41
Metallurgy and Materials Engineering Department University of Indonesia 2009 PROSES REDUKSI LANGSUNG Prof. Dr.-Ing. Bambang Suharno University of Indonesia Metallurgy and Materials Engineering Department UI PROSES REDUKSI LANGSUNG DEFINISI Reduksi bijih besi dengan menghindari fasa cair REDUKTOR Padat (batubara / coal) Cairan (minyak bumi) Gas (CH4)

5 Reduksi Langsung

Embed Size (px)

DESCRIPTION

reduksi langsung

Citation preview

Page 1: 5 Reduksi Langsung

1

Metallurgy and Materials Engineering DepartmentUniversity of Indonesia2009

PROSES REDUKSI LANGSUNG

Prof. Dr.-Ing. Bambang Suharno

University of Indonesia

Metallurgy and Materials Engineering Department UI

PROSES REDUKSI LANGSUNG

DEFINISIReduksi bijih besi dengan menghindarifasa cair

REDUKTORPadat (batubara / coal)Cairan (minyak bumi)Gas (CH4)

Page 2: 5 Reduksi Langsung

2

University of Indonesia

Metallurgy and Materials Engineering Department UI

Ciri-Ciri Reduksi Langsung (RL)

Menggunakan batubara/gas bumi sebagai penggantikokasProduk kualitas tinggi

Bersaing dengan harga besi tuangMengandung sedikit elemen Cu, Sn, Zn

Pada beberapa proses , dengan menggunakan ‘fine gas’ (fluidized bed)

Tidak memerlukan aglomerasi mengurangi costKapasitas produksi bisa rendah , sesuai permintaan

pasarInvestasi dapat kecil

Lingkungan hidup lebih baikEmisi CO2 rendah

University of Indonesia

Metallurgy and Materials Engineering Department UI

Prinsip Reduksi Langsung (RL)

Berbeda dengan tanur tinggi , pada RL terdapat sisaoksida dalam bijih besi pada akhir proses reduksi

Pada tanur tinggi , sebagian besar oksida yang adaakan tereduksi , bahkan terjadi karburisasi(peningkatan C) dalam besi mentah

ini akan dikeluarkan dalam proses oksidasi (di BOF)

Page 3: 5 Reduksi Langsung

3

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Produk Akhir Reduksi Langsung

BESI SPONS Fetotal : 91-97 %C : 1-2,5 %P & S : 0,01 %Sisa : 2 % gangue di oksida besi

Bahaya reoksidasi dari besi sponsBiasanya dibriketasi atau secara langsung (dalamkeadaan panas) di charge ke agregat peleburan(mis:EAF)

Page 4: 5 Reduksi Langsung

4

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 5: 5 Reduksi Langsung

5

University of Indonesia

Metallurgy and Materials Engineering Department UI

Hot Briquette Iron

University of Indonesia

Metallurgy and Materials Engineering Department UI

Jenis Reduksi Langsung

Dibagi berdasarkanJenis reduktor : padat , cair , gasJenis produk : padat , cair ,plastisJenis reaktor :

shaft rotary kilnFluidized bed

Retorte : HYL IShaft : Midrex , HYL IIIFluidized bed : Fior,Iron Carbide,CircoferRotary kiln : SL/RNRotary Hearth : Inmetco

Page 6: 5 Reduksi Langsung

6

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

2008 DRI Production = 68.5 Juta Ton2008 Steel Production = 1.326 Juta Ton

Page 7: 5 Reduksi Langsung

7

University of Indonesia

Metallurgy and Materials Engineering Department UI

Produksi DRI

2004 = 50 Jt Ton

2005 = 60 Jt Ton

University of Indonesia

Metallurgy and Materials Engineering Department UI

67.22 million tonnes (2007)

Page 8: 5 Reduksi Langsung

8

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 9: 5 Reduksi Langsung

9

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 10: 5 Reduksi Langsung

10

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

Dikembangkan oleh Midrex – Corporation (USA)Prinsip

Reaktor

gas reduksi

CH4 + CO2 2 CO + 2 H2

Umpan

Page 11: 5 Reduksi Langsung

11

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 12: 5 Reduksi Langsung

12

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses MidrexOre feed

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

Reduksi berdasarkan prinsip berlawananarahTop gas direcycling

untuk mengcracking CH4

pemanasanReforming CH4 & CO2 berlangsung kontinuproduk didinginkan sampai temperatur kamar

