290
00 &ovr R-1066 MOORING MECHANICS A COMPREHENSIVE COMPUTER STUDY I Volume 1I IThree Dimensional' Dynamic Analysis of 4 Moored mnd Drifting Buoy Systems by Narender K. Chhabra December 1976 C>~ 0 The CAbiarles Stark Draper Laboratory, Inc. Cambridgea, WassachulefsO2439 buoy iReproduced From Best Available Copy Approvad for public release; distribution unlimited.

4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

00 &ovr

R-1066

MOORING MECHANICSA COMPREHENSIVE COMPUTER STUDY

I Volume 1IIThree Dimensional' Dynamic Analysis of4 Moored mnd Drifting Buoy Systems

byNarender K. Chhabra

December 1976

C>~ 0

The CAbiarles Stark Draper Laboratory, Inc.Cambridgea, WassachulefsO2439

buoy iReproduced FromBest Available Copy

Approvad for public release; distribution unlimited.

Page 2: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

SECURITY CLASSIFICATION OF THIS PAGE (*%on OW. F..e..d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

_ _1 GOVT ACCES

MOORING MEC kiv;:1c'5o- A CCJntr-htzrQ tt( j -- •r Au CO. 'u". "

6tudy - Th ree 1',4r.•,..rk1. Dynatnic An ilysi s U -

of *$cor.;:d jr.6 Tli _1 ~I- irr iuoy Systems. d104-5Cl6

7 Au~molro) . CONTRACT OR GRANT NUMSIER(.)

C16ne .. C.,,b.a .' N•id014-75-C-1065/,t,

| p r.- ,i4k-MfG O'GA AT10nIOK NAM& ANU ADDRESS 10. PROGRAM ELEMENT. PNOJFCT. TASKARItEA & WORK UNIT NUMBERS

The Charles Stark Dýao.'r Laboratory, Inc.

Cambridge, Mass,3chusct:s 02139 --

11. CONTROLLING OFFICE NAME ANDO ADDRESS -. _x

NORDA Dc~tw17

National Space Techno. .ogy LahozatoriesBa St. Louis, Missis:;lppi 39520 287

MONI ORiNG AGENCY NAMES AOORESSI0 different irons contflfifnd Off•ce) IS. SECURITY CLASS. (01 thli report)

UnclassifiedIts•. DE CL ASSI IFIC ATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT to# this Ropero)

Approved for public release; distribution unlimited

17. DISTRISUTION STATEMENT (o1 the ibts-.le entered In Block 20. If differen from Repo") Y.

IS SUPPLEMENTARY NOTES

19. KEtY WOROS (Cstinm on reverse V odo Id nlcesr.w•p sen D•dntIIl Ay block a,.ber)

1. Oceanographic Systems Simulations 5. Drogued Buoys

2. Mooring Systems 6. Mathematical Modelling3. Cable Dynamics 7. Computer Simulations4. Buoy Dynamics

a40 Tr•Ac T (Colfno on, revWe*e do It necoee*y and Ide.ntfy by block nsmw *)

Ocean currents and surface waves may induce serious errors in

oceanographic measurements obtained from moored and drifting buoy systems.

A general, computationally efficient solution for the dynamics of moored

buoy systems, free drifting buoys, and drogued buoy systems in three-

dimensional space is described in this report. Time-domain computer

simulations of four specific configurations in various environments are

presented. The mathematical model of one of these configurations, a ..

DD A 1473 EDITION O0 1 NOV S S OBSOLETEy

CURITY CLASSIFICATION OF TNLS PAGE (Whle Does Enteted)

Page 3: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

I- Cto*?Y CLAMF4ICA'VtOM OF V13Sg 0WAOKEM440 V. 'f#D)0

".:vhsurface mooritig, was evaluated and improved using full scale ocean test,�ta The modal of the surface mooring configuration studied will soon alqooý oilivahted using recent test data.

C

I

gaIcuniTY CLASIIIIgCATIOW OFr THIS PAOI('tal Dr~al 1Kmte*.

Page 4: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

R-1066

MOORING MECHANICSA COMPREHENSIVE COMPUTER STUDY

Volume II

Three Dimensional Dynamic Analysis ofMoored and Drifting Buoy Systems

by

Narend K. Chhabra -- 1 -

December 1976

Approved:' /It

Philip N. BowditchHead, ScientificResearch Department

The Charles Stark Draper Laboratory, Inc.Cambridge, Massachusetts 02139

i 4!

Page 5: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

ACK:JQrW1.EGMELNT

T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the

L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able acntriixiticris to

"v. %rk d•crihkd. SpciJ. tan"k:;• arc- due to ýt. John Dahlen for his

!pfiL" gui,:cv k:0 c-i yimmnts dur:,nc, i;rcapraticn of thuis report. Tb

'. Jeffrev Lczc,. fcl his Ihtlp d.r.ino $To.hnmatjcral nodel formulations;

?t. Jinns SchY1t'_n for hi3 help duxing c mputer simulations; and

9v* Willimn Vachmn for Iis comt•nts during the preparation of this report.

Finally, the authc-W w_ ,hces Lo t] lnk Miss Cheryl Gibson and

mrs. Catherine- M!l for aoing such an excellent job in typing this report.

This repoit was preparcd under CSDL Project 53-68800, sponsored by

the ocean Scien-e and T-c•nologýy Division of the Office of Naval Research,

Departme.t of the Navy, through cntract N00014-75-C-1065.

7tve publication of this report does not constitute approvalby the U.S. Navy of the findings or the conclusions herein. It ispublished only for the exchange and stimulation of ideas.

Page 6: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

AI ;TIPACT

Ocean currents ind surface waves may induce serious

,rrors in oceanoqriphic mraý3urements obtained from moored

and driftin; buoy :;v;t,.ms. A general, computatioaally

efficicnt solution for the dynamics of moored buoy systems,

free driftinq buoys, and drocrued buoy systems in three-

dimensional space is described in this report. Time-domain

computer siimulations of four specific configurations in

various environments are presented. The mathematical model

of one of these configurations, a subsurface mooring, was

evaluated and improved using full scale ocean test data.

The model of the surface n:oorinq configuration studied will

soon also be evaluated using recent test data.

Page 7: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-V-

TABLE OF CONTENTS

Section Page

].0 INTRODUCTION ................................ 1

1.1 Background .... ................. 3

1.2 Assumptions, Capabilities, andLimitations ......................... 5

2.0 THEORETICAL ANALYSIS - MATHEMATICALMODELS ................................... 9

2.1 Surface Buoys ...................... 9

2.1.1 Spar Buoy ....... ................... 22

2.1.2 Other Shapes ...................... 38

2.2 Mo.)ring Line ................. 39

2.2.1 Continuous Line Formulation ...... 41

2.2.2 Lumped Parameter Formulation ..... 51

2.3 Attachment Between Surface Buoyand a Mooring Line ............... 61

2.4 Window Shade Drogue ......... 65

3.0 METHOD OF SOLUTION ...................... 6r

3.1 Moored System Analysis ........... 68

3.2 Initial Conditions for the Steady-State Analysis of a Spar Buoy .... 75

3.3 Drifting Drogued Spar Buoy ....... 79

Page 8: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-vi-

TA3IE OF CONTENTS (Cont.)

Section

4.0 COMPUTER PROGRAM DETAILS ................. 82

4.1 Surface Moored/DriftingSystems ............................. 82

4.2 Subsurface Moored Systems ........ 91

3.0 CASE STUDIES/SIMULATIONS .................. 97

5.1 Spar Buoy .......... ...... ............. 97

3.1.1 Cylindrical Spar ................. 97

5.1.2 Tuned Spar ....................... 121

5.2 Subsurface Moored System ......... 143

5.3 Surface Moored System .............. 162

5.4 Drifting Drogued SparBuoy ......... 184

6.0 SUMMARY ................................... 193

Appendix

A COMPUTER PROGRAI LISTINGS ................ 196

REFERENCES ......................................... 271

Page 9: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-vii-

NOMENCLATURE

A Acceleration vector.

AD Area used in drag calculations.

AEc Acceleration of point c in the E frame.

A NoA T Normal and Tangential areas for acylindrical body.

AR Relative acceleration vector.

a Point of attachment between the surfacebuoy and the mooring line.

AM Added mass force vector.

c,x',y' ,z Body coordinate system, Frame B.

c Mid point of the mooring line element.

{CF} Array of constant nodal forces.

CD Drag coefficient.

CN,CT Added mass coefficients, normal andtangential directions, surface buoy.

C DNCDT Normal and tangential drag coefficientsfor a cylindrical body.

C DP Pressure drag coefficient for the endplate of a spar buoy.

CDIN,CDIT, CDIA Appropriate dra__constants correspondingto DN, DT, and DA.

Viscous drag force on a body inserted ina mooring line.

DF Viscous drag forcL vector.

DM Moment vector due to viscous drag force.

DN,D-T Normal and tangential drag forces per unitstretched length of the mooring line.

Page 10: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-vi. i-

thDN ,DT ,DA Viscous drag forces acting on the n

n n node of the moorinq line.

dB Mass of water displaced by a differentialdisk of the surface buoy, K" dz'

dM Mass of a differential dish of the surfacebuoy.

F Total force vector acting on the body.

{F A Array of additional forccs and moments.

{F D Array of wave exciting forces and moments.

FF Froude Krylov exciti.ng iorce vcctor.

{FG} Array of hydrostatic and gravitatioralforces and moments.

FH Hydrostatic pressure force acting on themooring line, per unit stretched length.

g Acceleration due to gravity.

1! Length of the surface buoy.

ho Instantaneous draft of the surface buoy,measured up to the mean free surface.

hSpar buoy dru height.

h2 Spar buoy mast height.

hi ho plus the wave elevation component.

Inertia force per unit stretched lengthof the moorinq line.

IFb Inertia force vector of the inserted body.

'xxIIyy Moments of inertia of the spar buoy inroll and pitch about c.

ix ly, z Unit vectors of o,x,y,z.

i,, ,,i Unit vectors of c,x',y' ,z'x y z

Page 11: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-ix-

Wiv, number v,.,ctcr.

K Wave number componrýnt, , cos

K Wave number component, iK' sin .

Y

3tiffness coefficient o" the nth segment.n

" Ul'U•U, 3 Integration limits as defined.

M• Total mass of the spar buoy.

Matrix of tensors of inertia and addedinertia.

ma Added mass of the inserted body, shapeother than cylindrical.

m Mass of the inser;ed body.

mdn Mass of water displaced by the n mass.

mn ,mt Added mass components (normal andtangential) due to cylindrical bodies.

N Number of nodes or segm~ents of a mooring

line.

1.-1B Net bouyancy of the inserted body.

n Arbitrary line segment, or lumped m.ns.

o,x,y,z Fixed coordinate system, frame E.

P Hydrostatic pressure of the fluid.

P- 1u2 dB (z')

p Location of the cuntroid of the differentialdisk of a surface buoy.

"Q= 1U2 dBeKzw(z)i

R Displacement vector.

Roc Displacement vector from point o to point c.

Page 12: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

r o f the sppar buoy or the reducedf the moorinr line.

ri oI th 0i: , spa r hucy.

I :*iil 'I tor in the., x-y (horizontal). J,,scribinq; propagatior of the

"r•;•- 't irmnaI area of the surface buoy.

i. :;--7 :t ional ateas oF the tuked spar

s sIat -al coordInate of the rooring line.

-Y.h4 tension vector.",7e E!fec'tiv'e tension variablc along the

!oor:n'1 linlg.

"cme, of the ttension force ;.

TF Te,:sion force vector on a mooring line nor~e.

t Time variahle.

T FluiU velocity vector.

UR Relative fluiO velocity vector.

U4R,UTP, "Normal and tangential components of UR.

V Velocity vector.

Unit vector along the rnoorinq line.

4V, Array of tianslation and rotation rates.

"VBw Velocity, of water particle w in frame B.

"Vb Tangential relative flmitj velocity atbottom of the tuned spar.

"V Ox,V oy,V Components of surface current.

Vs Tangential relative fluid velocity at stepof the tuned spar, also static velocityof the drogued drifting buoy system.

Page 13: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

w ~~Lc~caticn o'l -jo 0i

Y U:~mI 21 t: t 1t2.~ r

.,.. t

Xf t. *.(, ) i

Pt c hv -14 fl'. +

Page 14: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-1-

1.0 INTRODUCTION

Oceanographic measurements from moored buoy

systems are contaminated by mooring motion. Numerous

articles have been published in the last three years

pointing out quantitatively the errors introduced by the

surface wave field. Large vertical excursions have been

experienced at great depths by instruments located on

the synthe'ic rope portions of surface-buoyed mooring

lines (WUNSCH and DAHLEN, 1974). Observations during the

POLYMODE experiment showed subsurface mooring lines to

have undergone hundreds of meters of vertical excursions.

For any operational moored instrument system we need two

models whose accuracy can be established with known

confidence: a mooring system model from which the motion

environment of instruments can be predicted, and a model

of the instrument motion response characteristics from

which the zýeasurement error can be estimated. Possepsion

of these models is required for more effective mooring

systems design and for optimwq interpretation of

oceanographic measurements obtained from moored systems.

The first of these two models is the main subject of

this report.

An alternative to the moored approach is the

use of surface-trackable drogued drifting buoys. Such a

Page 15: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

buoy system employs a high drag device (or drogue) at

some depth, tethered to a trackable buoy at the surface.

The major impediments in the widespread use of this approach

have been inadequate component and system design. Both

of these impediments can be removed by the development of

dynamic modeling of drogued buoys. A part of this report

deals with the dynamic modeling of drogued buoys.

Dynamic models of drogued buoys do not exist

except in primitive form, while such models of moored buoys

and free-drifting buoys are further along. This difference

stems from the fact that drogued buoy systems are dynamically

very complex, and they have only recently been considered

essential to major programs. Even though many dynairic

mathematical models for moored buoys and free-drifting

buoys are available, not much has been done toward the

evaluation of these models using full-scale ocean test

data. It is the purpose of this report to present a

general, computationally efficient approach for analyzing

moored buoy systems, free drifting buoys, and drogued

buoy systems and to simulat-e this analysis on the computer

so that these models can then be readily evaluated with

full scale ocean test data.

This report constiAutes parts 3 and 4 of a

four part repcrt. Parts 1 and 2 were published in

Page 16: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

"-3--

volume 1 and dealt with the "Three Dimensional Static

Analy. is and Desiga of Single Point Taut and Slack Moored

Buoy SystemE." (CIIHABRA, 1973).

1.1 Background

We at Charles Stark Draper Laboratory Inc. have

evaluated one of the mathematical models presented in

this report. The mathematical model of a subsurface

mooring system (Section 2.2.1 and simulation 5.2 in this

report) has been shown previously to predict the mooring

motion forced by ocean currents of periods greater than

15 min.(CHHABRA, DAHLEN and rROIDEVAUX, 1974). The model

was evaluated in a full scale ocean test that provided

experimental data on mooring response and ocean current

forces. The ocean test was conducted jointly with Woods

Hole Oceanographic Institution on R. V. Chain cruise

107. We obtained a record of the motion of an acoustic

transceiver near the top of the subsurface mooring line

at the 500-m depth. The transceiver sent out a sound

pulse every minute and recorded the four return times

of replies from four near-bottom acoustic transponders

at 5460m. By comparison with this and other data from

precision pressure recorders, tensiometers, and

inclinometers, the mooring model had been found to

predict well the observed motions. The r.m.s. difference

Page 17: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

betweer the ex!nerlrmntal and predicted trajectory of the

acoustic trans:eiver was 1l.8m, about 10% of the mean

excursion. Tiis mathematical model was evaluated a

second time by data from the central mooring (Mooring

No. 1, Station 431) of the Mid-Ocean Dynamics Experiment

(MODE). In that studiy (CIHIABRA, 1976), the current record

from the topmost vector-averaging current meter on the

central mooring of the MODE experiment was corrected fur the

effects of mooring motion, and rower spectra of the uncorrected

and corrected signals were compared. The correction was

1 cm s-I for that mooring line (vertical excursion

<12 m). Creep in the synthetic portion of the mooring

line was also identified.

In addition, we are planning to evaluate a

second mathematical model presented in this report. The

mathematical model is-of a tuned spar buoy (35 ft. long,

1 ft. dia. at W.L.) tethe red to a subsurface mooring line

by a stiff buoyant line. An instrument line is hanging

from the base cf the spar (Sections 2.1.1, 2.2.2, 2.3

and simulation 3.3). This configuration was recently

tested in the ocean durinc the October 1976 OUR/NDBO

Mooring Dynamics Experiment. A total of fifteen motion

sensing instruments (4 Force Vector Recorders, 6

Temperature/Pressure Recorders, I POPMIP, and 4 Acoustic

Page 18: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-5-

Beacons) were attached along this mooring system. The

evaluation and improvement of this mathematical model

would be done by comparing measured responses with

those computed by the computer simulation for the

measured/observcd environment.

The above mentioned evaluation and improvement

is planned to be completed in CY77. If such an

evaluation and improvement is done, the only mathematical

model to be evaluated and improved from the analysis

presented in this report would be the driftinq drogued

buoys. We plan to do that task in the near future.

1.2 Assumptions, Capabilities, and Limitations

Surface gravity waves treated in this report

have a single frequency and amplitude, propagating in a

single direction. It is assumed that the 4urface buoy

is oscillating in the path of small (i.e. amplitude

of wave train much less than its wavelength) incident

surface waves which are long in relation to the body

dimension in the direction of wave propagation. Wave

direction has been generalized to include any arbitrary

direction in the horizontal plane. For the three-

dimensional analysis of surface buoys, we also -ssume small

displacements of buoy when compared to vertical

dimension of the buoy. Hence only the first powers ofA-

Page 19: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

small quantities are retained for the three-dimersionil

surface buoy analysis. Moments of inertia about all

axes in a horizontal plane are taken equal. Even though

moment of inertia about the longitudinal axis of the

spar buoy is negligible, it is included for ntunerical

comp.utational purposes.

In all mathematical models an earth fixed

frame is assumed to he the valid inertial frame. Viscous

drag forces are computed based on the square drag law.

For cylindrical shapes these forces are assumed to act

in directions normal and tangential to the longitudinal

axis; and for any other shape they act in the direction

of the relative flow. For the case of a tuned spar

viscous drag forces and 'idled mass' due to the bottom

b:,se and the step are also included. The ideal fluid

damping (wave-damping) as derived by Newman (1963) for a

spar buoy was found to 1e negligible and hence is neglected.

All mooring lines are ccnsidered elastic.

In the continuous line formulation of mooring lines,

nonlinear elasticity depcndent on the prior loading history

as explained in volume 1 (CHHABRA, 1973) is considered.

For the lumped parameter formul'tion; a linear stress-strain

curve is derived from the nonli car curves for the range

of stresses in study. Dynamic effects on these stress-

Page 20: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-7-

strain curves are neglected. Internal damping forces in

the mooring lines are assumed negligible when. compared

with viscous drag ard stiffness forces. The hydrostatic

pressure forces are treated more rigorously than they

are in the traditional method employed in most previous

studies. As it turned out this new methou changed only

the stress distribution along the mooring system, while

the configuration of the mooring system remained

essentially unchanged. Instruments or buoyancy packages

attached along the mooring lines are treated as

concentrated forces which have length and give rise to

forces as explained in Section 2.2. A time varyinq

current profile of any nature and shape can be inputted

to the computer programs. A list of current profiles

used in various simulations is given in volume 1

(CHHABRA, 1973). In its present form no allowance for

shrinkage or creep of the synthetic ropes is taken into

account, but creep was identified in C1I1iABRA (1976).

