchoice of inter olants because theare easy to:

    Eva uate

    Differentiate, and

    Integrate

    3

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    4/15

    Direct Method

    Given n+1 data points (x0,y0), (x1,y1),.. (xn,yn),pass a polynomial of order n through the data as given

    w:

    ..................... nxaxaa +++=where a0, a1,. an are real constants.

    et up n+1 equations to in n+1 constants. To find the value y at a given value of x, simply

    substitute the value of x in the above ol nomial.

    4

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    5/15

    The upward velocity of a rocket is given as afunction of time in Table 1.

    Find the velocity at t=16 seconds using thedirect method for linear interpolation.

    a e e oc y as a unc onof time.

    s,t m/s,tv

    0 0

    10 227.04

    15 362.78

    20 517.35

    22.5 602.97

    5

    30 901.67 Figure 2Velocity vs. time data for the

    rocket example

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    6/15

    Linear Interpolation

    ( ) taatv 10+=78.3621515 =+= aav ( )11,yx

    y

    ( ) ( ) 35.5172020 10 =+= aav( )00

    ,yx

    ( )xf1

    Solving the above two equations gives,

    93.1000 =a 914.301=ax

    Figure 3 Linear interpolation.

    Hence

    ( ) .2015,914.3093.100 += tttv

    6

    ( ) ( ) m/s7.39316914.3093.10016 =+=v

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    7/15

    The upward velocity of a rocket is given as afunction of time in Table 2.

    Find the velocity at t=16 seconds using thedirect method for quadratic interpolation.

    a e e oc y as a unc onof time.

    s,t m/s,tv

    0 0

    10 227.04

    15 362.78

    20 517.35

    22.5 602.97

    7

    30 901.67 Figure 5Velocity vs. time data for the

    rocket example

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    8/15

    Quadratic InterpolationQuadratic Interpolation

    ( ) 2210 tataatv ++=2

    ( )11

    ,yx

    ( )22 ,yx

    y

    .210 ==

    ( ) ( ) ( ) 78.362151515

    2

    210 =++= aaav

    )xf235.517202020 210 =++= aaav ( )00 ,yx

    x

    Figure 6Quadratic interpolation.

    Solving the above three equations gives

    8

    .0 .1 .2

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    9/15

    Quadratic Interpolation (cont.)

    450

    500

    550517.35

    ( ) 2010,3766.0733.1705.12 2 ++= ttttv

    300

    350

    400s

    f range( )

    f x desired( )( ) ( ) ( )2163766.016733.1705.1216 ++=v

    m/s19.392=

    10 12 14 16 18 20200

    250

    227.04

    2010 x s range, x desired,

    the results from the first and second order polynomial is

    70.39319.392

    =

    a

    9

    %38410.0

    19.392

    =

    a

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    10/15

    The upward velocity of a rocket is given as afunction of time in Table 3.

    Find the velocity at t=16 seconds using thedirect method for cubic interpolation.

    a e e oc y as a unc onof time.

    s,t m/s,tv

    0 0

    10 227.04

    15 362.7820 517.35

    22.5 602.97

    10

    30 901.67 Figure 6Velocity vs. time data for the

    rocket example

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    11/15

    Cubic Interpolation

    ( ) 332

    210 tatataatv +++= ( )33 ,yx

    ( )11,yx

    ( ) ( ) ( ) ( )332

    210 10101004.22710 aaaav +++==

    ( ) ( ) ( ) ( )332210 15151578.36215 aaaav +++==( )xf3

    ( )22 ,yx( )00 ,yx

    ( ) ( ) ( ) ( )332

    210 20202035.51720 aaaav +++==

    32

    x

    Figure 7 Cubic interpolation.

    3210 ..... ==

    = = 13204.0=a 0054347.0=a

    11

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    12/15

    Cubic Interpolation (contd).,.... +++= tttttv

    ( ) ( ) ( ) ( )160054347.01613204.016266.212540.416 32 +++=v

    600

    700602.97

    .

    The absolute percentage relative

    400

    500y s

    f range( )

    f x desired( )

    second and third order polynomial is

    a

    19.39206.392

    10 12 14 16 18 20 22 24200

    300

    227.04

    22.510 x s range, x desired,%033269.0

    06.392

    ==a

    12

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    13/15

    Comparison Table

    Table 4 Comparison of different orders of the polynomial.

    Order of

    Polynomial1 2 3

    m/s16=tv 393.7 392.19 392.06

    Absolute Relative

    Approximate Error---------- 0.38410 % 0.033269 %

    13

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    14/15

    Distance from Velocity Profilen t e stance covere y t e roc et rom t= s to t= s

    ( ) 5.2210,0054347.013204.0266.212540.4 32 +++= tttt

    ( ) ( ) ( )1116

    16

    16

    11

    = dttvss

    )0054347.013204.0266.212540.4

    16432

    11

    32 +++= dtttt

    m1605

    40054347.0313204.02266.212540.411

    =

    +++= t

    14

  • 8/10/2019 6-01-interpolasi langsung-sjk.pdf

    15/15

    Acceleration from Velocity Profile

    ( ) 5.2210,0054347.013204.0266.212540.4 32 +++= ttttFin t e acce eration o t e roc et at t=16s given t at

    ( ) ( )=

    d

    tvdt

    ta

    5.2210,016382.026130.0289.21

    ....

    2 ++=

    +++=

    ttt

    tttdt

    ( ) ( ) ( )2

    2

    m/s665.29

    16016304.01626408.0266.2116

    =

    ++=a

    15