Page 13: 5 Reduksi Langsung

13

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

Pada zona reduksiDiameter shaft = 6 meter Umpan turun dari atas ke bawah

Fe2O3 + 3 H2/CO 2 Fe + 3 H2O/CO2

Di bawah zona reduksi terdapat zonapendinginan

sponge iron akan didinginkanBekerja pada tekanan normal

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

Gas PenghalangAgar udara tak masuk ke reduktorberasal dari top gas

Gas reduksicracking CH4 dan CO2 atau H2O yang berasal dari top gascrakcing terjadi di reformergas reduksi (after reduksi) = 900 OCGas reduksi di shaft = 800 OCsetelah melalui reduksi keluar dari reaktor dalambentuk top gas

Page 14: 5 Reduksi Langsung

14

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

0,6 bar0,9 barTekanan400 oC800 oCTemp2 %2 %N2

2 %2 %CH4

16 %2 %CO2

22 %5 %H2O20 %34 %CO38 %55 %H2

Top gasGas reduksi

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

Kegunaan top gas :pemanasan awal gas bumi untuk reformeruntuk mengcracking gas metan

Proses reduksi T = 800 OCjika sponge iron langsung dikeluarkan

reoksidasiperlu pasivasi cara : mendinginkan dengan gas

pendingingas pendingin naik ke atas panas keluarreaktor dicuci & didinginkan diinjeksikankembali

Page 15: 5 Reduksi Langsung

15

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Midrex

metalisasi : 92 – 96 %C : 0,7 – 2 %Produk Akhir Berupa :

besi spons (Direct Reduced Iron)briket (Hot Briquet Iron)

untuk briket(ada hot briquetting unit)

Keuntungan bentuk briket :tahan terhadap reoksidasi & tahan terhadapsifat fisik (tidak mudah pecah)mudah dihandling & aman untuk dikapalkan

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses HYLSA

Hojalaya Y Lamina SA (HYLSA)Plant pertama : di Monterrey 1957

1994 HYL I : 11 modul(dunia) HYL III : 6 modul

Peralatanfix bed reaktor : umpan tidak bergerak utamaterdiri dari:

gas reforming unit4 buah reaktor vessel

PT Krakatau Steel2 modul HYL I + 10 EAF2 modul HYL III

produksi 1995 = 2.600.000 ton / tahun

Page 16: 5 Reduksi Langsung

16

University of Indonesia

Metallurgy and Materials Engineering Department UI

Pembuatan Besi Baja di PTKS

0.450 jt T Wire Rod

0.950 jt TCold Rolled

Reformer

Pelet

Hyl-III, 1.350 jt T DRI

CO, H2

EAF:6x120T

Skrap

LF

Vac Degasser

CCM

RHF

Slab

Reheating F’ce.

Hot Strip Mill

Slab Caster

EAF4x60T

Skrap

LF

CCM

Billet: Caster

Wire Rod Mill

Cold Rolling Milll2 jt T Hot Strip

1.8 jt T Slab

0.650 jt T Billet:

Gas Alam

Shipment

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses HYLSA I

Page 17: 5 Reduksi Langsung

17

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses HYLSA I

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses HYLSA I

Page 18: 5 Reduksi Langsung

18

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa I

Gas reforming unittube Ni-Cr alloykatalis Ni

Reaksi :CH4 + H2O CO + 3 H2

Bahan bakulump ore and ore pelletukuran optimal

terlalu kecil penyumbatan timbul kanalterlalu besar reduksi belum sempurna , terutamabagian dalam pellet metalisasi rendah

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa I

Cara kerjaterdapat 4 reaktor @ 3 jam operasi total 12 jam

reaktor pendinginanreaktor reduksi akhir (primary reduction)reaktor reduksi awal (secondary reduction)reaktor pengeluaran / pengisian umpan

Tahap pendinginangas yang terbentuk dari reformer dialirkan ke atasreaktor pendinginan

komposisi gas :H2 : 75 % CO : 14 %CO2 : 7 % CH4 : 4 %

Page 19: 5 Reduksi Langsung

19

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa I

proses ini berlangsung di reaktor reduksi akhirgas yang telah dipergunakan pada reaktor pendingin , selanjutnya didinginkan dalam quencher (dehumidifier)Tujuan :

memisahkan uap air (H2O) yang tak bereaksi selama direformer , dengan metanagar gas reduktor yang masuk lebih baik kualitasnya

gas lalu dipanaskan s/d 850 OC di heat exchanger dan 1000-1300 OC pada combustion chamber gas reduktor tersebut lalu masuk ke atas reaktor reduksi akhirFe2O3 + 3 H2 = 2 Fe + 3 H2O H : 858 MJ/ton FeFe2O3 + 3 CO = 2 Fe + 3 CO2 H : -246 MJ/ton Fe

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa I

disebut ‘secondary reduction’ , karena menggunakan gas reduksi yang telah digubakan pada tahap reduksi akhir .