Elongations due to rotation of non-torque balanced cables

is also not considered. In the mooring line models

viscous drag forces due to the velocity field generated

by the surface waves are included. Wave-damping forces

are neglected. In the continuous line formulation of the

mooring line, exciting forces exerted on the line by

the wave Eystem are neglected; whereas in the lumped

Page 21: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

parameter formulation, exciting forces are taken equal

to the 'Froude-Krylov' forces as it is assumed that the

presence of the mooring line does not disturb the wave

particle motion. For added mass purposes, it is assum-d

for the continuous line formulation that the body

(continuous cylindrical line) motion accelerates fluid

only in the direction normal to its longitudinal axis.

Page 22: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

2.0 THEORETICAL ANALYSIS - MATHEMATICAL MODELS

This section derives all the equdtions of motion

pertinent to the analysis presented in this report.

Surface floats are analyzed in Subsection 2.1, mooring line

in 2.2, their attachment in Section 2.3, and a window

shade drogue in Section 2.4. The mooring line analysis

includej all subsurface floats, instruments etc. attached

to the mooring line.

2.1 Surface Buoys

As is well known, the analysis of the wave

induced response of floating *hodies is, in general, a

most formidable task. Initially the action of the fluid

must be decomposed into real (viscous) and ideal (inviscid)

effects. Each effect then must be modeled as to its

interaction with the floating body. Further, it is

convenient to assume that the ocean waves are "gentle"

enough so as to permit first order linear surface wave

theory to seLve as a foundation for the calculation of the

wave exciting forces.

The ideal fluid problem is still so difficult

in general that only the simplest body shapes are

amenable to rigorous analytical solution (potential

flow theory). This solution involves the determination

of the (velocity) potential function P(),t) which rust

Page 23: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-10-

satisfy: 1) Laplace's equation, 2) the kinematic boundary

condition on the moving body suiface, 3) the free

surface (and bottom) boundary condition(s) and 4) the

radiation condition at great distance from the body.

Assuming this potential, 1S,t), has been determined

by some means, the next step is to substitute it into the

2ernoulli's expression for fluid pressure which in turn

4s integrated over the immersed portion of the body to

yield the instantaneous 'or. e and moment vectors. In

principle this is a striight-.orward procedure. In practice

it is hardly ever possible to find a tractable potential

function which satisfies the above four conditions. In a

few notable cases, however, for simple geometries and

small body motions, rigorous solutions have been worked

out. In particular Newman (1963) has derived the linearized

equations of motion for a vertical, cylindrical - ar buoy

responding to tMe influence of a unidirectional wave

train. The axisy'mm.etry of the buoy as well as its

postulated slenderness was greatly ezxploited in the work

to yield manaqable resu]ts. In Newman's work as well as

in othersof co'iparable rigor, the computed ,otential

is the result of an intricate distribution of singularities

(sources, sinks, dipoles, etc.) withir or over the wetted

body surface.

From these studies, it turns out that the linearized

Page 24: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-11-

hydrodynamic forces and moments in general body geometries

may be decomposed into constituents proportional to

body acceleration, body velocity, displaced fluid

acceleration, and the displaced fluid velocity. In

gesieral, rigorous integration of the fluid pressure, both

hydrostatic and wave, over the body surface yields:

1) the 'Froude-Krylov" force from the pressure distribution

due to the undisturbed wave system; 2) the "diffraction"

force from disturbance of the waves by the presence of

the body; 3) the force due to the motion of the body;

and 4) the hydrostatic pressure force. The Froude-Krylov

force and the diffraction force in combination are also

known as the exciting forces exerted on the body by the

wave system. The Froude-Krylov force equals in value

to the product of the mass of the displaced fluid times

the acceleration cf the local undisturbed fluid particles.

The diffraction force and the force due to the motion

of the body both yield "added mass" coefficients

proportional to accelerations and wave-damping

coefficients proportional to velocities of the fluid

and the body respectively. As shown in Chung (1976),

the added mass coefficients are same (opposite signs) for

both the fluid and body accelerations. Also the two wave-

damping coefficients have the same (opposite signs) value.

Page 25: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

- i? -

Hence, these two forces may be combined to represent

an "added mass" force proportional to the relative

acceleration (fluid acceleration minus the bo0y acceleration),

and a wave-damping foxce proportional to the relative

velocity. Other forces (apart fron. the fluid pressure

forces) acting on the body are: 1) the weight of the body;

and 2) the actual unbalanced force which accelerates the

body. In the real (viscous) fluid another force, the

viscous drag force, acts on the submerged portion of the

body.

Analysis in this section includes all the above

mentioned forces, as derived from the potential flow theory,

except the following deviations: 1) the ideal fluid

damping (wave-damping) is omitted; 2) the added mass

force is treated slightly differently, and 3) the viscous

drag forces are added on to the general equations of motion.

The ideal fluid damping is omitted here for

expediency. Later analysis of specific problen addressed

in this report showed the wave damping force, as derived

by Newman (1963) for a spar buoy, to he negligible

compared to the viscous drag force on the submerged body.

The added mass force, which is proportional. to the

relative acceleration is separated into two terms; an

added mass force proportiornal to the lonclitudinal component

Page 26: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-13-

of the ielative acceleration, and an added mass force

proportional to the transverse component of the relative

acceleration. Each of these two terms is multiplied by

a different constant coefficient, depending on the shape

of che floating body. These coefficients and the

co-fficient.s used to derive the viscous drag force are

experimentally determineu hydrodynamic coefficients.

As will be shown below, our general equations of

motion reduce to thc ones given in Rudnick (1967) for a

particular value of these coefficients. Rudnick Zn his

analysis used the reasoning of Lamb (1945) who treats

a uniform two-dimcnsional flow across a long circular

cylinder.

Formulation of the General Equations of Motion:

Derivation of the equations of motion for surface piercing

buoys in a train of regular harmonic ocean waves is

given. In addition a surface current (not due to surface

waves) is present. Surface buoys are considered as rigid

bodies with six degrees of freedom. The problem under

consideration is represented schematically in Figure 2.1.

An earth fixed cartesian coordinate system (z positive

upwards) is situated at the undisturbed level of the free

surface. Call it the frame E with origin at o;

Page 27: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

z- iziy, ix

w-',• • x,ix

Suriace c /wBuoy

S~x'

Figure 2.1 Coordinate System for SurfacePiercing Buoys

and ix,•y, and i. the unit vectors along x,y, and z

respectively. Frame D is a body (surface buoy) fixed

cartesian coordinate system with its origin at the centroid

(c) of the surface buoy, and x,' vz' being parallel to

.,y,z respectively when the vjoy is in the upright and

non-rotating position. In this analysis R represents

a displacement vector; 7, a velocity vector, and A, an

acceleration vector. It is assumed that the surface buoy

is oscillating in the path of small (i.e., amplitude

of wave train much less than its wavelength) incident

surface waves which are long in relation to the body

dimensions in the direction of wave propagation. Point

Page 28: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

p is the location of the centroid of a differential

disk (height = dz') of tho surface buoy (Figure 2.1).

First, the wave direction will be generalized

to include any arbitrary direction in the x-y plane. To

this end let the wavenumber vector K specify the direction

of propagation (Figure 2.2) where:

2A

K =- (cosS ix + sinS i )g

z

y

(wave direction)

x

Figure 2.2 - Generalized Wave Direction

The generalized velocity potential field of the

incident wave system may now be written:

= g ! 'Iz=- e' cos (A - t)

where; S = x + i y; and the wave surface elevation E is

Page 29: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-16 -

given by:

r 0o sin(T.3 - w t)

Here, q is the acceleration due to gravity, and

0 is the amplitude of the incident wave of frequency w.

In the eatth fixed frame (frame E), assumed to be a valid

inertial fra&me for this problem, we define the fluid

particle acceleration vector:

A =i +. PEw - x y y z z

where w is the particle of water next to the differential

disk of centroid p. It is assmed that AEw is constant

over the entire differential disk. Components of AEw at

point p are given by:

X, =dt = g:xo e Cos(R.. - Wt)

= dt 9y = gy0 e cos(T,.' - ut)

d 3 IRjZWand 'Z == glKIlo e sin(i.?J - wt)

where; Kx= IKI cos3; Ky IKI sinR, and the higher order

terms in 0z have been neglected.

z_

Page 30: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-17-

11w; R R + RN~ow; Rop oc cp

Ep R•-op E R -cIE + PEB x Rp

and A Ep = OgC]E + EW'EB]E X Wp+ W E Bxx

where; WEB is the angular velocity of the buoy.

Let us also define the relative acceleration vector

of the fluid particles with respect to the buoy (AR), at

the location of point p as:

ARM AEw A AEP

.i±SO let, ART = (XR " ,)i,

and A ARN -A R T

The vector force equations of motion may now

be written as:

ut : M AEp = 2dB AEw C dB ARN +

(2.1)

CT 1dB ART u f dB +

£ £ 7

Page 31: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

where the viscous drag forces and the tension forces (due /to the attached mooring lines) are left out for later

introduction.

Here; 2= -Zc u = H- 7c, u2=ho - :,c and

u 3 = hi - Zc Zc is the distance between c and the bottom

of the buoy. H is the length of the buoy, h0 is the

instantaneous draft of the buoy measured up to the mean

free surface, and hi is h0 plus the wave elevation component.

Distances 7c, il, h and h. are measured along i 1 ,. dMc 0 1

is the mass of the differential disk (Figure 2.1) of

height dz' and dB is the mass of water displaced by this

disk. CN AND CT are the appropriate hydrodyna.mic constants.

In equation (2.1) the integrals in order of their

appearance represent: 1) the actual unbalanced force which

accelerates the buoy; 2) the Froude-Krylov force;

3) the normal component of the added mass force; 4) the

tangential component of the added mass force; 5) the

hydrostatic pressure force; and 6) the weight oi the

buoy. This equation reduces to the equation in Rudnick (1967),

which was derived for a spar buoy, for C., = 1.0, and

CT =0.0.

The vector moment equation can now be written

similarly as: (moments about C.G.)/

-A

Page 32: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-lq-

JdM(Rcp x AE) J IdB(Rcp x TEW) +

+ CN jdB(Rcp x AR/]) +

(2.2)f

C+ 1dB(Rcp x AR) -

- idB(Rcp x g) + eM x

it is also necessary to determine an appropriate

transformation scheme to relate vectors in the E frame

to vectors in the B frame. A sequence of rotations

(Ficiure 2.3) about the body x',y',z' axes (roll =

pitch = '•, and yaw ',) respectively yield the following

transformation.

2 Fcosj cosp sin4, cos: sine, sine - i1X . I+ cosy sino sine -coslp sinO cost

iy -siný co,30 cosil, cos€ý cosý, sin¢ i '-sino sinO siný +sinw sinO cos€ Y

iz, j sin' -cosO siný Cos0 cos' izjL_

The inverse of this transformation matrix is given

by its transpose. The force and moment equations (2.1)

and (2.2) may be combined and written in matrix form as:

Page 33: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

Yi,

-'0- ,

/

Ster 1I Roll (;:Rotate y,z about x to obtain X11 y1 , z1

z 1 z1 2

I _ _ _" II j

4 *ylY 2

'1 1

x. X, 21

Step 2 -Pitch (9): Rotate xizIabout yto obtain x'2z

1y y

x

2z 2,z 2b'

Step 3 - Yaw (8: Rotate x2 'y2 about z to obtain x,y1, z'

Figure 2.3 Transformation Matrix Rotations

Page 34: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 1-

[M] •- {V = {FD} + {FG: + F (2.3)

Here the matrix [M] is composed of the tensors

of inertia and added inertia. The {V} column vector has

three translation rates and three angular rates. The vector

{FD contains the wave exciting forces and moments. The

vector {F G comprises the hydrostatic pressure and weight

restoring forces and moments (i.e. gravitational and

buoyancy effects); and iFA) is any additional forces

and moments including viscous drag forces and moments

introduced next and tension forces/moments from attached

mooring lines introduced in Section 2.3.

Viscous drag forces and moments- A square

drag law, whcre viscous drag forces are proportional to

the square of the relative fluid veloicty is used. In

Figure 2.1

ow Roc +Rcp + pw

"'"VEw VEc + WEB x Rcp + [fpw]E

If point p and w are overlapping then:

[Rpw]E R pw]B VBw VEw Ec - EB x Rcp

Page 35: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2.2-

Here; VEw i (V +t + i (0 + ) +*w x ox x y 1, y

1i (Voz + Cz) and VBW is the relative velocity of water

seen by the buoy at the local point p. Her!ce ti,ý

viscous d:ag force on the submerged pcrtion of L-:ie buoy is

given by:

Y= P CD 2CDiVBwAV 3 . (2.4)

where, p is the water density, CD the dreg coefficient, and

dAD the appropriate differential irea. The viscous drag

moment can similarly 1e written as:

5M- ½ CD J ~dDJVBwl R X VBw) (2.5)

Limits of integration for both (2.4) and (2,.5)

are the entire submerged depth of the buoy.

In the remainder of Section 2.1 the equations

(2.1), (2.2),- (2.4), and (2.5) presented above will be

specialized to the specific problems at hand. The

matrices of equation (2.3) will then be derived and

presented for these specific problems.

I

2.1.1 Spar Buoy

A tuned spar buoy (Figure 2.4) will be analyzed

in this section to obtain general spar buoy equations.

Page 36: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

Note: Shown for zero rotation and translation.

z

"TT/

[Ih2

w 0h

dz

r 2

X h

hlz y

Figure 2.4 - A Tuned Spar Buoy

mA

Page 37: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

C'ilindrical spar buoy equations car then be .,,tained as a

spiecial caso of the tuned spar buny. Loth two-dimensional

ankl three-c1:-i n:;tonal a will be presented. We

will find tKhi ,,uatxJn. <r": on of its response for a

tra'in of surfacc qravity waves h,%viinq a sing!e frequency

an- arnplitude, propaqatinq in any si.gle direction.

V'rjation in wave acc'leration ard velocity over the

-ori-ontal buoy dimensicns are noclected. In addition in

thtŽ three-dimensional analysis, all rotational angles

(roll, pitch, and yaw) are restricted to he snall.

T"w,'o-D-.mensional Analysis: Ir tli. analysis K

is a scaler wit.h 0= ; and . is replaced ',y the scaler

x which is the 6irection of propagation. A Jo, Ew =+ . .

x x z z

RN= (A r ix, )i x1

and the appropriate transformation with 0 = 0, and 0' = 0

becomes

ýci s, i n,-x ,COS9 -sin'2F X 4:

n= C

S\.

Page 38: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-25 -

Now let, [R OCE = ix c + iz zc

EB y

and Rcp z iz.

... A .

"A Ep ix [x= 4 z' 10 cos".-2 sin'I)]

+ i z Lzc + z; (-0 sin('- 2 cose)]

-- 2 eKz•Also, Aw 2. e' [i cos(Kx - tL + i sin(Kx - t%]

I u2Define; Pi i dBlz')' = 0,1,2

u2 Kz

and Qi = dB e (')w i = Ol

Integrals of equation (2.1) can now be written as:

1. dM AEp Mix xc+ z ze] ,

Where M is the total mass of the buoy.

2. 2.= :,Qo-[iQ cos(Kxc -. t) + i sin(Kxc - t)]

2. dB,~ A U . -....~-'~ \

Page 39: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-26-

3 C. dB KX, C 2 f Q [cos(Kx - Ot) Cos

-sin (Kx~. - it) sinOI cosO] +

2"+ p O(z csin9 cosCo - X Cos 0) - P1 cosoTJ} +

"+ CN i 2r (W [Oo (Kx - k.t)sin0 -cos(Kxc t)

2sine cosO] + P 0 ( (: sine cosO - z csin 0) +

"+ P sinfiV9}

4. CT!j dB KIT =CIL OQO 2 csx -ý.'t) sn9+

"+ sin(Kx~ - c't)sine cosO] +

2"+ P0 (-x c sin 0 - 7csinO cosP) +

+ sinOO I T £z( 2Eo 0 cos(Kx - t)sinCcosr +

2"+ sin(Kxc - ,t)cos C] + P 0 (-x csinecosQ -

- o 2 + p .S12

u3 cosK ,A/os

(U g U2 0 1o c

5. .jdB g =gJdB i z + g JdB iz

Also; dB =s pSdz', where S 0 is the cross-sectional

area of the disk of height dz'. Then;

Page 40: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-27-

(U3

dB g iz [p 0g -rS cjtr sin(Kxc -,It)/cose]

2.where; S o2 '

6. JdMg = Mg i z

Integrals of equation (2.2) can also be written

as:

(21. dMcp xEp J yM i yy 0 y

2. x ~) =i~, w rQl[cos(Kxc-wt)cose

-sin (Kx A~) si n9j

3.C4d(cp x~ =C {W 0Q1 [cos(Kxc-!Jt)coso-

-sin(Kx c-,'t)s-inel Picoso xc +

+ P sinu z~ p2 o

4. C ýdB(R xART =0

(U 3 x ) -f2d( x

- i(-Plg sine)

yI

-. -------:7

Page 41: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-28-

6. JdM(Rcp x )= 0

Viscous Drag Forces and Moments: Por a tuned

spar buoy the viscous drag forces are assumed to be

acting in normal and tangential directions proportional to

their respective drag coefficients and areas.

VBw =ix[Vox + 4x -x - Z'cose] +

+i z[Voz + (D - Zc + z'Osinf]

= x [ (Vox + Ox - C)cose

A- (Voz + 0z - zo )Sin6 - z'g]

+ iz'[(Vox + ox " )sinO

+ (Voz + Oz - zc)cose]

AA

Sx VBwx z + z' VBwz'

Drag force components can now be written:

DF, = PCDNjrIVBwxIVBw, dz'

DFz = PCDT TrIVBwzIVBwz, dz'

+ 1 PCTr {r2 IV 2VPDp 1rIVbb + (r 1 r 2 )IVsIVs,

Page 42: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

Here; CDN and CDT are normal and tangential drag

coefficients. CDp is the pressure drag coefficient due

to the bottom, and the step, of the tuned spar buoy.

Vs =Bwz, (z'= hI - Zc)

and Vb = VBwz, (z' =-Zc

Also; DM = PCDNIrVBwxV Bwx' dzDNJBWdBwx'i

Using the transformation matrix:

DFx cosO sine DF x1

[DFZ j -sine cos8 [DF z'

Added Mass Force Due to the Step and Bottom Base

of the Tuned Spar: In addition to the forces mentioned

above, an added mass force proportional to the tangential

body acceleration (AEt) and acting perpendicular to the

step and the bottom end of the tuned spar is considered.

Lamb (1945) in his analysis of a cylindrical spar moving

in still water, gives an added mass coefficient equal

3to 4/3pr3. Following representation is used in this

analysis for this force (AM).

Page 43: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

S.*.' I.-; , . 'x.:,

I A

-3C-

3 L 1rAM = C ip 1 AEt{ z'=-. .. r-

L 3 (- (2.6)

1-2 Etlz'=hl-: /

where; AEt (AEp'iz,)iz,, and a is a constant.

AM is added to the left hand side of equation. (2.1).