(gas yang telah kehilangan “reduction powernya”)gas buang pada tahap reduksi akhir diquench uap air rendah

dipanaskan pada heat exchanger s/d 800-850 OC dibakar sampai 1050-1150 OC di combustion chamber masuk ke atas reaktor reduksi awal

pada tahap ini 40 % proses reduksi terjaditop gas pada reduksi awal di quench sebagai fuel gas untuk :

generator uap/steammemanaskan heat exchanger

Page 20: 5 Reduksi Langsung

20

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa I

merupakan proses RL pertama berbasis gas alamkebutuhan energi spesifik tinggi

17-19 GJ/ton DRIkarenanya banyak dimodifikasi menjadi HYL IIIHYL II : pengembangan HYL Ipemanasan gas reduktor lebih tinggi reduksibaik

digunakan high temperatur alloy tube pada reaktor4 unit reaktor 2 reaktor

kurang berkembang

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa I

Persamaan HYL I & IIIPembuatan gas reduktor di reformergas H2 : CO tinggi (lebih banyak H2)temperatur proses tinggi (850-930 OC)tekanan tinggi (5,5 bar)

Page 21: 5 Reduksi Langsung

21

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa III

digunakan single shaft furnace (moving bed) pengganti four fixed bed reaktordikembangkan oleh : Hojalaya Y Lamina SA Monterrey,Mexico)merupakan pengembangan HYL Iumpan : pellet atau lump ore direduksimenjadi sponge iron

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 22: 5 Reduksi Langsung

22

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa III

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 23: 5 Reduksi Langsung

23

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa III

sama seperti Midrex

umpan bergerak dari atas ke bawahterdapat 2 zona zona reduksi

zona pendingingas reduksi panas masuk ke reaktor & mengalir berlawanan ke arah atas

shaft

gas reformer

gas reheater

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa III

TOP GAS (400-450 OC)masuk ke reformer untuk mengcracking gas bumi(kebanyakan dengan H2O = uap air)CH4 + H2O CO + 3 H2dan untuk pemanasan gas reduktordirecycling dan dicampur dengan gas reduktoryang baru diproduksi

GAS REDUKTOR (850 – 930 OC)dimasukkan ke reaktor dengan tekanan ± 5,5 barada special pressure lock system pada charging (top) & discharging (bottom)

Page 24: 5 Reduksi Langsung

24

University of Indonesia

Metallurgy and Materials Engineering Department UI

Komposisi Gas Reduktor Hylsa III

5,5 barTek930 oCTemp1,2 %N2

7,0 %CH4

3,3 %CO2

1,4 %H2O (uap)13,0 %CO74,1 %H2

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa III

ReduksiFe2O3 dengan H2 endotermFe2O3 dengan CO sedikit endoterm

Fe2O3 + 3 H2 2 Fe + 3 H2O ∆ H = -858 MJ/ton FeFe2O3 + 3 CO 2 Fe + 3 CO2 ∆ H = -246 MJ/ton Fe

pada HYL III dibanding midrexratio H2/CO tinggikarenanya temp masuk reaktor boleh tinggi

Page 25: 5 Reduksi Langsung

25

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa III

ZONA PENDINGINANgas yang terjadi (500-550 OC) didinginkan

dibersihkan alirkan kembali ke reaktorTemperatur sponge iron yang dikeluarkan ± 40 OCPT KS

terdapat 2 HYL III-reaktorkapasitas masing-masing 675.000 ton DRI/tahun

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses Hylsa III

HYL juga mengembangkan Hytem-Prosestanur digabungkan dengan “sistemtransport” , dimana besi spons panas (650 OC) langsung di charging ke EAFtransport gas = digunakan gas hasilproseskebutuhan energi :

HYL I : 17-19 GJ/ton DRIHYL III : 11,65 GJ/ton DRI

Page 26: 5 Reduksi Langsung

26

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Main constraints in using local raw materials (iron ore of lateritic type and coal):

Uninvented technology process benefitting lateritic iron ore which is so efficient and economical that Fe content can be increased.

Moreover, most Indonesia coal reserves are “non coaking coal” type not suitable for Blast Furnace route.