Rcp x AM would be equal to zero.

Combining all these forces and moments; the matrix

coefficients of equation (2.3) can be written as:

M 1 = M + P o(CN Cos 2 + CTsin 2) +

4 yP[:l3+ (r-r 2 3 ]sin2 e

12= PoSin~cosO (CT - CN) +

4 cpLrl3+ (r 1-r 2 ) 3 sinscos'

M1 3 = CNPlCoOe

M = Posin0cosO(CT - C ) +

4 ((;rI + lr,-r 2 ) 3 ]sinecoso

122 2

22= M + Po(CNsin20 + CTCOS 0) +

Qp3[r3 + (r,-r ) 3 ]cos2 s

12

Page 44: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-31-

M 2 3 C CN p sine

M 31 CNp 1cose

1432 -CNP 1sinO

M 33 1 = + C NP 2

{V} =Lx f,z ,O];which is a column vector.

2 CSK, o 2 6 Csn2 e

FDi w Coo osKx-Lt) (l+C~csecsn~

sin(Kxc-wt) sinecose(CT-CN))

F~~ 0 D2 w Q snK -t)(i+C Nsin 2e+c TCos 20) +

Cos (Ixc-,.,t) sinbcosO (C T-C N)] /

F D3 =w 2 OQ fcos(Kxc-'Jt)cosO-sin(Kx - 1t) sine (1+C1 4N

rG1 =0.

F G2 = P0 9 p S02 gCO sin(Kx C-.t)/cose-Mg

FG3 T~gsine

Page 45: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-32-

FAI = CTPlsinO 52 + DFx 4 3 +(rl-r23]7 sine62

Al T I r1 (rr 2 ) ]zic

FA2 = CTPICoseo + DF + a[r3+(rr

(h 1 -Zc) cosOO2

and FA3 = DM

Three-Dimensional Analysis: For small angles the

appropriate transformation matrix reduces to:

* -- "%x x

iz- lJ iz

In this analysis we let CN = 1.0, CT 0.0, and

define:

E c]E ix c + YC + izc

y z

and R =zp z PZ

Page 46: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

A i(~+ :' + (v -z:+i/A + z CXC c

and; A E 2 ' eK w [i cosucos(k<'- t) +

sifl:cos (K-- t) + i s in (K2- t)3

Integrals of equation (2.1) can now bc written

a s:

1 d.M Al. (1x = + 1y C+ izC)

2. JdB AEW Q 2 Q 0 iCOS.COS(K< t

i ysin cos(KI- t) + iz sin(k---, t)]

ARN C~: C

x x o

+ *.z +. i )

o-R C p +

V +P -p :7 1 i p '0OC 1 0 C z 0' -

- -. sin (K-S- t

0

i [P 0 - ( F.0Sill - t

Page 47: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

Similarly integrals of equation (2.2) can be

written as:

1. IdM(R5c x A ix I 0 + i YI 0Y

where; IY IY = dM7"

- 22. 'dB (Rc Xc AE) ix {-W F 0sin~cos(R~--E.'t) I

2+ I [W CQ costpcos(~.~ )

3. JdB(F~ x ARI ix I- i~o(-`tt+

2+ P 1 7 c + i w {W 0 cos~cosfk*--.q-,-)

- Pl x C- 20 +P 1 Oz ' zP3 {0',' + x

4. J BTc x 'g J Kc x g

i x (-P 1og) + i Y(-P log)

5. jdM(R cp x g) =0

Page 48: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-35-

Viscous drag Fcrces and Moitronts:

VBw x IVox + ýx c p

i[IV +~ *D + zisy oy y ic p

i z Lit oz + 4

x x x- c* oy C. oz C

"+ i y L-v ox +',x +V Y+,p Y-y c+z ý+V p-z -ZJ

"+ i [V e-x- 0-V 04,+ 4+V +(D~ZI OX C Oy .c oz Z- CI

=ix ,V Bwx' + iy V BwyS + iz ,V Bwz'

Hence; DFi = I)DDNJrI Bwx' +VBwy' ( Bwx')z

DFi =CDfr IV 2X + VB 2 (V ~)dz'

PCfrIVBwZ Bwz w

and, DFZ, = DTJ ,TjrVBz VBz dz' +

1 P rr2 +(,2 _r2)vls'I DC1 P 1 IV bIVb 2 r 1V1 5

Using the transformation matrix:

Page 49: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-3•6-

DFX1 1 -y ] fDF ,

DFy , . DFy

DFzj e DFz'

Also DM =f(Rcp xdDF)

- 'x, (DM,) + iy, (DMy,)

Therefore:IDMXJ= e

DM• fl 1M-,

DMz) -j 0

Combining all these forces and equation (2.6) of additional

added mass, we can write the non-zero elements of matrices

in equation (2.3) as:

M11 = M + Po M 22

= 3

M 1 3 4/3 ap[r 1 + (rI-r 2 ) 3] - P C = M3 1

M15 = 1 M 51

M2 3 = Po• - 4/3 ap[r 1 3 + (rl-r 2 )] = M32

M 24 -- - 1 M 42

Page 50: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

M3 3 =M + 4/3 ap~r1 +(r-)

45 3 P10

M +=1

M55 1yy + p2

M 6 1 =Ppl M 62 Ple

IV) = [, ,, ,i,)is a column vector.

FD1 = 2 w 2 0 c~s~ncos(Ri-§-wt)

2

FD2 = 2w 2 0o~ sin~cos(R.T-wt)

FD5 2w 2 C Q1 cosacos(KP.,-wt)

Page 51: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

S- =

-30-

FG3 = P0g - o So 2 grosin(K'.- t) - Mg

G4 V

FG5 = 'g

and {FA I [DFx, DFy, DFz, DMx, DMy, DMz] is a column

vector.

As can be seen from these matrix elements, the

sixth degree of freedom corresponding to '. does not drcop

out; but M6 6 equals zero. M6 6 is introduced in the equations

for computational purposes. "66 is given by:

M L1T[ 4 h + r 4(1-M6 6 = 2[rl hl + r 2 (1-hI)]

which represents the moment of inertia of a tuned spar

about its longitudinal axis.

2.1.2 Other Shapes

To obtain the velocity potential function

for any shapes other than for simple geometries and small

bedy motions is hardly ever possible. Hence to obtain

any reasonable solution to this problem one has to depend

on emperical approaches. Solution to these problems has

thus been left out of this report. In order to use the

/

Page 52: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-39--•

analysis and computer programs of this report, the readers

will have to substitute their own elements for [MW, [FD},

(FG), and {F A} matrices of equation 2.3; pertinent to the

particular surface buoy in question.

2.k Mooring Line

A mooring line connects a surface or a subsurface

buoy to the anchor. In this report, a line attached to a

buoy but not to an anchor is also considered a mooring line.

Such a line could be connecting a drogue with the surface

buoy or be an instrument line hanging from a moored surface

buoy. In general a mooring line is made of any type or

number of materials (steel, nylon, dacron, etc.) and has

any type or number of instruments (including subsurface

floats) inserted along its length.

The mathematical model of mooring line dynamics

will be formulated in two different approaches. The "first"

approach is called the "continuous line formulation". In

this approach the mooring line differential equations,

with respect to the spatial coordinate s, are integrated

incrementally down the mooring line, to obtain its

dynamic equilibrium at any instant of time. Velocities

and accelerationsof the mooring line differential elements

and the instruments (including subsurface floats) in3erted

in the mooring line are computed by differentiating

I I I I/

Page 53: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

/

/

positions found by the dynamic equilibriurms. This approach

was used to model the low frequency motion of a subsurface

mooring system, as presented later in the report. Exciting

forces exerted on the mooring line by the wave system are

neglected and so are the wave-damping forces. Viscous

drag effects due to the velocity field generated by the

surface waves is included. This approach was found to be

computationally inefficient, and hard to solve numerically

(due to the differentiation of positions to find velocities

and accelerations) for the high frequency motion of a

surface moored system.

For the high frequency motion of a surface moored

system a "second" approach called the "lumped parme-ter

formulation" is presented. Here exciting forces exerted V

on the mooring line by the wave system are taken equal to the

"Froude-Krylov" forces, as it is assumed that the presence

of the mooring line does not disturb the wave particle

rn.tion. Again, viscous draa effects due to the velocity

field generated by the surface waves are included, and the

wave-damping forces are neglected. 1.. both approa'hes, a

velocity profile (could-be time varying) can be present

along with the surface wave. Both formulations are presented

in three-dimensions and can be reduced to two-dimensions

when needed.

•. < ... , / .'., -V' ...

Page 54: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-4 1-

2.2.1 Continuous Line Formulation

On a differential element of a continuous moorirlg

line the forces acting are: (a) the constant force due

to gravitational attraction, (bl the variable tensile

forces transmitted from Lhe adjoining elements, and

(c) the variable pressure (normal) and shear (tangential)

forces applied by the fluid. The fluid forces can be

broken down into (1) the hydrostatic pressure force,

(2) the pressure fozce due to the acceleration of the fluid

by the element (the so-called added mass force), and

(3) the viscous drag forces due to fluid relative velocity,

which have both pressure (normal) and shear (tangential)

components. Internal damping forces are neglected in

this analysis as these are assumed small compared to

tensilz and viscous drag forces. Exciting and damping

forces due to the wave system are also neglected. From

Newton's second law of mechanics the above forces should

equal the mass of the differential element multiplied

by its acceleration. By computing these forces the

differential equations for the mooring line dyramic

equilibrium are derived as follcws:

The mooring line is considered to be a cylindrical

slender body. A free body diagram of a differential

element of length ds of the mooring line is shown in

Figure 2.5.

Page 55: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

- 12-

+TY ds (T+ -ds +v Ls(+ s2 ( (v + s;2 -s _T

,/

/C

a z

'#T0 3 dsT 12L (vO- LV A-

"-( -s 2 s- 2,s s s

Figure 2.5 Mooring Line DifferentialElement

The internal tension and the inclination of the

line segment change to keep all the above-mentioned forces

in equilibrium. In Figure 2.5 v is a unit vector along

the mooring line given by:

v = iCOSl + iycoS" 2 + zcoS" 3

Page 56: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-43-

'is a tension vector, and U is a fluid velocity vector

(obtained from the current profile and the velocity field

generated by the surface wave). The relative velocity

vector UrR is given -y:

-I

U-R U- Y

where; U = U + iyU + izU'

xx y y zz

* * A A

and, Yc = i Xc +c + i + c is the velocity of point

c on the differential segment.Tl-,e viscous drag forces are computed according

to the square drag law and are assumed to act in normal

and tangential directions to the cylindrical line,

proportional to their respective drag coefficients and

areas.

Let: UR =UTR + UNR

where; UT--R = (v)v

and, UNR =UR- UTR

From UFR and UTR, normal (DN) and tangential

(FT) drag forces can be calcuJated using the pertinent

drag coefficients (CDN and CDT). Representative areas of

the differential element 'ds' can be calculated using the

/'

* * ~

Page 57: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-44-

reduced diameter and stretched length. These are given by

dAN and dAT. The standard formulation is given by:

D-Nds = p/ 2 (CDN ) (dAN) IU-IRIU-FR

and D-Tds = r/2 (CDT) (dAT) IU--IUTR

The constant force due to gravitational attraction

is W = - a z Here, Wa is the weight in air per unit

stretched length of the mooring line. W is resolved into

normal (N) and tangential (WT) components as:

i'j = (W'v)v = - WadScos¢ 3 v

and TN R - T

= - Wads(i 7 - v cos13 )

The hydrostatic pressure force on the differential -

element by the surrounding fluid is given by the weight of

the fluid displaced minus the hydrostatic pressure forces

on the end cross-sections of the element. Or,

A 2*

FHds = (W - W,)ds i - 2r2( - -

a v1 j-v ds (Pb + P01

~ J

I>

Page 58: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

where, Ww is the weight in water per unit stretched length,

and r is the reduced radius due to stretch of the mooring

line. Pb and Pt are the hydrostatic pressures at the

bottom and top ends of the differential element. Assume;

(P- P = t g ds cost 3

P b + P t

2

2and Wa -Ww = g r

FH ds = (Wa - Ww)ds (iz - v cos 3) +

pig asj

Here, Pc is the hydrostatic pressure at the

midpoint c of the differential element.

For a continuous cylindrical body it is also

assumed that the body motion accelerates water only in

the direction normal to its longitudinal axis. The

inertia forces due to body's (differential element)

own acceleration and the so called "added mass" term can

now be written as:

------------

Page 59: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

"W' (Ila - ww)IF ds =-_adsY- a ds

g g

where; YN = Y - YT

YT (Y.v)v; and the added mass of the differential

element is assumed to be the mass of water displaced by

this element.

Combining all these forces, the force equilibrium

is written as:

AA

3aTds, Dvdsdss F DT ds

as 2 as as 2 as 2

Db•N ds + D-T ds -Wa ds cos" 3 v -

Wa ds(i - v cosý 3) +

(2.7)A A

(Wa - Wl)ds{ (i - v cos 3) +

I-I ds ..14 + Wa - t , . .Pc l ds ( +VfY) - ds YN=O

rg Dsjg g

raTJ + Waor, hi v = (-DT + Wa cosc 3 + - YT)v (2.8)

g

Page 60: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-47-

P (W~ WW,)j -OVand T+ .g DJ + -w DN + -'of4 +

.9 s

(2Wa - W .

YN (2.9)g

Also we can write:

. v (2.10)as

I'Bre T, the tension, v, the unit vector along

the mooring line, and 7, the geometric displacervent vector

are the dependent variables of interest. Equations (2.8)

and (2.9) can be simplified if we define a new variable

called the effective tension (Te) similar to the one

described in GOODMAN and BRESLIN (1976).

Te = T + Pc (aWw) (2.11)P9

Differentiating Te with respect to s

3Te aT Wa - Ww aPc

as as 9 as

aT- ( - Ww)cos3 (2.12)as

Page 61: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

Substituting (2.11) and (2.12) in (2.8) and (2.9) we

obtain:

aTe W- = - DT + Ww cos 3 + a (2.13)as g

and Te - = - DN + 1w(iz - v cost 4 ) +3s

2Wag Ww (2.14)

Equations (2.13) and (2.14) are derived for a line

of an arbitrary stretched length and of conseauent reduced

diameter. Also we assume, as reasoned in GOODMAN and

BRESLIN (1976) for materials obeying 1,ooke's law,that the

effective tension and not the actual tension controls the

extensibility of the mooring line. The extension of the

mooring line is caused by (1) pulling on the line due to

tension and (2) squeezing of the line due to hydrostatic

pressure. Volume I (CHHABRA, 1973) plotted non-linear

curves between tension and elongation of various mooring

cables and ropes. Using the effective tension instead

of the actual tension, mooring line stretch and the

consequent reduced diameter from some initial reference

state are found as discussed in Volume I.

Page 62: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-49-

The analysis also allows for an arbitrary

number of intermediate bodies such as sensor packages

and subsurface floats inserted in the mooring line. For

this case equations (2.13) and (2.14) are replaced by:

Ten = Tel + F (2.15)

Here, F is the summatior of gravitational

attraction, fluid, and inertia forces of the body inserted

between n, the differential element above the body, and

n+l, below it.

For cylindrical packages, the viscous drag

representation remains similar to the one for cylindrical

mooring line. For a spherical or any other shaped package

this viscous drag force is computed as:

DA = p/2 CDb ADb jURIU-R

where; CDb and ADb are the appropriate drag coefficient

and area.

The gravitational force and the hydrostatic

pressure force are combined to give:

NB =- Wwb iz

Page 63: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

where; W w is the weight in water of the inserted body.Wb

Inertia forces for cylindrical packages are

changed slightly from that of a continuous cylindrical

mooring line. Uere the assumption of the body motion

accelerating water only in the direction normal to its

longitudinal axis is dropped. Instead two added mass

terms; one normal and the other tangential to the

longitudinal axis are used. For cylindrical packages

inertia force is gi',cn by:

IF = (Mrb Y ÷ mnb YN + mtb YT)

and for any other shape this force is:

IFh = (mb + m ab) Y

Here; m. is the mass, fhb and mtb are the normal and

tangential components of added mass for cylindrical bodies,

and mab is the added mass for any other shaped body.

Summation of gravitational attraction, inertia, and fluid

forces gives F. Integration of equations (2.10), (2.13),

(2.14) and (2.15) along the spatial coordinate, s, of

the mooring line gives the dynamic equilibrium of the

Page 64: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-51-

mooring system at discrete times. At any time these four

equations can be solved for positions, W (t), of the

mooring system. Positions Y are calculated at short

enough time intervals, Ats, so that velocities Y and

accelerations Y during these time intervals can be

computed as piecewise constant. Accelerations are neglected

at t 0 and tI, velocities are neglected at to.

2.2.2 Lumped Parameter Formulation

In this formulation, the mooring line is reduced

to a discretized dynamic system which is solved by a lumped

parameter approach. All forces acting on the mooring line

and the inserted packages are transferred to a fixed

number of nodes (say N). If each node has q degrees of

freedom then N x q simultaneous differential equations, q

for each node, describing these nodes can be solved

simultaneously by using any of the numerical integration

techniques. Once again the forces transferred at each

node (lumped mass) are the same as listed in 2.2.1, with

the exception of Froude-Krylov forces whiich are not

neglected here. The forces for the nth mass for a N node

system are derived next.

Consider the discretized dynamic system as

shown in Figure 2.6, where an N-mass system is shown. In

this figure v n is a unit vector along the nth segment

., \

Page 65: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-32-

"AY N-1

p n+i

nfln

in 1 n

m1 m

z2

I

Figure~~~ 2.2-asSse

Page 66: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-53-

(below the nt" mass). This can be written as:

V = i coSi + i cost2 + i cos3n x In y 2n z ýý3n

Tn' T!+lare the tension vectors, and Un is the fluid

velocity vector at the location of the nth mass. A

typical mass could consist of cylindrical components,

spherical components, and any other shaped components.

The transfer of all adjacent forces to a typical nth mass

is done as explained below.

Viscous drag forces acting on the mooring system

have to be transferred at '11' nodes. Any scheme devised

for this transfer should take into account the different 7

behavior of cylindrical and spherical cor.mponents of the

mooring system. Let DNn be the drag force transferred

to nth node which is equivalent to contribution of normal

drag forces on cylindrical components lumped at the nth

node. Similarly, D-Tn is the drag force on nt" node

equivalent to tangential. drag forces on cylindrical

components lumped at the nth node." DA n is the drag force

acting on the nth node in the direction of the relative

velocity URn' and is a contribution from spherical or

any other shaped components lumped t the ntb node. These

forces are given by:

Page 67: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-54-

D-Nn (CDIN)nIU-RnI U-n

D-T= (CDIT) nTU-R I UTRn n, n n

DA = (CDIA)nJU-RnI iU-Rn

and f 1- + D +T (2 16)n n n n

Here; n is computed from the current profile and tne

velocity of water due to surface waves at the location

of the nth mass which is exponentially attcnua$--d

with depth. CDIN, CDIT, and CDIA are the appropriate

drag coefficients multiplied by respective areas.

The gravitational forces and the hydrostatic

pressure forces are combined for all the transferred

components to give:

N-•n = wn iz (2.17)

Inertia forces for the components, in general, are given

by:

IF n ( n + man) Y n - nn Yn (2.18)

-mtn YTn

Page 68: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-55-

This representation is similar to the one used

for inserted bodies in the continuous line formulation.

The tensile forces acting on the nth mass change

in direction as well as magnitude with the motion of the

nodes. The direction can be obtained by Yn :nd Yn-1

(refer Figure 2.6); but as the present problem is one

of large displacemcnts the magniturle is determined at each

integration step by updating its value at the beginning

of the time step by the stiffness force due to the

incrementalduforrmation during ths timr step. Let the

incremertalchange in length of the nth segment ALn be:

Ln = n - Yn-1

For small AYn and !Yn-1;

ALn L -n.V =

n n-

-cosi in- cos 2n- COS 3n COS lncosP 2ncoso 3n] JT1-1

If k n (stiffness coefficient) is defined as the

force required at node n for a unit displacement along Vn;

then the change in tension magnitude ATn is:

ATn = k ALn

Page 69: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

*/ 4

/,-56 -

or; Tn =(Tn -A•Tn)vn + ATnVn

Also, as tension vectors Tn and Tn+1 are actingth

at the n mass, we have:

TF =T - Tn (2.19)

Froude-Krylov force on the submerged 'mass n' is

assumed to be given by the product of mass of water

displaced by the 'nth mass' and the acceleration of water

at that location which is exponentially attenuated with

depth. Or,

IKizn _ _-FF = mdn gý e Ii xK xcos(K-rwt) +

A A

i yK ycos(K-wt) + izIjfsin(K.&S-wt) (2.20)

where, Mdn is the mass of water dispiaced by the n~h mass.

Combining equations (2.16) through (2.20) for all

nodes and taking into account all the boundary conditions,

the force balance reduces in matrix notation to:

LM]{Y} = {DFI+{CFI+{TF}+[K]{AY}+{FF} (2.21)

,7

Page 70: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

- 37-

where; [M] is a matrix of appropriate inertia terms.

[K] is a matrix of stiffness terms.

{TF} is an array of tension components at the nodes.

{DF} is an array of appropriate viscous drag terms.

{CF} is an array of constant nodal forces(gravitational and hydrostatic).

{FF} is an array of Froude-Krylov forces.

{Y1 is an array of accelerations at the nodes.

and {AY} is an array of incremental deformations ofthe nodes.

derivation of Matrices: In equation (2.21), the

order of each matrix and array is equal to the number of

nodes (N) multiplied by degrees of freedom (q = 3) per

node. For simplicity the masses were assumed to be lumped

at 'N' nodes, in which case the off-diagonal terms in the

mass matrix are zero, i.e., force at node 'i' due to an

acceleration at node 'j' equals zero. A consistent mass

matrix analysis can be done to allow for distributel mass.

Mass Matrix - [MJ

14 3

[M] =rn

MNl1TMNJ

Page 71: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

- Z8-

where; MI, M2 . . . .. MN are 3x3 matrices given by:

+nn i2in (fltn-mnnnCOSinCOS2n j (itn-m )coS~inCOS43nnfmain 3n2112

M +M tn C os 2 In"

M (n (Mt-i n)cosý 2 cos n 'n +M a+rnnsin ~2n (M~ -M IOn (tn-nn S2n°in, nman n 22n tnm nn)C°S 2nCoSý 3 n

+M Costn 2n

I , i 2

(Mn Mi )cosý COS (M Cssi2tn- nn 3nSin tn- nn )COS3nCos2n mn+man+mnn 3n

S2MI tncS 3n

th

m = mass lumped at the nth node.

man = added mass at nth node due to non-cylindrical components

and mnn'mtn = Normal and tangential components of

added mass at nth node due tocylindrical components

Stiffness Matrix ] - 4 Mass System

IlK1 + K2 K2 0 I --- K 0

.K2 K2 + K I -K 3 0L':] = \ LF--K3 K3 +K -K4

4 4T -i

Page 72: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-39-

where; KS are 3Y3 matrices whose elements are given by

SK -k cs. Cs

13 s IS j,s

ks = Stiffness coefficient for segment s.

and csi's = cos~i of segment s.

{TF}, {DF}, {CF}, {FF}, {Y} and {AYI are column

matrices. These matrices can be written as

-T- AT ) CS1 , + (T2 AT2 ) CS 1 2I 1F-(TI - AT1 ) CS2 , 1 + (T 2 - AT2 ) CS2 , 2 FF2, 1

-(T 1 - AT1 ) CS3, 1 + (T2, - AT2 ) CS3, 2 F3, 1

{TF} [FF=

-(TN I- ATN,_I)Cs3,M 1 + (TN- ATU)C-3,N

- (TN - ATN)CS 1,N FF,1,

- (TN - ATN)CS2,N FF2,N

- (TN - ATN)CS3,N FF3,E 4

/o,

Page 73: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-60-

fDF CF Y AYDFI, CFI,I iYl~Y,

DF2,1 CF2,1 Y2,1 AY2,1

DF3, 1 CF3,1 Y3,1 AY3,1

{DFI = . ; {CF} ; {Y} = . ; {fY} =

DF CFI, Y AY1,N1, . 114 1,11 ,

DF CF., Y A2,N 41,. 2,N2,

DF2N CFY AYDF3,N CF3, N 3,N 3,N

Equation (2.21) can be re-written as

{y} = [M- {TF} + [M]- [K] {AY} +

[M]-I {DF} + EM]-I {FF} + [M]-' {CF}

These 3N second-order differential equations can be

reduced to a set of 6N first-order differential equations

which can be solved by any of the numerical methods.

Page 74: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-61-

2.3 Attachment Between Surface Buoy and a MooringLine

Figure 2.7 shows the attachment between a surface

buoy and a mooring line. Let the attachment point be 'a',

which is fixed rigid1ly to the buoy.

z

y

x

-T~uyadaMoigLn

Figure 2.7 Attachment Between SurfaceBuoy and a Mooring Line

In addition to all the other forces acting on the

surface buoy as outlined in Section 2.1; a tension vector

T is acting at point a, which should be included in the force

balance.

T= Tv =Txix + Tyiy + Tziz (2.22)

S / "

Page 75: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-.62-

also let vector Rca be given by:

AA A

+- 'I I + I

Rca = 1 xa y a Iz' Zaa

Taking moment of T about point c we obtain:

TM =-Rca x T (2.23)

for inclusion in the moment balance.

Two Dimensional Analysis:

A A

Rca ix, xaI + iz, za

A A

= ix (xacos + Za'sine) + i z (za 'cos - Xa 'sine)

and; M = i [T (Xa 'cos + zisinO) - Tx(za 'cosO - Xa 'sin)]

Three Dimensional Analysis:-

Rca ix(xa- ýy' +eza) + iy(x' + Y! Oz!) +

iZ(-Ox + "'+z!)

Page 76: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-63-

And; T-M i iT (-Sxa+ -y• +za) Tz(ýxa+ya-"a)] +

i[Tz(Xa-ya+Oz') - Tx( eXa÷"yaza] +

iz[Tx(Xa+ Ya- za) - T y(xa- -Ya+ 6Za)]

Change in mooring line tension magnitude due to buoy rotation

(coefficients in the stiffness matrix).

Two Dimensional Analysis:

Rotate Rca through AO to obtain Rca1

c La 1] L-sinO Cose (za

For small rotations change in tension magnitude AT is given

by

AT= k(R Rca).v(ca 1 c

where k is the stiffness coefficient for the line segment

attached to the surface buoy.

If v= ixcos4 + iz sins

AT = k[cosj,(za cosO-xa' sinO) + siný(-za sinO -a a a

x! cose)]Ae

N'

Page 77: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-64-

Three Dimensional Analysis:

' 1ca

1 =- i K I a)

and;

°s2( a-Ya-z')ýc~s'al(-t-Xa+!*Ya'+Zal°Sl-•x-'+ a •a SaAT=k L

(- l+ZaY' Ozcosco" (Xa'-'Ya+Oza )L 3 a+cos2a a)

L_

If more than one mooring lines are attached to the

surface buoy, as is the case of simulation study in Section 5.3,

force and moment of both these lines are to be included

in the appropriate equations. It is important to note that

within the definition of the coordinate frame (fixed at

the anchor) if a mooring line hangs from the buoy (as is the

case in 5.3), - T of this section would be replaced by + T.

Also in this case .T would be given by

AT =-k(Rca -R ca)'v

ca 1

Page 78: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-65-

2.4 Window Shade Drogue

Sometimes an alternative approach to mooring

surface buoys is the use of surface trackable drogued

drifting buoys. Such a buoy system employs a high drag

device (or drogue) tethered to a trackable buoy at the

surface. A drogue is subjected to the same forces

(including the wave effects) as a differential element

of tne mooring line. A special case of drogues, the

window shade drogue, as shown in Figure 2.3 ic considered

in this analysis. The drogue, modeled dynamically as

a lumped parameter system (Figure 2.8), is reduced to

strips. The mass, the acting forces, anO the dynamic

behavior of each strip is lumped at an assigned nodal

point. Nodal masses are linked by suitably elastic lines.

The window shade drogue is a compliant sheet.

Close observation of scale model drogues (Va:hon, 1973)

has revealed that it seems nearly locked to the local

water mass insofar as motion normal to the -heeL is

concerned. However, in the tangential directionpit seems

to slip through the local water mass rathei easily. The

forces were therefore described as follows: the wave

forces (Froude-Krylov force; as it is assumed that there

is no diffracted wave) acting on a material strip are

estimated by calculating the force normal to the axis

/ / . /

Page 79: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-66-

XV

Surface Buoy

Tether Line Window Shade

ruDrogue

Attachment Point

l /

Ballast Weight

Figure 2.8 Drifting Drogued Buoy System

Page 80: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-67-

of revolution of a hypothetical cylindrical element, the

diameter and length of which is equal to the breadth and

length of the strip respectively. This force is given

by the mass of the hypothetical water cylinder multiplied

by the component of water acceleration normal to the

cylinder'slongitudinal axis. Or;

FF mn[AEw Ew Vn )vn] (2.24)

where w is the particle of water next to the nth node,

and mdn is the mass of the hypothetical water cylinder.

For inertia forces man and mtn equal zero; whereas mnn

equals mrdn. The viscous drag of this strip in the normal

direction is calculated using the frontal area of the strip

and the drag coefficient measured in water-filled quarry

tests (Vachon, 1975). The elemeptal strips of the drogue

are assumed subject to tangential viscous drag calculated

using the area of the strip and a tangential drag

coefficient measured during drop tests in the ocean

(Vachon, 1975).

Gravitational, hydrostatic pressure, and tensile

forces on a drogue strip are similar to the ones outlined

in Section 2.2 for a discretized dynamic system.

I•.L,,"

Page 81: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-68-

3.0 METHOD OF SOLUTION

Section 2 outlined all the necessary ingredients

of the mathematictal models used in this report. In this

section some details of how to use these ingredients, to

obtain a solution for a specific problem on hand, are

given. For illustrative purposes a specific case study,

of a spar buoy at the surface and a mooring line connecting

this buoy with the anchor, will be discussed. Method

of solution for both the two-dimensional and the tbree-

dimensional analysis of the moored system will be outlined in

3.1. Section 3.2 outlines the approximate initial

conditions for the steady state analysis of a spar buoy

freely floating in a surface wave.

Another case study of a spar buoy at the surface

and connected to a window shade drogue at a given depth

is discussed in section 3.3.

3.1 Moored System Analysis

Two-Dimensional:

In this case, the current profile is in the same

plane as the train of surface gravity waves having a

single frequency and amplitude; anQ its direction parallel

or anti-parallel to the direction of surface wave

propagation.

A

Page 82: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-69-

Static Solution:

For the static solution, the analysis is started

at the spar buoy. The pertinent static equations for the

soar buoy (Section 2.1) with an attached mooring line

(Section 2.3) are:

DFx - Tx = 0 (3.1)

POg - Mg + DFz -Tz =0 (3.2)

and -Pig sin" + DM + T (x' coso + za sinO) -a

- Tx (za' cosO -j sinO) =0 (3.3)

IPere; we hove three equations and four

(Tx, T, e, hs) unknowns,where h. is the static draft of

the spar buoy. Now if we assume a value for hs, the

other three unknowns can be solved by equations(3.1)

through (3.3). The solution for the three unknowns T

Tz, and 0 is found by iterating on the pitch angle 0.

If 0 is known; DFx, DFz, and Dri can be computed explicitly.

P0 and P1 can be calculated if hs is known and thus Tx

anO Tz are given by equations (3.1) and (3.2) respectiqely.

Moment balance can now be performed by using equation (3.3)

Page 83: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-70-

to obtain the error. This eiror is minimized by iterating

on the pitch ang'.e 0.

Having solved the buoy force and moment balances

for a assumed hs the mooring line can be analyzed next.

For the continuous line formulation, a numerical

integration is carried down the mooring line by dividing

it into a finite number of segments. In this representation

equations (2.13), (2.14), and (2.10) for two-dimensions

can be written as:

ATe = (-DT + Ww sinf)AS (3.4)

TeA¢= [DN + Ww cost]AS (3.5)

and AY =ix's.S cosp + i AS siný (3.6)

Havi.ng found T,, and Tz (or T and •) at the top

of the mooring line equations (3.4) through (3.6) are (

used to find the. configuration and the tension distribution

along the rioori:ng lJne. At the enl of the mooring line

the bounda.iy condition of the ocean floor depth should

be met. if not, the uhole process is repeated with a new

hs; thus computing the correct value of hs for the given

bound&ry condition. Whenever the mooring line is

Page 84: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-71-

discontinued to insert an intermediate body, the

discontinuity is taken as a lumped mass and resolved as I7

done below for the lumped parameter approach.

For the lumped parameter formulation, the

configuration an,' the tension distribution along the

mooring line can be found by (Section 2.2):

Tn T n+1 - Wwn iz + DFn (3.7) o.nw\

where; n is the tension vectot below the nth mass and

1n+l abcve it.

Dynamic Solution:

Equations of Section 2.2 which area written for

three-dimensional analysis can be easily reduced for the

two dimensional problem. Using the lumped parameter

approach for the mooring line; eauations (2.21) are

combined with equations (2.3), (2.22), and (2.23) to

obtain a global matrix equation for the mooring/buoy

system. Stiffness coefficients for the change in mooring

line tension magnitude due to buoy rotation are obtained

from Section 2.3. This matrix equation can be solved

in the time domain using various numerical integration

techniques. Integrals of Pi and Qi, given in Section 2.1,1 1

Page 85: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-72-

are computed exactly; whereas the integralo for viscous

drag forces and moments DFx, DFz, and DM are computed

numerically by dividing the spar buoy in disks of height

dz'. The composit matrices are of order 2N + 3. Matrices

[M], {TF), {KW, [DF}, {FF1, {FD}, {FG), and {FA) are

computed at each time step of the integration.

For the continuous line formulation; the matrices

of equation (2.3) combined with equaticns (2.22) and (2.23)

can be solved for T in equation (2.22) if the buoy draft

h is known. Then integration of equations (2.13),

(2.14), (2.10), and (2.15) along the spatial coordinate, s,

of the mooring line gives the dynamic er-luilibriun of the

mooring system at discrete times. Iteration on the

unknown h0 may be necessary to meet the boundary condition

of the ocean floor depth.

Three Dimensional:

Here; the train of surface gravity waves having

a single frequency and amplitude, can propagate in a

general direction. The current profile is also three-

dimensional and can vary, in magnitude and direction, with

depth.

/

Page 86: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-73-

Static Solution:

The pertinent static equations for the spar buoy

(Section 2.1) with an attached mooring line (Section 2.3)

are:

-JdBg + [d~fg + - =0 (3.8)

and; -JdB(Rcp x g) + DM + TM = 0 (3.9)

Integrations for dB are over the static draft of the

buoy, and integration for DIA is over the length of the buoy.

Equations (3.8) and (3.9) can be written as:

Pog iz -Mg iz + DF- T =0 (3.10)

and { = [S]- {F} (3.11)

where; [S] is a 3 x 3 matrix with components qiven by:

S Fg PoZ 1 + DFz£2 - Ty - Tza

11 z-r y Tz

Page 87: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-74-

S =TX ; S -Tx'12 yXa S13 za

T';= T ' "'

$21 Txa ; S23 Tzya

$22 = Pogi 1 + DFz£ 2 - TxXa - TzZa

$31 - DFx2 + TxZa

$32 = - DF y2 + T yza

S33 = T Tx'a - Tyya

and {F} is a 3 x 1 array

F1 - DF y 2 + Ty za - Tzy

F2 = DF Z2 - Txza + TzXa

F 3 = Ty ' - TX

also Po = fdB; and Vi' 12 are the distances between

center of gravity and center of buoyancy and center of

N'

Page 88: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-75-

drag respectively. For the static case we also assume

(small angles)

DF X IVBwx VBwx

DFy XIVBwy IVBwy

and DFz QiVBwzIVBwz

.. T and ý, 0, and ý can be solved explicitly from

equations (3.10) and (3.11) if hs is known. hs is

determined by iteration on the boundary condition of the

ocean floor depth.

Mooring line solution is similar to the one

presented for the two-dimensional analysis.

Dynamic Solution:

This dynamic solution is similar to the one for

two-dimensional analysis except that the order of

matrices in this case is 3N + 6.

3.2 Initial Conditions for the Steady-State

Analysis of a Spar Buoy

Two-Dimensional Analysis:

Let CN = 1.0, CT = 0.0, and xc = 0.0. Also

assuming small pitch of the buoy and neglecting viscous

Page 89: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-76-

drag forces, the equations of motion for a spar buoy

become:

2Mkc + P1 = 2wý20oo coswt (3.12)

M*zc + OSo2gz = - 2 E sinwt

+ PSo 2 g~o sinwt (3.13)

and Plxc + (Iyy + P2 )e + PlgO =,2w2 &0Q coswt (3.14)

where, M* = M + 4/3 p[r 13 + (rI-r2 ) 3

Surge Equation 3.12:

Let P1 < < 2Mxc and x = C1 sinwt + C2 coswt + C3 .

Now differentiating x twice and substituting in (3.12) we

obtain

x = -roQo coswt/11 + C3

and x = wýoQo sinwt/M + C3 t

Hence x(o) = 0

and x(o) =- oQo/M

,'0.. 0

Page 90: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-77-

Heave equation (3.13)

Let 7 = C 1 sinwt + C 2 coswt + C 3

Differentiating twice and substituting in equation (3.13) we

obtain:

C2 = C3 = 0

and C 1 = Fo(pSo 2 g w 2Qo)/(PSo2g - M*w2

Hence, z(o) = 0

•(o) = 1

Pitch Equation 3.14:

Substituting Rc from equation (3.12) into

equation (3.14) we obtain: do

AO + Be = C coswt (3.15)

where, A = (Iyy + P2 - 2/2M)

B = P1g

Page 91: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-78-

and C (2,, 2 oQi- P1W oQo /M)

Now let (i C1 sinwt + C2 coswt + C3

Differentiating 0 twice and substituting in equation

(3.15) gives:

C= C3 0

and C, C/(B-Aw2)

COr, 0 2 coswtB- Awo

Hence, W2 0 (2QI-PIQo/M)

0(o) = 2

and 6 (o) = 0

Three Dimensional Analysis:

Similarly; for the three dimensional case with

wave direction at an angle 8 with the x-axis we have:

Page 92: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-79-

x(o) = - r,° coss Qo/M

y(o) = - ýo sin6 Qo/M

z(o) = 0.