Indonesia Iron Ore resource (Table 7) , especially lateritic iron type is abundant. Nevertheless due to technical and economical reasons, the utilization of this type for domestic steel industry is still low, more for export commodity.

Common challenge faced by Indonesia steel industry nowadays is seeking for the right tachnology process which is technically and economically able to :

•Use local Indonesia coal for reductor/energy source.•Optimally use local ores (especially lateritic type – Indonesia biggest deposit ) as Fe source

Iron SandPrimary IronLateritic Iron

Source : BP Statistical Review 2008

1.565.195.899,30 368.493.173,95 165.108.793,97

Tabel 7. Iron Ore Resources of Indonesia (Status 2007)

Type of Mineral Millions Tons

Halaman 12 dari 18

Bijih Besi di Indonesia

Page 27: 5 Reduksi Langsung

27

University of Indonesia

Metallurgy and Materials Engineering Department UI

Masalah Penggunaan Bijih Besi LateritUntuk Bahan Baku Pembuatan Baja

Kadar Fe relatif rendah (<67%)Kandungan Nikel dan Chrom relatiftinggiKandungan Al2O3 dan SiO2 relatiftinggi

University of Indonesia

Metallurgy and Materials Engineering Department UI

TipikalTipikal KomposisiKomposisi KimiaKimia BijihBijih BesiBesi LateritLaterit

LOKASI

GERONGGANGKALSEL

(GRAVEL)

GERONGGANGKALSEL

(SUPER FINE)

SEBUKU(KALSEL)GRAVEL

SEBUKUKALSEL

(SUPER FINE)

PARAMETER%

0.1430.1820.0820.18Ni

0.0520.1530.060.141S

0.4050.0120.0350.071P

0.1160.560.330.82MnO

1.0250.711.401.01Cr2O3

0.0400.0560.048-V2O5

0.160.480.2530.19TiO2

4.1713.683.588.90Al2O3

0.230.250.111.20MgO

0.110.130.0760.50CaO

2.303.920.783.35SiO2

56.9143.1257.0550.50Fe Total

Page 28: 5 Reduksi Langsung

28

University of Indonesia

Metallurgy and Materials Engineering Department UI

Komposisi Kimia Besi Spons Ex Bijih Besi Laterit

0,034S0,34MgO

0,031P0,34CaO

0,46Ni1,18SiO2

0,02C11,38Fe Oksida

4,64Cr2O373,59Fe metal

4,36Al2O384,97Fe total

% BeratUnsur% BeratUnsur

University of Indonesia

Metallurgy and Materials Engineering Department UI

Lump Ore

Fe (total) 52-53 %Fe2O3 81.0 % (min)SiO2 3.5 % (max)Al2O3 5.0 % (max)Ca O 1.0 % (max)Mg O 1.0 % (max)Ni 0.5 % Cr 1.5 %P 0.06 % (max)S 0.08 % (max)LOI 8 – 12 %Size distribution 10 – 35 mm (90% min)

10 mm minus, 35 mm plus (10% Max)

TYPICAL PRODUCT IRON SPECIFICATION

Page 29: 5 Reduksi Langsung

29

University of Indonesia

Metallurgy and Materials Engineering Department UI

LUMP ORELUMP ORELUMP ORE

University of Indonesia

Metallurgy and Materials Engineering Department UI

TYPICAL PRODUCT IRON SPECIFICATION

Coarse Fine

Fe (total) 52.0 % (min)Fe2O3 80.0 % (min)SiO2 3.0 % (max)Al2O3 5.5 % (max)Ca O 1.0 % (max)Mg O 1.0 % (max)Ni 0.5 % Cr 1.5 %P 0.06 % (max)S 0.08 % (max)LOI 8 – 15 %Size distribution 10 mm minus (90% Min)

10 mm plus (10% Max)100 mesh minus (30% Max)

Page 30: 5 Reduksi Langsung

30

University of Indonesia

Metallurgy and Materials Engineering Department UI

COARSE FINECOARSE FINE

University of Indonesia

Metallurgy and Materials Engineering Department UI

Flowchart of SL/RN DRI Production Process Flowchart of SL/RN DRI Production Process

Page 31: 5 Reduksi Langsung

31

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses SL-RN (Rotary Kiln)

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses SL-RN (Rotary Kiln)

Page 32: 5 Reduksi Langsung

32

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses SL-RN (Rotary Kiln)

University of Indonesia

Metallurgy and Materials Engineering Department UI

Rotary Kiln PT. Krakatau Stell

pilot plant 5 ton/hari Agustus 200650 ton/ hariMei 2007150 ton/ hari di Kalimantan