X(o) = y(o) = 0

-(O) = •wo(PSo 2 g-w 2Qo)

PSo 2 g-M*w2

w' & sin$(2'Q-lomý(O) 2 2 2 1 P1 0 M

2

22

Plg-W2 (I yy+P2-Pl2 /2M)w2 o cosS(2Q1 -PlQo/M)e(o) - Pl-7 (y+ 2-2/M

1P (o) = 0

*(o) = (o) 0)= 0.

3.3 Drifting Drogued Spar Buoy

In this analysis the drogue and the mooring line

connecting it to the spa# buoy are modeled dynamically

as a lumped parameter sy tem.

Page 93: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-80-

/

Two-Dimensional Analysis

Static Solution:

The pertinent static equations for the spar buoy

(Section 2.1) with an attached mooring line (Section 2.3)

are:

DFx + Tx = 0 (3.16)

Pog - Mg + DF + Tz =0 (3.17)

and -Pig sine + DM - Tz(x' cose +a Z sine)

+ T (z! cosO - xa' sinS) = 0 (3.18)

Here; we have three equations and five (Vs, hs,

Tx, Tz, 8) unknowns where Vs is the static velocity of

the drogued drifting system. These equations are solved

by iterating on Vs and 8. Assuming a value for Vs, Tx

and Tz can be calculated by known weights, buoyancies,

viscous drag forces, and elastic characteristics of the

system beneath the spar. Now if a value for e is assumed

equation (3.17) is solved for hs and the error in

equation (3.18) is found. This error is minimized by

iterations on 8. Next Vs is iterated upon to satisfy

equation (3.16).

Page 94: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-81-

Dynamic Solution

This solution is similar to the lumped parameter

solution discussed in Section 3.1.

Three Dimensional Analysis

Static Solution:

Here the pertinent equationo (static) remain the

same as Section 3.1 expect for replacing -T by +Y and + TM

by -TM.

Also; following similar reasoning of small angles

T, o, e, and ' can be solved explicitly from equations (3.10)

and (3.11) with new T and TM if Vs is known. V is

determined by iteration on the equation similar to (3.10).

Dynamic Solution

This solution is similar to the one in Section 3.1

\

__ _ _ ... . ... __ _ __ _ _ __ _ _ __ _ _ __ _ __ _ _ __ _ _ __ _ _ / |

Page 95: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-- 2

-82-

4.0 COMPUTER PROGRAM DETAILS

This section will describe the various computer

programs written for the theoretical analysis presented in

Section 2 and using solution methods of Section 3.

Description of the prograrsis general and specific details

can be found in the program listings presented in Appendix A.

All computer programs are written in FORTRAN IV and have

been run for many case studies on the CSDL AMDAHL 470 V6

computer. Innut data required for these programs is also

explained in this section. Some of the simulations, along

with the accompanying input data, are presented in Section 5.

Computer programs written for tne surface moored

and drifting systems are tabulated in Table 4.1. Programs

for subsurface moored systems are tabulated in Table 4.2.

Program listings for some of these computer progra;ms are

presented in Appendiz: A. Listings not preserted are duplications

of what is presented and can he obtained after minor modifications.

4.1 Surface Moored/Drifting Systems

Computer program SD3.FORT is coded for the

three-dimensional analysis of surface moored and drifting

systems presented in Section 2. Four case studies can be

simulated by this program:

1. A freely floating spar buoy.

Page 96: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-83-

z . 0 40 4. 014 .

C C:0 0 IQ j( :

Z() 0. 0'4 0-4 0 -q 0-400 9 ( dU) 4-4 inU4-4 0tl4-) U) L M4-4 0Cfl4-

r_ 41 C4.)

t" w 4-4 1ý4 2 En.4 f" .4 w 44E

z- rl. :) 0 :3 :3 0 :3 11 0 : V 0 : Z 0 :

UU i ' 4 ) u u '

-4 0 -4 o -4 o C. 0 4 0

r_04.) 0 04 -r.- 0' r r00 0 no 0. )0 Q40)0 00

o 0 0 a)2 0 0 0) 0V)4 t&4E 4 ) tw (4 (4

-'- ý 0

U) 4 41 (r. 4-1 4)AI I~. I

4-4

ý4 0 00 4 50 0 0 0

C.) to

Ci)~U t 'i1 i)

r. t - v-H -0 It' 1.4 g- 1045

co 24 a ti a r C4 w iCi) ty fu-4 >1ý . , r

C) s: a 0CflQ40 (

:1o' o 00 4-

(n to P, § -4 %4 ( 4 En4-' $4

11 0 i4 , 4 0 " 0~- w .4 0 E4z $4 0 0 -4 >4-i ~0 -10-4 Q):5$qt 0 L4

-4 -4 "-A > ~ 4~ v -moka l -r 4 -41-0 U :,T

Ic '0 4 0 W tP 4J -A 0T3 C: nI) I- c .1- r

"a41) '-4 c H -4 -H E; 4-4 -4 -4*.0-4 -4 00 U4-4-40 r- 0C

L) LiU JU 44~i E_4 0 4

0-

00

clA

.1)'

Page 97: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

u C'

-4 0.

'ELn

C) 1).4~

4J AA

o ~ U) 0

'-4 44 41

U) 1))

IxI00

0 54 0

U:U

C))I-. 1. ~ 4 I-

Page 98: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-85-

2. A spar buoy anchored with a lumped

parameter mooring line.

3. A spar buoy anchored with a lumped

parameter mooring line and a lumped

parameter mooring line hanqing from

the buoy.

4. A spar buoy attached to a window shade

drogue.

SD2.FORT does the same simulations as SD3.FORT,

but is coded for the two dimensional analysis of Section 2.

Computer programs BUOY.FORT, MDE.FORT, and DDB.FORT are

subsets of the computer program SD3.FORT. BUOY.FORT

simulates case study 1, MDE.FORT simulates case study 3,

and DDB.FORT simulates case study 4. All these programs

use the lumped parameter formulation for the mooring line.

Input data necessary for these programs is outlined below.

Input Data Required for Computer ProgramSD3.FORT (All units in F.P.S.)

General data:

NM: Number of nodes (masses). Equals

one for case study 1.

NB: Number of the surface buoy. Starting

from the anchor, the number of the node

(anchor is not counted as a node) where

Page 99: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-86-

the buoy is located. NM = NB for

case study 3. NB equals one for

case studies 1 and 4.

ND: Number of the first node on the drogue.

NST: Number of steps. This is used for

dividing the spar buoy in NST strips

for integration of viscous drag

forces and moments over the entire

submerged buoy.

NC: Number of cycles, i.e. number of

surface waves for which the simulations

are tc be done.

MOOR: Index for case study cnntrol. Equals

zero for case study 1; one for case

studies 2 and 3, and two for case

study 4.

DEPTH: Ocean depth.

DT: Integration time step AT.

TMAX: Maximum time of simulation.

T2: Time interval for simulation printout.

Buoy Data:

RDI,RD2: Two radii (r1 and r 2 ) of the tuned

spar buoy. RDl is for the drum and

equals RD2 for a cylindrical spar.

Page 100: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-87-

ZCG: Distance (Z CO) between centeroid of

the spar base and its C.G.

RGYR: Radius of gyration of the buoy about

any axis in the horizontal Plane.

HMAX: Length of the spar buoy (H).

CDL: Normal viscous drag coefficient (C DN)

used for the spar. 7!CDT is found by

riultinlying CDLxO.02

IIST: Length of the drum for the tuned spa7

buoy (h). For cylindrical spar IIST

is some arbitrary number between zero

and the submerged depth of the spar.

CON: Added mass coefficient (Cd~ for the

buoy. (Used & read in SD2. FORT only).

COT: Added mass coefficient (C T) for the

buoy. (Used & read in SD2.FORT only).

CDP: Viscous drag coefficient for the base

and step of the tuned spar (C DP).

ALPHA: Added mass coefficient for the base

and step of the tuned spar (A).

Mooring Line Data:

WM: Weight in water (w .) of components

lumped at the I th node. Equals weight

in air for the buoy (NBth node)

Page 101: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

CM(): Mass of components lumped at the Ith

noce (m ).

CMS(I)M Added mass of spherical componentsth

lumped at the I node (mai).

CMD(I): Mass of water displaced by components

lumped at the Ith node (mdi).

CM(I), raormal and tangential components ofCMT ():

added mass of cylindrical components

lumped at the Ith node (mni and mti).

SL(I): Slaci. length of the moorinq line

proceeding the Ith node (Li).

EK(I): Elastic coefficient for SL(I) (ki).

CDIN(I), Normal and tangentialCDIT(I):

viscous drag constants (1/2 ,CDAD)

of cylindrical components lumped at

the I th node.

CDIA(I): Viscous drag constant of non-

cylindrical components lumped at the

I th node.

DEP(I): Depth (less than zero) of the Ith

node (approximate) hi).

Page 102: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-89-

Attachment Data:

XCI,YCI, Coordinates of the attachment pointZC1:

between spar and the anchoring line

in spar buoy coordinate frame (x',

y', z').

XC2,YC2, Coordinates of the attachment pointZC2:

between the spar and the instrument

line in x', y', z' frame.

Current Profile Data:

V(IJ,I): Absolute velocity of water in Jth

(x, y, and z) direction at the depth

of I th node.

Surface Wave Data:

WE: Frequency (w) of the surface wave.

AMP: Amplitude (0 ) of the surface wave.

BETA: Wave direction (a).

All of the input data are read in the main

program. The main program calls subroutines: (a) STATIC;

which calculates the mean configuration or steady state

(static) solution without any surface wave forcing.

(b) BUOYS; which calculates the mass matrix [M] for the

spar buoy. (c) DBDRG, which calculates the viscous drag

Page 103: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-90-

forces/moments on tVi spar buoy. (d) MIUVER, which inverts

a matrix. (e) ?VATR X, which calculates the wave exciting

plus hydrostatic forces on the spar buoy, the stiffress

matrix L[], the remaining mass matrix for the mocring

lines, viscous drag forces on the mooring lines, Froude

Krylov forces on the mooring lines, and the tension force

components at each node. It also in egrates the

differential ec'uations of motion. (f) NEXT, which updates

the geometry of the system.

Before finding the steady state dynamic response

of a system to a sinusoidal surface wave, an equivalent

current profile has to be determined to compute the mean

configuration of the system. This current profile depends

on the original current profile plus the contribution due

to the surface wave. In effect it is a rectification of

the time constant current profile by the oscillatory

velocity field generated by the surface wave. From Section 2.1

we have:

VEw = x (Vox + 0x + iy(Voy + Py

+ iz(V oz + Z)

also; IVEw12 = (Vox + Px)2 + (Voy + y 2

+(V oz +z)

, |' | z

Page 104: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-91-

And as viscous draq forces determine the moored

or drifting system configurations for the static solution,

and these are proportional to VEw VEw, the square roct

of mean (iVwVw) over a wave period (T) would give theEw Ew

equivalent rectified current, vector at this location.

Let; E d V )dt)= -T ]o IEwl (Ew d(t

=ix EX + iy Ey + iz Ez

Now the equivalent current vector can be written as:

V F-qE/EE

where: EE = [TI

This calculation to find V , before a static

solution is performed, is done in the main program. The

numerical integration of differential equations in the

subroutine MATRIX was performed by the rectangular rule,

which was found adequate for all case studies simulated.

4.2 Subsurface Moored Systems

Computer programn SSD3.FORT is coded for the three

dimensional analysis of subsurface moored systems

Page 105: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-52-

(continuous line formulation) given in Soction 2. The

program simulates the response of a subsurface moored

system to the time varying current fields. SSD3.FORT

reads in the relative (relative to the mooring system)

.elocity profile in the three orthogonal x, y, and z

directions. From these three components the viscous drag

forces can be compulted directly. These components of

the relative velocity could be the ones measured by

current sensors on the mooring line. A]ternatively,

SSD31.FORT reads in the absolute (relative to the ean

floor) velocity profile in the three orthogonal (x, y,

and z) directions. Profile is read in as amplitudes of

the sinusoidally varying currents. All components (varying

with depth) are driven by a single frequency. In addition

a surface wave of given amplitude, frequency, and direction

generates velocity field exponentially attenuated in depth.

The program computes the total absolute velocity and then

substracts the mooring line velocity from this absolute

velocity to compute the visco'-b drag forces. SSS3.FORT is

the same as SSD3.FORT but it neglects all inertia forces

of the mooring system. All three programs use the

continuous line formulation of the mooring line, given in

Section 2, as the mathematical model. Innut data, except

Page 106: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-93-

for the input forcing function (velocity profiles and surface

wave) are the same for all three programs and aredetailed

below:

General Data:

NI: Number of intermediate bodies

(instrument clusters or inserted

floats) to be included in the analysis.

NP: Number of mooring parts (each mooring

part can have different properties).

NS: Number of segments the continuous

line is to be divided in.

NPT: Number of dynamic equilibriumisto be

performed.

IKK: Number of locations the velocity profile

changes along the ocean depth.

DEPTH: Depth of the ocean. (Meters)

DDT: Approximate depth of the mooring line

top. (Meters)

ER: Used for iteration on the boundary

condition of ocean depth. If DDT is

known with reasonable accuracy, ER

is not required. (Meters)

ERI: Used for error control in SSD31.FORT.

Page 107: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-94-

In.st u'rent Data:

P I.J Position of the J i nstrtuient in

slack length distance from the

top. (Meters)

SI (J): Length of the Jth instrument.

Equals zero for non-cylindrical

instruments. (Meters)

ZM(J) : Mass of the Tth instrument (m.). (Slugs)

ZMC(J): Normal. added mass component (m nj)

for cylindrical instruments. (Slugs)

ZMV(J): Added mass (maj) of the jth

instrument for a non-cylindrical

instrument. Tangential added mass

component (m j) for cylindricaltJ

instruments. (Slugs)

F(3,J): Weight in water (Wwj) of the Jth

instrument. (Pounds)

CDIN(J), Normal and tangential viscousCDIT(J):

drag constants (1/2 pCDAD) of the

instruments. CDIT is not used for

spherical instruments. (F.P.S. units)

Mooring Line Data:

DIAL(I): Nominaldiameter of the Ith mooring

part. (Inches)

Page 108: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-95-

SLL(W): Slack length of the Ith moorincg

part. (Meters)

AWL(I): Weight in air per unit slack I.:ngth

of the Ith mooring part (Wa). (.os/M)

•JL(I) : Weight in water per unit slacK

thlength of the I mooring part (Ww). (IDs/M)

TPL(I- Transient peak load on the Ith mooring

part. For materials which obey Hook's

law this is substituted with the Young's

modulus of elasticity. (Refer volume 1

CHHABRA, 1973). (ibs, or lbs/in )

COl(i), Constants for stress-strainC02 (I),P01(I), relationships of mooring lineP02 (i),AO(I): materials. (CHHABRA, 1973).Col is used for

jacket diameter (in.) in jacketed wire rope.

CDN(I), Normal and tangential drag coefficientsCDT (I): tof the Ith mooring part. (CDN and CDT)

Current Profile Data:

D(I): Depths, greater than zero, where the

current changes direction. I goes from

1 to IKK. (Meters)

V(I,J): For SSD3.FORT: Relative velocity in

the Ith (x, y, and z) direction for the

Jth zone. J goes from 1 to INK + 1.

(mm/sec)

Page 109: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

For SSD31.FORT: Absolute ve]locity,

amplitude in the I h ditect iofl forthb

the J zonM. Following (]ata are

used only in SSD31.FORT.

WE: Fren7uoncy of current profile

ami,] iu-les V(I,J) . (Rad7:,c

T)M: Time step for calculation of the

mooring system dynamic eqcuilibrium.

T2: Time step for simulation output.

TMAýX: Maximum time for simulation.

WS: Surface wave frequency (). (Rad/sec)

AMP: Surface wave amplitude (0o). (,m)

BETA: Surface wave direction ([). (Ratiians)

All of input data are read in the main program.

The main program calls subroutine M'TION which calculates

the dynamic equilibrium of the subsurface mooring system at

discrete times. Subroutine MOTION calls subroutine FORCES,

whenever an instrument package or a subsurface float is

encountered in the mooring line incremental integration

scheme. Both MOTION and FORCES call subroutine SPEED to

find the current for viscous drag calculations.

Page 110: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-97-

5.0 CASE STUDIES/SIMULATIONS

This section presents computer simulations of

specific case studies; using the computer programs outlined

in Section 4. All simulations are done in the time-domain.,

Simulations of the freely floating spar buoy, as presented

in Section 5.1, were combined to obtain the response

amplitude operator (RAO) vs Kh (wave number multiplied by

the appropriate buoy draft). Section 5.2 presents the

subsurface moored system simulations. Section 5.3 gives

simulations of a surface moored system, and Section 5.4

presents simulations of a drifting drogued buoy.

5.1 Spar Buoy

Both the two-dimensional computer program

(SD2.FORT) and the three-dimensional computer program

(SD3.FORT) are used to simulate each of the two spar buoys;

one cylindrical, and the other tuned presented in

Sections 5.1.1 and 5.1.2 respectively. RAO vs Kh plots

a-e presented for the two-dimensional simulations of

cylindrical anA tuned spar buoys.

5.1.1 Cylindrical Spar

The spar buoy (Figure 5.1) used in these

simulations was tested in a series of wave tank tests to

Page 111: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-98-

derive empirical response data for comparison with the

computer simulations. This comparison has not been

presented in this report. The dimensions

0.75" O.D.

7TTotal Weight of Buoy =

W.L. 157.6 grams (0.35 pounds)

I Buoy Radius of Gyration =

L 27.1" 14g ICG 8.5",j21.4" F r 8.4

M

10. 7"81 7 '

T

Figure S.1 Scale Model Spar BuoyDescription

and characteristics of this scale model spar buoy are

shown in Figure 5.1.

Two Dimensional Simulations

Figures 5.2, 5.3, and 5.4 present the typical surge,

heave, and pitch response of the buoy to surface waves of

Page 112: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-99-

NCO- CIO

2 C4)

) '.

9)n

() -4

.444

0 0

41.0

L4

I4- J) x9- ý l xx( j)

Page 113: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-100-

Nl 44

-< C

06I S6I;0 ,I S0 L6S0 E''ý51:f~j) z fi) Z fIA) z (IJ)

Page 114: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-101-

44 _

II II I IIEiLn C-)

73 0

41

C.

[y)-.z HIJ 0H IfJH H I()HiC Y

Page 115: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-102-

amplitude 0.05 ft. and different frequencies. Table 5.1 is

the input data used in conjunction with the computer program

SD2.FORT to obtain these simulations. Noteworthy is the fact

that the viscous (CDL) and pressure (CDP) drag coefficients

in this-study eqxual zero. Surge drift evident in Fig. 5.2

is due to the bias or rectification of wave exciting forces,

which would be present for example if an oscillatory hydro-

dynamic force were to act on a heaving bod4 whose motions

were at varying with this force. Simulations for the same

data as Table 5.1 and viscous and pressure drag coefficients

equal to 1.0 are shown in Figures 5.5, 5.6, and 5.7.

Comparison between the surge motions of Figures 5.2 and 5.5

shows the effect of viscous drag on. surge drift. Surge drift

due to viscous drag occurs as the submerged area of the

spar and its inclination vary over a wave period, and is a

function of their phase relationships. This drift is most

predominant near resonance. In this case heave resonance

occurs at Kb = 1.0, and pitch resonance occurs at Kh = 0.4.