Page 33: 5 Reduksi Langsung

33

University of Indonesia

Metallurgy and Materials Engineering Department UI

TRANS-SHIPMENT BIJIH BESI LOKAL UNTUK DI EKSPOR KE CHINA

Batu besi1.jpg

University of Indonesia

Metallurgy and Materials Engineering Department UI

Lump Ore Laterit Batu Bara Lokal

Reduksi di Rotary Kiln

Peleburan di Dapur Listrik

PengecoranBaja Cair

Slab / BiletBaja

Hot Rolling / Cold Rolling

Baja Siku, Baja betonBaja KawatBaja HRCBaja tipis CRC

TRIAL BIJIH LATERIT SKALA PABRIK DI PTKS

Besi spons / DRI

Page 34: 5 Reduksi Langsung

34

University of Indonesia

Metallurgy and Materials Engineering Department UI

Bahan Baku & Produk Rotary Kiln PT Krakatau Steel

-3 mmFines

+3 mmSize Lump

Physical

0.10 maxCarbon

0.05 maxPhosphorus

0.03 maxSulphur

90 (±2)Metallisation

81-84Fe, Metallic

90-92Fe, Total

Chemical

ProsentaseUnsur Pokok1. CoalReduktor = batu bara, mulai jenisantrasit sampai lignite. Untukkandungan kalori rendah, diperlukan tambahan bahan bakarseperti gas alam atau bahanbakar cair, untuk menjaga profiltemperatur yang dibutuhkan

2. Iron Oreberupa iron ore pellet, lump ore, atau pasir besi. Kandungan Fe minimum 53% dan kandungangangue maksimum 5%.

3. DolomiteBatu kapur berfungsi sebagaipenyerap belerang dari campuranbahan baku selama prosesreduksi.

University of Indonesia

Metallurgy and Materials Engineering Department UI

Iron Ore Low Grade High Grade

Beneficiation

Concentrate (Fe>65%)

Grinding

Rotary Kiln

Binder

Pelletizer Pellet

Coal

Coal

Grate-Rotary Kiln Indurator

FASTMET

Lump 6-25mm

Screen

Coke

Sintering

<6mm

Blast Furnace

Binder

Mixer

Pelletizer

Iron Nugget DRI Pig Iron

Crushing

Crushing

ITmk3

Briquette Machine

Dryer

DRI

Rotary Hearth

Page 35: 5 Reduksi Langsung

35

University of Indonesia

Metallurgy and Materials Engineering Department UI

Iron Ore

Low Grade High Grade

Beneficiation

Concentrate (Fe>65%)

Grinding

TEKNOLOGI PENGOLAHAN BIJIH BESI MENGGUNAKAN ITmk3®

Size: 0.08-0.17mm

Coal

RHF

Lump 6-25mm

Screen

<6mm

BinderMixer

Pelletizer

Iron Nugget

Crushing Crushing

Slag

University of Indonesia

Metallurgy and Materials Engineering Department UI

Third Generation of Iron Making Technology (ITmk3®)

Slag dan Fe terpisah dalam satu tahapBatubara sebagai reduktorKapasitas dapat disesuaikanHigh Grade Iron Ore dan Low Grade dapatdigunakan (Pasir Besi dan Laterit)Biaya investasi setengah dari Investasi Blast Furnace untuk kapasitas yang sama (US$90-100 juta)

Page 36: 5 Reduksi Langsung

36

University of Indonesia

Metallurgy and Materials Engineering Department UI

Rotary Hearth

University of Indonesia

Metallurgy and Materials Engineering Department UI

Briquetting Machine

Page 37: 5 Reduksi Langsung

37

University of Indonesia

Metallurgy and Materials Engineering Department UI

Perbandingan Antara Pellet Sebelum dan Sesudah DiProses di Dalam RHF

University of Indonesia

Metallurgy and Materials Engineering Department UI

Produk RHF dikeluarkan olehRotary Screw

Page 38: 5 Reduksi Langsung

38

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses FIOR (Fluidized Bed) Venezuela

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses FIOR

Page 39: 5 Reduksi Langsung

39

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 40: 5 Reduksi Langsung

40

University of Indonesia

Metallurgy and Materials Engineering Department UI

University of Indonesia

Metallurgy and Materials Engineering Department UI

Page 41: 5 Reduksi Langsung

41

University of Indonesia

Metallurgy and Materials Engineering Department UI

Proses COREX (Smelting Reduction)