Heave motions (Figures 5.3 and 5.6) are not effected much

by viscous drag because the tengential drag due to CDL

and CDP is comparitively small. Comparison of Figures 5.4

and 5.7 shows that the system frequency present in the top

Sfour curves of Figure 5.4, due to approximate initial

conditions, is damped out in Figure 5.7 due to viscous

drag damrping. Otherwise, the amplitudes do not show

much change.

Page 116: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-10 3-

0

1-4

-4

* 4.40~ 1-0

'-4

0. 01

.44J

0

411

NJ 02n

N 00

000 *80

0 0

,-4 L 0 0 04-4

Cj 0 . N q"n-NM

.000000 *0o

Page 117: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-104-

CV t

-44 .-40

0

) ()

-4-

444

It!I

LA ~-- n

C) Lý 0Y i i' n 00Z n - n 0)D

(j x )- xC x x

Page 118: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-105-

ri riN'.0 .-4

-4 0 o 'U-

II It II II 0

-C

2S �zz�--� _____ -.---- IC r.

C

C-

__ U

-� 1�4

-� -, V

-� �- ( -4

C-s. -I,->,C-

- 7�. (C.1�0

L� 0

0 (CII

2 � -4

C)

-- C -.

4-, 2>

-.4 - 0)

-� (t� 4'-�

4-'-

0-'-I cn

'0 $-� -�------�

3 *1-44-'

0

71-

C)'CC)

----- C

-- S

� � -

�ti� z n z z z ui-� z

/ -I.

Page 119: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-10 6-

4 c-4

r- O *

* 0 n

-a-

4 1

-~C U

0-0---) n 0 n 01 n 0)

-n *0 )

Cýo

Page 120: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-107-

Response amplitudes of surge, heave, and pitch;

and surge drift as calculated from the steady state portions

of the times histories presented in Figures 5.2 through

5.7, and other similar simulations are tabulated in

Table 5.2. In this table column 1 tabulates the freauencies

(w) of waves studied. From these frequencies Kh is

calculated and tabulated in column 2. Columns 3 through 6

are four columns of surge amplitude divided by Eo" The

first of these four columns presents the results of the

undamped linear analytical solution as derived in Section 3.2.

The second pzesents the computer simulation results with ýo

equal to 0.05 ft. and no viscous drag. Third and fourth

present the computer simulat-on results with viscous drag

and o equal to 0.05 ft. and 0.25 ft. respectively. The

simulated plots are shown for two wave amplitudes to

emphasize the nonlinear response obtained by the nonlinear

theory. Similarly columns 7 through 10 tabulate four columns

of heave amplitude divided by &o' and columns 11 through 14

tabulate four columns of pitch amplitude divided by Kro. Kro

is the maximum wave slope. Analytical solution for surge

drift was not found hence only three columns 15 through 17

2 2are given for surge drift divided by Kw& . Kt 0o is the

mean "stok:es drift" velocity at the mean free surface. Data

points of Table 5.2 are plotted in Figures 5.8 through 5.11

Page 121: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

~0 0o

- - j1 0

CO C'

C ; r- ` 4. L 0 0n- N (N 0

-4 -

N- In 0 - Ln 00

(InI

(N (N7 -j 1-4 L n r4In

In 00 .ý C . .ý 1 C-4 r cc 'i? (N>I N - n '0 0 0 N C I

u .1

-4 a; ~ ( ,-. 0 0 C 0 0 0 0 .-

-4I I I r-cc fo 'N C

-, *r 0ý 1. V U)'4 '40 0 nr 4 In 4 N ' C: Jn 0v (N >a;~ ~~ 4 0 N ( H -'- 0 0 0 u

-- 4 (C1 II I I

en .14 (N 1- 0 w -

CA

-4-4C

rqn

o0 00

0

o o o 0 N3 0 0 OD

r ' JI ' . 0 n C ) -

I c I InC)

Page 122: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-109-

Analytical Solution - 1

Computer Simulation - 2

* o * Computer Simulation - 3

t t t Computer Simulation - 4

2.0

4j

'-4o+

1.0

,...t

"0.51

m+

0 1.0 2.0

Figure 5.8 Surge Magnification Vs Kh

*

Page 123: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-110-

2.0

0.0

- -2.0 TS-4 0

-6.04.0

-6.0 xComputer Simulation - 2

- Computer Simulation - 3

,-,- •Computer Simulation - 4-8.0

-10.0 A 4-------4-------0 2.0

Kh

Figure 5.9 Surge Drift Vs Kh

Page 124: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-111-

I , 1

ILIi '

II I

4.0 I,4.0----Analytical Solution •i

IN - --- Computer Simulation 3 20

•. II --Computer Simulation-3S4 -4-Computer Simulation -_4I 3.0

2.0

1.0

0 1.0 2.0Kh

Figure 5.10 Heave Magnification Vs Kh

Page 125: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-112-

I

---- Analytical Solution - 1

--- Computer Simulation - 2

8.0 e-4--Computer Simulation - 3

I ,4,#--4 Computer Simulation - 4

V

o 6.0

4.0

2.0/\

0 1.0 2.0

Kh

Figure 5.11 Pitch Magnification Vs Kh

Page 126: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-113-

to present plots of RAO vs Kh. Figure 5.8 shows the buoy

surge per foot of wave amplitude as a function of Kh. For

zero frequency this ratio is one and for increasing

frequencies it decreases to zero. Figure 5.9 shows the

buoy drift (in surge direction) per Kwý 0 2as a function of

IKh. Figure 5.10 shows the buoy heave per foot of wave

amplitude as a function of Kh. This ratio is one for zero

frequency and exhibits resonance at Kh of approximately 1.0.

The ratio decreases to zero with increasing frequencies.

Figure 5.11 shows the buoy pitch per Ký as a function of Kh.

This ratio is one at zero frequency and, after exhibiting

resonance phenomenon at arcund 0.4 Kh, the ratio goes to

zero with increasing frequencies. Figures 5.8 through

5.11 are further discussed in Section 6.

Three Dimensional Simulations

Figures 5.12 through 5.17 present the surge., sway,

heave, roll, pitch and yaw responses of the buoy to

surface waves of the same amplitude and frequencies as in

Figures 5.5 and 5.7. Table 5.3 is the input data used in

conjunction with the computer program SD3.FORT to obtain

these simulations. Here the angle tý, giving the wave

propagation direction is zero. These simulations should

give the same response as Figures 5.5 through 5.7. Comparing

Figures 5.5 and 5.12, we see a lot of difference in the

surge drifts. Figure 5.12 looks more like Figure 5.2 which

Page 127: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-114-

P-40 0o

~. .0

CD)

0))

'4..J

40

0 CDL- 0

u) ý0

-,4 - 4.-44

L~0

>) 0I

14.c~0

Ln 0 10 L 00 0 Ln 00 1 Ln 0 10 n 0 10 0 00

x C; J-) 'C; (i ) X ) x C; AI

Page 128: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-115-

C'4 .-4

oo1- 0 -40

1-1 co

tn0

r-4

C"

41

0Ln 0-

"4-4

03

03rZ4

CD

0)m

Ln 00*0 n 000 Ln00,0 LO 0 *0 -00c; C; (41 1 c

Page 129: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-4 0 C-)

II >t

__ -4

0 C;

C r-4

IIte - op~

Page 130: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-117-

0 0 OCD

r-

tn U)

CD P-

41~431

00

0Y)

0

'44

:3:0

tC)

Lnf

00 0 'n 00,0 'rm 00 0 Ln 0010 Ln 00,0 n 0of d(YU) [Hd (Y) Hd 9 U) [d 9ý (Y) I-Id (Y) H d 9 W -I0l 0H 0 d

Page 131: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-118-(N (N q

- 144

-Jn o I;

4-4- -0

:>~

Ln 000 L

(ýJ)~~~J HIH 1H)H_H1_ H I

Page 132: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-119-

cc (4

$4

-4

ME

-404

00

> C )

4J 4)

'-0

CD

tp

'44

Ln 01 'o tn 0*0 n 0 *0 n 000 L 00 0 L 0., C)

(U d9 (H) sd 9 U)S 9 (H) sd 9 (H) Sd (U) Isdj

Page 133: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-120-

0

0.

944

244

0 V) M

o

00 .o *010

0000

00000

04

0 4J

m 0

V) -4C N,I. 4V n 000000 E4-

In 0 V 0I

09

000 000 00000ow09400oo0000oooo

Page 134: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-121-

was obtained by neglecting viscous drag. Hence we see

that the viscous drag effects on. surge drift which show

up in the two-dimensional non-linear simulations (Figure 5.5),

do not show up in the three-dimensional simulation

(Figure 5.12) where assumptions of small motions are made.

This assumption may be ini error the most near the

resonance frequency (Heave resonance; Kh = 1.0. Pitch

resonance; Kh =0.4), where the two Figures5.5 and 5'.12

differ the most. Comparison of Figures 5.14 and 5.16

to Figures 5.6 and 5.7 shows only slight differences.

Figures 5.13, 5.15, and 5.17 show no response as expected.

Simulations for the same data as Table 5.3 but e =r/

are presented in Figures 5.18 through 5.23. These figures

show the resolution of surge in Figure 5.12 to surge and

sway in Figures 5.18 and 5.19; and the resolution of pitch

in Figure 5.16 to roll and pitch in Figures 5.21 and 5.22.

Yaw response remains the sane as expected.

5.1.2 Tuned Spar

The spar buoy used in these simulations along

with its dimensions and characteristics is shown in

Figure 5.24.

Two-Dimensional Simulations

Figures 5.25, 5.26, and 5.27 show the typical surge,

heave, and pitch response of the buoy to surface waves of

amplitude 0.5 ft. and different frequencies. Table 5.4

is the input data used in conjunction with the computer

program SD2.FORT to obtain these simulations. Here again

Page 135: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-122-

04 -40

IIII Il UI;'

2 1 w-

7,A

4 2

> ,, -- -j

-,--

"II 4' ) '

A) " r,' ' i

k C)

\" 4-4_ I 2" 2I '/ 4 4.) /

, ~ 'Q U, , ? L I'-,0" fiJ~ X 4 fi• x 0 (jj/ X x JI.• / (40 '9 0 {i _

Page 136: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-123-

'0 w' C4. N

(11

1-4 0

D~) -4

CD

.4.4V)

4.7)

CLn

$4

Ci

004)A c 0 t 00 L 0, n 010L i d

Page 137: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-12 4-

ii Hn 0

Li

H~c H

C,

244

H0

7t.2

IIo

0 1) f--c4l 0 0 ,c - f

J)i Z (I ) zJ) Z fil iji z AI) Zsr*o

Page 138: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-125-

0 0

C3

_ _ _ _ .1

S 44

L±JzcJI-

'4-4c 0

C)

- "-4

00 0Y1) Ln 0010 Ln0 O[n 000 Col Oc;(H) H J (Y)HdA CH J- 9J (J)Rd H (U)L CIHd CHI Hd00

Page 139: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-126-

II~0 III!J" -

'0 NN - C

11,-

POEo

I" . _0

- ~ - Li,

Z44

00. CO' L 0010 Lno 0010 Coto010on° 1YU) HI (. (H) HI (H) HI (Y . ) Hi • (H) H () HI0 0 0 0

Page 140: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-12 7-

r- 00

00 N

If Li I'444

00

GC)

Ln

"-40

Ln~~~~~ Coo2 oo L oo-a (Y G C Ln 0 Ln 00 * in 0 c

c;V

Page 141: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-128-

1.0'

30'

Buoy Radius of Gyration = 5.11'

Total Weight of the Buoy = 3745.62 pounds

Figure 5.24 Tuned Spar Buoy Description

Page 142: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-129-

C.)

SL

C)

KC.)

(0

S CID5LOf) l- 9 f) I- f) 1- 0 'T-00 1 C2i( 1 X (I

DLL X IJ1 X r4 (J 1 ) X 4 (

Page 143: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-130-

/ ci)

(I Al z

44 I Z

Page 144: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-131-

0 C

C3

4-44

r 1

-~00.0 ' w OrY .0 01)O *0 0C -i Oa0 -

o UH 0 (Hd)k HI HI (H) Hi (H)1 Hi ()kH

Page 145: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-132-

0

0 E-4

0U

00 o0 0 ."4CN0 01 *4

4-40

0

0 - 00 >.0 *m 00

04

0

V4-

0 in 000 0 n Ifl In V*

0*0a. . 00000000000 L

%00

4c NTOO - - *0 0H* *% ** 000000

I.-00-I00000000o0oo-

flOO0000000000Ijj0 0000 000 oo00w

Page 146: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

viscous and pressure drag coefficients equal zero.

Figure 5.28 through 5.30 use the same data as Table 5.4

except that viscous and pressure drag coefficients are

equal to 1.0. Once again comparisons between the two sets

of figures (5.25 through 5.30) show similar differences

as explained for the cylindrical spar buoy. In this case

the heave resonance occurs at Kh = 0.22 and the pitch

resonance at Kh = 0.4. Also in this case the viscous

damping in heave and pitch respons es is more pronounced.

Response amplitudes of surge, heave, and pitch;

and surge drift as calculated from the steady-state portions

of the time histories presented in Figures 5.25 through 5.30,

and other similar simulations are tabulated in Table 5.5

which is similar to Table 5.2. In this case the wave

amplitudes F, studied are 0.5 ft. and 2.5 fc. respectively.

Data points of Table 5.5 are plotted in Figures 5.31

through 5.34 to presents plots of RAO vs Kh. These

plots are similar to Figures 5.8 through 5.11. Figure 5.33b

is an expanded view of Figure 5.33a, near the heave

resonance frequency. The ratio between buoy heave and the

wave amplitude is one at zero frequency and exhibits resoance

at Kh of approximately 0.2. The ratio decreases to zero at Kh

equal to 0.32, after which it increases a little before

decreasing to zero with increasing frequencies. Such behavior,

where the heave response is minimized at a given frequency is

the main function of a tuned (as opposed to cylindrical) spar

buoy.

Page 147: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-134-

Ln ccLfl

C-ý

CDC:)

5LLJ~4.;

00

*11

C)

C) c 00 * - c O T - aa Oli')

(I Al X (I AlJ X U (Ii X A fIi) X A l (Ii A ) x

Page 148: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-135-

CLO

S C-)

-'-

LAn

C)

0,

Of) leg 01 ý29 01 f~~r, 0' -G9 00'be~ 00IhP

U i)z (iJ) z (I A z Ii)a LA

G*C;

Page 149: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-136-

tr01/ ( I

I)-

~5ji/l c0O T0,.o-4 0 1 14 o?*

(H) H (Y) HI ; f ) Hi f~ II

Page 150: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-137-

1 0I 0 0

0 C , '-4-1 11 -4 r- 0 0

C.,)

Iq r. .NV)

.INCN en~

-4N r 0 fn4 -4

14 -4 Q).

I) en r 0

r4 -4

2 .- 4( (. CN >4 - 0 0vi

L M

en0 -4C ý- N II ( '-00! C!00 00(l

-4 j1l l (1 C, C) )

iiI.

.r, CN LA m-44

L) 45 j 0 0 0 - 4

a) N o N1

U A N -4 r' 'I 0 u? in

UP o o o O O 0 0

--- - - -- - - - - - - - - -

cc V) c -4 NI w -4O 00'M ~ ~ ~ ~ ~ ~ ~ L CC) I iO O O ko %0n f

01 ~ ~0 0 0 0 0 CC)L

~j~o 0 0 00.

U) w) a% N N CD) r-1N0 '-

C; c. o 0 C; 0 0 -4 14 14

Page 151: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-138-

Analytical Solutin -1

SComputer Simulation -2

0 (kOmputer Simulation -3

2.0 t + ÷Omwputer Simulation -4

1.5

1.0

Xh

Figure 5.31 Surge Magnification Vs Xh

Page 152: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-139-

10.0

8.0

'--~ Corrputer Shimulation -2

a-ea-a Owputer Simu~lation -3

6.0 Cw--- puter Simul.aation -4

2.

-24.04

~2 01.2.

Figure 5.32 Surge Drift Vs M0

Page 153: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-140-

6.0-t

I --- -- Analytical Solution -1

5.0+ I- ruter Silation -2

,I " Qxp uter Simulation -3

1 I 4• C am"p- ter Sinulation -4

40

5 2.04

1.0

0 14.0 6

Figure 5.33a Heave Magnification Vs Rh

Page 154: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-141-

I I

5. 0T - Analytical Solution -1

I Caputer Simulation -2

I - Coaputer Simulation -3

4.0- I oputer Simation -4

* I

1.0.0'0 0.1. 0.2 0'3 0.405

Figure 5.33b Expanded View of Figure 5.33a

Page 155: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-142-

I~I.

1-. Analytical Solution -1

i0. - - o-M-uter Simulation -2

I Computer Simulation -3

_ +----- f xmputer Simulation -48:~ Ii1 T01'

6.0

4.0-P4

2.0

011.0 2.0

Figure 5.34 Pitch flagnific on Vs Mh

Page 156: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-143-

Three-Dimensional Simulations

Figures 5.35 through 5.40 present the surge,

sway, heave, roll, pitch, and yaw responses of the buoy

to surface waves of the same amplitude and frequencies as

in Figures 5.28 to 5.30. Table 5.6 is the input data

used in conjunction with the computer program SD3.FORT

to obtain these simulations. dere 3 equals zero.

Differencesbetween Figure 5.28 and 5.35 can be attributed

directly to the assumptions of three-dimensional

analysis. Simulations for the same data as Table 5.6

and 7 = 1/4 are presented in Figures 5.41 through 5.46.

5.2 Subsurface Moored System

Three dimensionai computer programs (S3S3.FORT,

SSD3.FORT and SSD31.FORT) described in Section 4.2 are

used for these simulatioi.s. Mooring system used as a

case study for these simulations is shown in Figure 5.47.

This mooring system was actually deployed during the MODE

experiment and was called mooring No. 1 (station 481).

Figures 5.48 and 5.49 display the three coordinates

(x, y, z) of the top of this mooring line in response to

the relative velocity data displayed in Figures 5.50 and

5.51. This simulation is a part of the stud~y (CHHABRA, 1976),

where the current record from the topmost vector-averaging

Page 157: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-144-

(N rI0 Ltn

Ci

ci

C3)

"--4 4-'

00

-- I)

-44

C))

Oý~ T f)00

J) xx P- A) J-)x J- X ý

Page 158: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

CN tn 14-145-Ve

/L

cn00

0'

C'.-

* >1

C~) 4.n

C.)

0011- 00,1- 0011- 01)1- 00,1- 0Ol-0-9 (1•1)'9 IJ 9 1 ) 9 UIJ A) 9 fII Ik U AIi)'

Page 159: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-146-

CC

41

LAj

4-4

c0 - r-f

00 !'p~i 00' flO9 no, JO pY 0

tlJ Z 1~ Z [I)ZIi Z I 7I)

Page 160: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-147-

C44 0nGo ~~ 0 00D

CL,

C.)

C-2

44J

00IIn

LUn.1DC)

C:)

00 0 00 0 0010 0131 00,10 ono(ýJ) Nd ý (H) Hd f Y) Hd (H) Nd ] (H) dJ W HU Nd

Page 161: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-148

I'-4

~Ln0r

W4

IIjLIO 0 -0 *0r-4 11)0 00 a 0L" i p

C;I

Page 162: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-149-

m eq N CD

C)

0

0 Ln

CD

CD)

c2fY0 00, OfVO '-4 C(O'4 O) 0010~V -oy s(U d ý) (dGdd C(WJ cd fJ (nd~ (,Y)sd

Page 163: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-150-

0

0 -4*(

010

0C

0*

0000

0 .

0

0.0

0t~) 000 0

z :4zz * z Z

1010 000 0 0

0 " 0O 0""m 1

0000000000 4.0000000000000w

Page 164: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

LN -4coA C)

00

CD

4-)

C)-

C-)

Ln

0 0-0 0-1 c- 00T1- 0 001 001- oA4 (1I Alx1 (1j) X A4 U(I x ) X 4 (1•1 X A (1i A' (i X

Page 165: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-15 2-

Cn co L

C:.5

Ii i II I i f- )

u-i

cn

C-)

) nci

oil -o o I)

r4 U. J'IP Ii Ir IJ

Page 166: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-153-

P-4 4 Lfn C)

cm)

oil t,9j 0' bl~cj00'fips 0) h9S 0 K-s 0 fncj0

U J) fi ) z I ý)z (iJ) z (I A z ( J)

Page 167: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-154-

Ln co 0n

gi II II IIit

lC)

F-4.)0010~~~~~ ~jL g- - 00, " 00.

IýJ H () d f ) d ; H)H (Y HJ ; Y) H

Page 168: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-155-

C14 Ll H4 coM' r(N H 0 C)

CDd

C)

( CJ

C.)

C)

.4U-)

C) 4.4-4 a) 0

C) L

9 4C)

00*0 00,0 0070 0070 j 10 0.0H H H H HH HI Hý)Hic H )H1 W

Page 169: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-156-

C..

0* -0

I4I

C)

Le)

.2

(U)~C ISC) C; (H s

Page 170: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-157-

Ocean Depth - 5400 Meters 4480

MLight and RadioRadio Float

1/2" Chain

Instruments 20 M 20 16" glass spheres on 3/8" chain

Vector Averaging Currentl Meter 96 M

O- Pressure/TemperatureRecorder 196 M

198 M

All lengths are 3/16", 199 N3 x 19, wire rope 9jacketed

280 M

15 M 12 16" glass spheres on 3/8" chain

500 M

476 M

470 M10 M 1_0 10 16" glass spheres on 3/8" chain

475 M

All lengths are 3/8" 5 M --- 5 16" gless spheres on 3/8" chaindacron _

376 M

898 M

56 m

15 M 15 16" glass spheres on 3/8" chain

Acoustic Release

20 M 3/4" Nylon3 M 1/2" Chain

2,500 pounds Stimson anchor

Figure 5.47 Subsurface moored System

Page 171: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

""4

~17W

cnc

4-J

Ln

0. *16 S 0' fI6 0 m - 00 0i +..----- i--.--.---IU I - 00I- I I- o I IC

Page 172: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-159-

M C

0I

C.

0

cr)

0

"-210 .00o 170. 0o - 130. oo -90.00o -50.00o -10 .00o 30.00oX (METERSJ

Figure 5.49 S.'ajectory of the Subaxface Pbored System '-bo.

Page 173: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

PV~CM-ERST COMPONENTS

U0

Lij

CD

c2

CD

CD .. ....

-- 4

LUcLL,,:.

cn.0 30 .0 .0 J.0 50 80

TIM .H.U....Fiue55 ltv eoiyItafrSbufc xoe yt3

Page 174: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

VRCM-NORTH COMPONENTS

Ct)

Ljc;

CD)

LO

Lil

Li

LT.L!30 .090 10 ~ c01i0TIM 0H0B

Fiue55 LaieVlct aa crteSbufc br]Sj~

Page 175: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-162-

current meter of this mooring was corrected for the effects

of mooring motion, and power spectra of the uncorrected

and corrected signals were compared. The relative velocity

data as shown in Figures 5.50 and 5.51 was sampled every

fifteen minutes at eight locations on this moori line.

Computer program SSS3.FORT was used for this simulation

and no surface wave was assumed present. Figures 5.52

and 5.53 show this same response with the computer program

SSD3.FORT, which calculates and includes inertia forces.

Overlay of the two responses shows no noticeable difference.

Input data used with these two computer programs, describing

the system are shown in Tables 5.7 and 5.8.

Response of the top of this mooring line to

hypothetical absolute velocity data (Figures 5.54 and 5.55),

is shown in Figures 5.56 and 5.57. This simulation was

done with computer program SSD31.FORT and the input data

shown in Table 5.9. Surface wave was again assumed to be

absent in this simulation.

5.3 Surface L.oored System

The three-dimenýional computer program SD3.rORT

is used for this simulation. The surface moored system

simulated is shown in Figure 5.58. This system of spar

Page 176: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-16C-

/ t 4

) I 4

'S / 1- £

in

5> mg i 01(()J~iwl f~~lll

Page 177: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-164-

C-,

C.)

ri

CdCC

0

C-,/

tr.J

='-21 0. Cl- 170.00 - 130, 00 -91-1 DO -50.00 -1I0.00 30.010X METERS)

Figure 5.S3 'I~rajctor y of the subsurface Nbo~red Systelm Top

-S.

Page 178: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-165-

0,F4 OO 44 CIn m Cl* .. . ... .. .. .. .. .. .. 00 . . . . .

00 0 0 0 00 0 0 0 0 00000 * *000

000*

tol 0

%N 00

. N * * * 'I * * . W: * .0 * 4 * 4 . . .

mn InM

0~' (; C

0 0

000'.

t~000 00 00 00 00 0 0 0 00 0 0 .0CD . M4 .n .0 . . 0. 0 *4 -C ol . .n 'CNC .0 00Nt7 4I 0N D0

CD ~ ~ ~ ~ ~ ~ ~ ~ ~~~~0 00 00 0 0. 0000% - 4'4' 4-4 NNNNNNNN

0w00000 000000000000000000000000000 000 000 000 00 000 0000000 0000 0000

Page 179: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-16 6-

00000000000000000 .0* * * * C C C C C COC

In 4J

00000000040 . 0 00 0 MOMMv0 *, a C NC 0,o000 N~ 0N N V 'al V. o oN N 000 0W

In I N li N In Na N -4

V9%a49T00000000000000oo ao Z 4

000000000 000009499494 49 444440

00000000002.o In

* m n ONc * * C C C CCCC *

0ýMo l -I00 00 0 IW 0 In 00 .0 40 II0 vv 10 NM0 0N000 00 0

*ý . to V In LO In in In It'rT WWVo

c;0 MO n AO O *0 0 0 49 4P 4.

0000000004 1 N000000 00000004 494004494049

N M V 100 14NM ý0 W 10W M V na M0 04q q . . . . 0 V NM

00000000000000000000000000944444499990000000 00000 0000000 0000 0000000 000

Page 180: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-167-

m)0O %a 4o k* W4 n

. . . 000Inv4000M

1flC4O .' 0~ Il~ll000w>

000400

DO* %o *4 IV4W

InmnoN .4400''00 WOOMOOON . OO.T V0.000

.: *t .0 CD "0 * . . 0. . . . . * 00

0o If I. ; N 0 0

%0000n . 40 0

0 0 0 '000'.LA*40a0I TI Vi nI TwMIn W0 N N *in 4 In 0 4TIV I

* N V * V * 0 * N *ý N W *** **. 0 a'4 0N 1ln In0000'40004000 NOO.4IN 4 1 qV

IT In40. .0

N 0 . 0 00U.0 ;44. * V * z 4 * * 4 4 U* 4 4 * z *; 4 0o. o. 0

00OOC 000 0qowo 0000000 00,000000000 000N W4 P; 04 In* V0 N ý 44 0. 0 4 rN 44 In %00 l r; 0 ; 0 ; '4 (NI 01 n cooN W 0 0 0'-

0noo 0 00 04 00 000 00 0 00 0 0 0

0P 000 0 NLIn00LO0 0 000w 0 000" 0000000 000N00 4I

Page 181: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-168-

00 00 000 000 000 000 '0N N N l N C N N i e N N N N 01

00000000000000000

Coo o* 4 084

0000000

/0

000 C0 U C

O000~000000O'0000000N•

0 0N 400Q000NOOOO0O0OO00000000000

94"4000000000000 %0aaa'0'0a00

04

mmmvl~v%0VV0VN0000000000m00

O0000 000000000 inI41..r

0 *0 no0W0W00~i

NNNUOOO ,Or%000 b7

*0 0 0ý0 *0 * * * * 0 * r N N N N N 0

00000000000000000000000000-00N~~~~~~~ .~ . N, N N00' N IN~ c U, ' N 0 0 Ntq U'0N 04.0 N CD

000000000000000000000000000000000 0000000000 0000 0000000 00 0000 00 00

Page 182: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

.c) VRCrA-ERST COMPONENTS

LLJj

U~cUflc

LLJ~(F) LI

IT

(2H

UiC-)

27n 1 I K CIOII

TIME I(5ECONB3j XIO)Figure 5.54 Absolute Velocity Data for the Subsurface tijored Systemf

Page 183: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

VRCM-NORTH COMPONENTS

Li

WCD

LL2C

rli

(n~

Li)

LU 0

L 0

bU.

27~o B61.00 1211.0j H8. 00 2L40.00 300. 00 3530.00TIME (5F-CONDSJ (Xl10'

Figure 5. 55 Absolute Velocity Data for the Subsurface Moorecl cystarn

Page 184: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

C,)

co

C:,

L±J

4-40

CD

U-,

LO

C)

00'105 0,96r, o~gml 015al 00 NUS- 00*9- o Cn

OO'L6OEI~~(yl OfVY6O IOIIJ3i OOHIlJ xnmt~ OO

Page 185: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-172-

r-J

C)

0C)

u2

'_J

ci

1-r

7• (to -70.0'0 -55O0 -RO.0]O 0

x (M[:TEPS~J

Figure 5.57 Trajectory of the Subfsurface Mo~ored Syst~n ¶ibp

Page 186: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-17 3-

*OO 0 IV '4 Nn m0 iCIAN N M M W4.'. NO0

~~;0 0 co oc...... E

000000000000

W 000000In0NVIO *0 *4 I4I IfM0000000

NQV' ' *0T V0'44 40 to T - toN * -04T .i-4oý000000.4 .** .* .* 0 * *.** *.*.00.*.0 * 000000

00r-, 0 0. . . .4

InN %-4 .4 ON 0 4N N CD 94 CAN W 4 r4 CJN I I In N tj "M 0.0 0 In In In

.QI~~~~~4 ~00 00 a)40 ~ ~ 0~W 0 0 0 n0 I ~ -

w '4 M 0. IN Mv4 M "4 w.4 w.4 Mn N 4 w.4 "4 ( O'4 . (4I M v-4 N 4 0. O'O v-4 ". 0. v4M

0n N N N N NN

10 If) r 0 0000

0 *N '404000 -000MCW00ý0000In0 -0,0*CD *0 * * - * -* - *'. * - * - * * - - # * . . 4T . 3

N"-M'.4OI NOInN N N '.4N N N 0 '0CNN InN NM N '4W '4000 0

In IV0 0 In

0 *0 0 yr Go 00 0 0 0 0- Nv4 -4 I

N * .N * * . 4 . . *C . .t . . . .00 9 CO-r4 0 0N 1 0 0In 0 0 00-4 00 0 .0 00W N00 v4 IT

N0 0 .0.4 V V C) .) . 00. 0.

* * *NN~NNNMM00In044I0,.4TvnwNNwWWW.OOON'-4'.mmoN'q-4¶-4'NNNNNMMMM4444400000

000O000 000 0000000 000000000000 000000

0000000000000000000000000000000000

Page 187: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-174-

rl i rCl rti rCl 64J 1'.j 6l r'I cI Ci rCl 61 C. 6l 6l '0j '0 a00000000000000000 0a-

o

t.J.Ninor'0vmtýNO0000O0000O000000OO4O N 4- * 0 * 0 * * 0 * * . . * . * . *,vq.4 I

r .4."4."4."14. "1.q 4 ,qq4. q. -I."t4 .q 4.4

N N -O N N ýo N N %a N V) r * 00

00000000000 1O010010,010'00-.0 lco0 -0.0 0

in 4-)

qTdTov %v % vN000000000O0ml * 00

00 00 0 80 In InO0 00 .! . . .

CD -COO -NO qo* . . . .* . . . . .. . . *.4T40 I 4rMo I4T q t1 1 in rqm I ON ti '0 C'j 0 00 0 0 0.4"4.-4."4,44.4.4-4 V4,4

0In

N 0NN NNONN NfLO-40-010101040000000000 N*f In -00

00 000 00 0000 000 00 0000 000 4)00 00 00000in '0 N m 00 0. t4 "~ m in 0 %N m 0% 0 --4 04 m~ v 0n0 N w0 os 0 C-i N m in 0'0N M0 C)O0000000000000000000000000000000000

000000000 000000000OOOOOOOOOOOOOOoooo

Page 188: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-I75 !'l SPAR BUOY

BRDL FVR

S! POPMIP

10 M -- T/P

FLOAT PINGER

/ WIRE ROPE

67 M -FVR

TETHER L IINE i TIP

MASS TANK

75 M PINGERFVRCHAIN

" I100 M -- SPHERE

S~FVR

,,, PINGER

T/PWIRE ROPE

400 M -- T/P

SPINGER

GB'S

RELEASE

NYLON

1700 M -CLUMP W/DANFORTH

Figure 5.58 Surface 1!tored System

Page 189: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-176-

buoy/buoyant tether/subsurface mooring line with an

instrument line hanging beneath the spar was deployed

as part of the ONR/NDBO Mooring Dynamics Experiment

during October 1976. The system is reduced to seven

nodes for this simulation. These nodes are shown in

Figure 5.59. Figure 5.59 shows the mean configuration

of these nodes in the x-z plane. This configuration is

the result of the static solution calculated by SD3.FORT

using the equivalent velocity profile described in

Section 4.1. The equivalent velocity profile and the

actual velocity profile in the x-z plane is also shown in

Figure 5.59. Figures 5.60 through 5.64 display time responses

of these seven nodes to the input data presented in Table 5.10

which describes the-moored system and the environment forcing

this system. Forcing the system is a constant current

profile and a surface wave of amplitude 1 foot, a frequency

of 1 radian per second, and having a wave direction

inclined at 0.1 radians with the x-axis of the earth

fixed frame. Figures 5.60 through 5.62 are the plots of

surge, sway and heave responses of the seven nodes.

Figure 5.63 displays the roll, pitch and yaw of the tuned

spar buoy (node 6), and Figure 5.64 displays tensions in

the seven segments of mooring lines preceding the seven nodes.

Page 190: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-177-

r- -4 CIS (N4 r

Cý~~~~ cl o-

0~0

I ~41

.4J-4

*.44

LI

C',,

00 0 0D 0D0 0 0 0D 00n en 0H

Page 191: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

cii- I-ole 7

Spar Buoy

LL- ri

Li~

LLp

£~ure 2CO~ZM ~kbde 102.10-

10. ~ ~ ai -1.03.0 00 00

TIME- (SEC

Page 192: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

ppr: #1.

________ _____�---- -______ ---------

LL.

4-

I-- ..�.. j--- 4

I--

c���1�*-- , o.cI2 A-A

r �

Ficjute 5.61 $Way Ibtions of a urf�ci� �borcx� Systan

Page 193: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-iccT

r, i

CrII

LL- Ln

NJN

0. ~C o. c 0.0CI 30. I0C 4m 0, 1c '00 . C C 0 0T I M E S E C,I

ricyurc 5.62 9Heave IbtionS of a Surface lbored System

Page 194: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-ICI

t-'J

r~j

t

L.i

LD

--------

crj

LZ

LO '

zci -i i i i A0•~c. 00 •i0. O0 A%.00 30,.CC 4U. 00 5 C'O--

TIME (SECIFigure 5.63 Roll, Pitch, and Yaw fibtim of the Ntored

Spar Buoy

Page 195: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

r -

- - •\ /N\Seor-t 2

~CD Segment 1

-4ýý

3-

Fqre 5.64 7tsix K...itde inDifeen Sryens f6

Surface Ltborad System~

Page 196: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

* 0 0% N *4MNI 0 %0 I0in - 4VC N9 no400

N 0 w10 m co . t

v n~ -4 -0- *N0

'0 ,4 * iC'J4

.00CA

1.4

94 0C

144

V4 0oI ) o4

94.

0 N N in V4 - -0000V) 0 ' & n * ~*' N0 r%9 0Y- O OON I0 0 .0 4e 0 * *oW'40000 0 * - * - *

OV"m o V4OO M V- S 4V 00NW

ON 04ON*04

904 0 (V VN * * . 0 0 i

o J% i in m4r-N'.N4 i '00000

x no * *eoocJ *eo ioooowoori in v-i''004 * * * 09400000 * ** '

00000O000000 00000 E.o

Page 197: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-184-

5.4 Driftina DroguctBuoy Sy tem

A submerged window shade droque attached to a

cylindrical spar buoy by means of an elastic nylon line

is simulated on the computer by the three dimensional

computer program SD3.FORT. The system is subjected to

simple harmonic surface waves without any current profile.

A 47 feet long 3/3" nylon line is attached to the center

of the bottom of the buoy. The spar buoy is 30 feet long

and 0.66 foot in diameter. Its static draft with no lines

attached is 19.43 feet and weighs 426 pcunds in air.

The distance between the center of gravity and the bottom

end of the buoy is 8.69 feet. The window shade drogue

is made of nylon cloth (9 1/4 oz/yd 2) aid has the

dimensions of 7.5' x 32'. Its approximate thickness is

0.02". The droque has two metallic bars, one at each end.

The bottom bar also acts ar the dead weight, Yeeping the

drogue in tension. For computer simulation the droque

was divided into four strips and the parameters of each

strip lumped at a node. Tensions in three links between

these four nodes and ihe tension in the nylon tether line

were simulated on the computer. Figure 5.65 shows the

system. Figures 5.66 through 5.70 show the time histories

of the response of the system in a surface wave of

amplitude 1 foot and circular frequency of 1 radian per

second, and having a wave direction inclined at 0.25 radians

with the x-axis. No current profile is present. Figures 5.66

Page 198: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-135-

SparBuoy 30'long-0. 6' diaewter;

3/8" Nylon

Node 1o. 2rce Vector Recorder +

Tb bar + Drogue Strip

Figue Strips

Figure 5.65 Drifting Drge Buo System

Page 199: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-r )

.Irxlc 3

8r&t kx n-y

0. IO I2.Uý c0. 00 30. 00 qf 0 (1-,jI

TIME K{ECJ'lfj(W- )re j.6(, !)lotX1V of tao -)rifLijl(7 iArrApMINI 7 u

Page 200: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

L'½

LL -'

>.- 000 I0 01 U 0~ U. PJO 3.0

T !ME f SF CFjriure 5.67 Rmiy lbtiocn, of tix- IDrif Linq DzoqLnd fv--tc-m

Page 201: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

c.-I

C,

lo1 .02 . 0.0 0 0.0 ) .1

TIM (EJ

riue563(Cv 1,ir.o h rftn trWsrr~

Page 202: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

CUq-

c rj

Z Jcr

CD r

C-'

cr-p

(xi,

00 I• !U.UO0 2u. O0 30. O 40. O 50. COTIME (SEC)

Fiqure 5.(9 RoIl, Pitch, and Ymv J'ttioi- of the Drifting Drogue&.,Par Buoy

Page 203: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

F'-

_j L

rDro

CTJ

a4ylcxi Line

MJ .7

_j

LU . I~ Cf. CIO. 20. 00 .30.00I 40I.0 CI,0. 00

TIME (SEC.)1'igure 5.70 i!)enstioni Uirauitu&~ in j).iffteroiit Pr'polats of ti-k-Ž

Dritting Drr urxt I3ixy!-,yrtaT,

Page 204: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-191-

through 5.66 shz- the surge, sway and heave coordinates

of the spar buoy C.G. and the four nodes on the drogue.

Figure 5.69 shows the roll, pitch, and yaw angles rf the

luoy and Figure 5.70 shows the tension magnitudrs in

the nylon line Yelow the buoy and the three vegments cf

the drogue. The input data used for this simulation is

presented in Table 5.11.

Page 205: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

O~Oi

o -e 0

00

03

90 0000 . ...

Nrr~ 000 . .. ..

r- 0- L

No0 1,-T- 0 0

fJ 0 4- 0 0 0

%0 0 10 0 000i

c.-4r iOCmmm O mý 0,0 %0 0 0 40"0 f C) 4

W0000000000000o

Cý00 000O00.000 0 '-4r

Page 206: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-193-

6.0 SUMMARY

Dynamics of moored and drifting buoy systems in

a three-dimensional space has been presented in this

report. Formulation of mathematical models, which are

programmed on the inhouse computer AMDAHL 470 V6, along

with time-domain computer simulations of these systems are

presented. Four case studies (freely floating spar buoy;

a single point subsurface moored system; a spar buoy plus

instrument line/buoyant tether/subsurface mooring; a

freely drifting spar buoy attached to a window shade drogue)

are simulated with forcing being supplied by a velocity

profile and a fully developed surface wave field. One

(a single point subsurface moored system) of these four

case studies was evaluated with full scale ocean test

data (CHHABRA, DAHLZN and FROIDEVAUX, 1974; CHILAERA, 1976).

Simulations of other three case studies can now be readily

evaluated with full scale ocean test data.

For the two-dimensional analysis oW a freely

floating spar buoy, where the assumption of small motions

is not made, three sets of computer simulations are

compared with the undamped linear analytical solution.

This comparison is presented in Figures 5.8 through 5.11

or a cylindrical spar and Figures 5.31 through 5.34

or a tuned spar buoy. This comparison shows the effects

of viscous drag and varying wave amplitude on the response

Page 207: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-194-

of a freely floating spar buoy. Plots for the undamped

linear analytical solution and the computer simulation

where wave amplitude is small and viscous drag is neglected

are almosT, identical. For the case of a cylindrical spar,

when viscous drag is added, the surge magnification vs

Kh plots show a scatter near the heave and pitch natural.

frequencies (Figure 5.8). This emphasizes the coupling

effects. Surge drift vs. Kh plots in Figure 5.9 show

a markedly different responses near these samc frequencies

and viscous dam.ping is evident in heave and pitch

magnification plots (Figures 5.10 and 5.11). The non-

linearity in the response with respect to wave amplitude

is also evident. These plots also show a heave-pitch

coupling near their resonance frequencies. Similar

observations can be made for the case of the tuned spar.

For the three-dimensional analysis oý a freely

floating spar buoy, comparison is made with the two-

dimensional analysis for tCe same input data. Th2 only

appreciable difference is observed in the surge drift,

which can be attrilbuted directly to the small motion assumption

of the three-dimensional analysis.

Simulation of the spar buoy plus instrument

line tethered to a subsurface mooring line shows a note-

worthy transmittal of motion from the surface buoy to the

subsurface line, by the tether. The tether line seems to

Page 208: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-195-

move mainly in the tangential direction due to the high

viscous drag force in the transverse direction. As a

result the combined surge, sway, and heave motions of the

spar are transmitted to the subsurface line. Hence, the

surge/sway motions of the spar (even if heave was

negligible) could be transmitted to the subsurface line as

heave. Therefore some modifications of the system may be

necessary to minimize longitudinal motions of the subsurface

line.

Simulation of the freely drifting spar buoy

attached to a window shade droque shows drift of the buoy

and the drogue even though no current (except surface wave)

is present. This drift is due to the same reasons as

postulated for the freely floating spar buoy.

Full scale ocean test data for the spar buoy plus

instrument line/buoyant tether/subsurface mooring is now

available (October 1976 ONR/NDBO Mooring Dynamics Experiment).

Using this and other data which might be available in the

future; the next logical step is the evaluation of the

mathematical models of the remaining three case studies.

Page 209: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-196-

APPENDIX A

Computer Program Listings Page

SD3.FORT. ........................................... 197

SD2.FORT .......................................... 222

SSD31.FORT ...... . ................................... 245

SSS3.FORT ........................................ 255

SSD3.FORT ............... .......................... 262

Page 210: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-197-

m W I * NWX

I~~~ X"4 C C . 0~rfI 3 "O Q I * r Z-XZýsmC

SI 1W u Lar xc I * Q'ZI-3'0.- 1 1~f <Wwoozw I * s)-rm -Z(al I I IA.C < cI I * 8 -.. 4 ftZ O

En IZU)I W I.-x I * NO &W

W 1 0 1 4Z C. i " I- M3 1I N 'OW CcIU V4I IuI x X0 (D0 I -> a.bCJ O0Q

0 IWI Z M ZW'4O I M* .')o-N s.Zt inWi 4.. < JW Ii.Z f * -C f--'o aI I%..I X I- Z - I * N ~t-Nimmii Wi cDc -C 403 1 *~~m *,fe2'Cz

Li 1 012 WJL I *j u. CI

Li I0'- 4.JW I x*ZD% -Q>o-MU'cX I0 10 m IWI-I- I-x I M I----!*NtCMiL 0.Ix I'I. i- W 3 3 nF I * - -% Nt0O('J

Un I I-LA. 9 tZ >.>- Q I * G w~-.CflLJIW LiI i WWQWW I * t rq a-U &ZI I I >-a ix ~ xZ I * J >.q &I w.I..jo omI-Ou I M WI.-D. 0O. 4I w IW xc nz4 ZaWZ -* ''-.Wu~uI)- ILI wu u - 6-4 I- I * ýý . &U- Z

o 1 ax I cc z mw ZfW- I- I * WtMXCITS- I 4ZI LL< 4 (n0 -C I * -ý &01--X..

OIWI)-)- )- CJ.> I-' * -Z WLce MII-1I00 OW 0n I *WI- WX94QI-cm fI~ mm En(nW I * &-& cCL. I>I~ Imm0< . I * O.O-a c Zw w I .jI I * Z 1xm t c 9.MW'

i I eia~x cc o-Zxce I x* U-'ZI.C Q.Iz- -4 I x z IMw I < I ia0. Cl. i W 0W (L I ~ -IU-N

IiL I IWO)U) En (LZ I- I IXNOD - - z20 inI E I II I~ r .j I I 0I--W- ftC~~o IWI "I II IMO<El I 00WMOO0-'-

W) I X 1 0 - *.4._j 1- r4 I Ixa X -P -t"40I1 1.-I1 IIt IICAII 1.-Il 1 0.ZUi- & &UiLW) 0 I Ix Ix aX Ix 4a -1 .. a 1 -1 - W O) X IN N - ->-aIx 2 10o11 0 4TW0 1 ~~I~-- 0_j Q I ". I 000OQ=XO I GO XX a CA(0.4Z I I xxzxzo-4 I <0'.----Z -=- - -.Zo I Q I I 1 4 I w cr.I I Z*XWON r4 V.4 ý4TZ I W I I I .- I w I I _jU - ~N N m .01. 0"a I W I N CW M W )-O IL W 4 -4 -'oNJ IN 0 - ,uI-I ~I z zo>< x W-"a-43I- -0 -0" 4LL. I >-"->. -,4Z W- >. ýI-XWQQ3.-aa LL La.-u Ln-4X " i W . I OOm .I=0 Z_ I -U a u-IWW ONLL " LL~

<W;I- I mm =) ZW I W1.-3 &-">.-Z3 -N'0oZ0 C4I I I-Iý- 0 - 0Z U - I 0"- -NQ &>- .>- i z i WczWoz "-lW I uzWNr.3'- sw. I.-I--

I I W wa: wC4>- <w V-4 I ax.j2I-La. ftxI-c XX001 W I w Wo W00o W iI I 40..LI- -~ mc f I XIZIXI<<0<0D)-<MI I-20 .r-JW)- 0000

SI I-- I uuxuCJ:QQUZ I w I-4( u NNOz 3OLWLLLLIWIw

V* " --4I~

* 0000Ix V4 W4 144ouucuuuuOuuuuIJJLuuuOLL.*0000 000000000000000000000000000"r N4 P)J vi 0 1 N w 0ý 0 W4 Ni m V 1) Q N- CO 0 0 "' N Mw tn 'o N. CO CP. 0O0 0 0 0 0 0 0 o 0 .4 w4 " ."--4.4 "4 -4 " r4 4 r4 t, cN Ci r.. c4 N- t,4) m(000000000000000000)000 oooooocoooo0000000OO00000000000000oo000o000

Page 211: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-198

* * *

U * ý Q *

* * *.. *ix

* * * bI( E*

* N *z I) >- I-Q * ~ - * X *j ED U

*- Q

>- rI I c* * I- LX Q* j_

*t-I-* I-- Q Q* X O W **J 4c f *-X

**-* Z Z " f CL -r ~ ý -r C e. 1-111w~ *QJ* J ` * cQ 1 f1 '11ýwI 1i ni ti cc -it**L . % -o1 *q rc*A*J 4r 1 r :

M ~ ~ ~ S Ccl X cC cuc zzZZZ MMI ,-> cI A)

* -*ccu *)( u*t-* .* ..- * -*,

I.-oo oooorj I " N W ý " N M v -D c 5 0 wccm o o ) o " i0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000*0

Page 212: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-199

*0

W

* * *

CC * *

U) U. * %0

U. * *W * I= m 0n

* * * * 49. "4 "* *

<- * a.X*- -

*r C4 0QZw x N

0 Li- W 4* 1,0-Q IL.C4* > 4* 4* U, Q em-

M-J0 L -0 -- 4* -0 -0 f- * tu 1= oD

.4W <* c4- co" 11-1 - - -N- W - 1' 7

'-0 < * U)e a44~4 CoM1 --1

Q WC,4U) 4* .>-> LL. Q Q. ~ NZ0DO QD

.4 4-0 INM0 4 r4M' 0NM'-04C tr0 4 ) qr 1)Tj'

oc'-4 *ooo- Loo. W **CflZ 0000000000000000000000000000

Page 213: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-200-

z*N

W u

* zr* cl m

*n +

4 En m 4 =0z -* ft

n - ri Li4. >C4 - 1

-M ft w4 4 -4- * a.

6- b'4 .4inN 4. -,.4

It .) -I q -

V4J .4 U U

r- u In * D-..

C4 94 94i In -, +'.'o 0 -1x * r-'Z

* II 0 * 4 M i

W xCol- 0 0 -.'f~- w c

N 4. I I*~4 -Z 4. -

04 ED. 0 0 .4 1- =4 0

0,= 4,OM O I M uI w4 u. m~ '4l'4 0V '4 11 D.0 i 11 11 fa - )r4 u 4 m u -J

it- W a*- * * n .4 C4 1,- 1J~~~. - U' I---~ Z -

.4.~ ~ ~ -4 N0- W +~L i (l ~ .LL LL, - LWL . 0 U* dI 1 1 * n Lim

* C Q QX Q O *01 11 .ý*Nd

v "40 Q .4 z -N 1"I- JX *- ..J 11 X , I

.4 WO U U ~ W I- .4 (1 J .4'4'4 z~o .4 I- -

c) o.> % ooooo - w4-.,P fl4 ( U ~ 0 -#-r 4 r 46 - ic i0 4" - 4 -. 4ý4-4" " r 4 - o- *4 -4 .4 -4 V4 "4 -4*' @ .4 "

oo .4o..4 oU. lcflI*I*4.Z'-.0000

Page 214: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-20 1-

W4

1-4

4~ XZ

-z *

Q. >ft-"I.- %

I-. -4 " - -

Z- 1. (3 < C O4O-l

Im~ ~ x'z r4 0 X C0 U0 O.

3. 4- -~ I -- -0 E -4 '.4. Xu CC -Z - 0 IX .Jnu I4 En W~o .. <I

'.-a 2t-n ýW * u~- * 3 'Z.J '..r.-1If 9-2ý 0 )A.-+> - - -- CL CLcW 0 W ZWWI- ( .-W 9 '.2 - CD '. 0 - rx * -U W(2(

M4 u T11E- Ix z ~ " ~ 09---'- O- MZ -4 It 0 W4 X . Z. 7--.WJ

e-'-i .~'- 0 3CC if OCmo *WWOO *MQOO".

9 i i- -j-O'~ 11 0.J if.. * 4 Z II 11 C - -L -i . - 9- - - - I-I'1- + 9- -.

0 U 20~ U .4j A. ~ Ifl 2 (nW .I.I.4 IA CW CW IA.IA. IAm 11 L& A.00 <

LO 'N C C-0 .14 N~

00000000000000000000000000000000

0000000000000000000000000000Q0Q000

Page 215: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

- 202-

N Q La U *W x( r4 Cc (.n x i Li -*J

LA I - - .UP3O U I

tzr &X~C Z-:3 OX c XIu'--X-<'Z U

r4, - Z i2 L - X * 4o ~ ricnwrj m

U. Go ~ Iw a >- w *0 ).I e r - N 6Z 0Z 0 z *

IAJ r Z'- * *->i ~orU~ .0m I

oa e iz-'-o - I *_- N wrjz~Z ~ *: *

I fltjNL)'CCZ Qi w*

o I - i- X -4-I- ~ ~ I im 0--'U W -a~~~ I im .- e CA. Q 4 r

:CiM &oWU? &x ixi

a.4 I UM &-mu Cc W 0

I-- C ZýLJ.&Z 0 P-0

ý-C)I -7ý O- .6.4- I- T <

W CL I WS241 p- U *z ~ ~~~ *-1~c~ 0 i

z I 2 ~l-Cz ,ea~. 0 *i <b-4l I ~ 'Uf xwn~ (- *T U

ton I Li- X r'J u *w x I ft Ln ft LJ.. & a *I.- I .'I-Lip4Na ft u 4 "C -

N 4cw I CD.Z'ZO 0- *V

o ~i- cnwoC -- r '--ro0 CU- EI W N-(li N * MU

z .Iz UoL--- "uL (n l- w =0~1 a.4I 1 wUxr4N x OU(A 0 -1.

P-4 I I co a~ 0>:- 9- 4* 0a' EI.- w I -- X w ~ O- L-' C a A

1- iI XX "'DL N -0q: - NXI o0 'a,

*~ZI ZWNN- Q ~- 0 XIZ~ 0 Z4* a': x.J-C -i(b- I &a-r(\(N * *0 0z- '

WA ri I ^ "-IM 3 & I.- .I N, ., ua:w 0 I W~r43-'IZ LA.N r- , ->0 w

Ix 0 1 .- U . .'wnw rN MN 0 w 0 Li ra 4#3 &^.4)>23 .4't".i . 0 1-

En -~fI '-N 0 -> - ' P-1 l(- I- -1 0umfww I 2 eJ3.-4 &CL. -9-) cn 0 It 0 o : <"-00 P"1 0- - ý3 n" CC tZZZC)X 0 "400 *0-ji ( X A- LA. & X l- xx x rto Lu 0-11 11011

z r m - 1 I -O.NIW >- O0 0 rl 0Li. I-- L < ZtUP3w xw -(nI- (nI UN 4..Z 3 Q I .4 j.W LC14 . .* l

00 4*

00 0 0"4 -4 -4 * 4

00000000000000000000000000000000ý 0 10 ýc .'2 -f0 ýoNoW0 .4 Cý J N N N l N 0 N N N ~ N N N w w m0 N 0 m 0.4 o

.444.44 -4. 41 4 14 wo 9.44".4.4.4 -"-1.4."4. 4 ..4."4.14.14.-4 " .4.4.44 V 4.o00000000000OO000OOOOOOOOOOOOOO0oo

Page 216: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-203-

U

* -'* UX '-4

*~~ ~ (N- .)

I N4 -

* U- in +*~ UUf ". 2

* U U

+ :> 1 -'.4 M C*~~~~ Ulm' *~c

U 0-44 En +-U. '

*) I- '- * m *#a. 04U~ U, Z I-- lr4 * *0 1040 ri. zo 0+0 -

in M* M -- IQ 4* .4

* -1- . .- 4 * I* 0 N - LOZ M-4'- -

*(l.4 9-4 U =0 *

+ +* * *" UI- Z

* '-U U - >*-Q +U U W4 '->2* I -* N

o- '.4* m ( -J P-~ *dI.o "4 r.4 V-4 * + M * mC

2l 4*. + -- N * M 3 - 1

0~4. ** U2' Do+QU-- 1c'iED- '- * * *Z+*-t ri Z ON

W - -fLni M N D1, +, -4--~ ( U '- 307. x '-'U U m4 4I-~+ *,~

< w fI*1 * 4. C* )'

U X -4 DO 4. + - NM -. UX 1 .4 94 9-4 n U U U ce '-4 *'-'-

Z - -0 - w- - **-4 I.- 4C5- - u-1-1 n - * *0 CA 1,P- 11 11- 11 NZI" - *

*n&..-. - in cI a 4'" - *-,- '-4 Q - +ý -

-C .0 " I Y- - 11 *1 *UCIM- II I - "I rf- I - 1 -3 .UIn I-P- I.- r > - -- Q.411 11 0,~ .4 -4' ~I 4.Z- Woxisa ""m r44 m.4 ~ n iOfl C -4 1.- r4 k f+ nxxif

W ~ '.4z -4- - Z 11 Nf 9.4 It if X II I.- (-' ' - N Z . - .- 11 -iQ

0 W b-4 0 n id MI 9 M DZ294 Z DlUQ0I-- Q U I'- M X

* .-4 C4 in

U

000000 00000000000000000000000000

Page 217: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-204-

0*

-4W4

w in N

u 0

W *

* * U

X * W wZo C = = -j a wim*

x x a L no . * n *

cc0* * *iu-u nm .

.4c- X l x*4 L ~ o om 0c .11 *tX-ULJCraE 11 1Q u0XZ(

* - . t04-m fN1 U) Q* 1i*CU U~- WAW ~ O Q - IZ W *E z o

D I Q 4 w . .>"o-r">- XXM-Q o u zx

0 *u

00 0 00 0 00 0 00 0 00 0 0* 0 0-w ui o 3 %o - 4mv0ý .0-4r ,0 .

ri* *i 3jr ir )Mr r r T-wW% -b)i )k n(c4 *Ar 4r lr 4r 4r 4r ir - 4r ir 4r 4Nrjr 4rjr 4C4C

0000 0000 000 0000 000 0000 000

Page 218: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-205-

* -S

N m

* *- z ri L

z * .- N 4*~l' + -* 4* I 14 +

* 4* ~~4* -

* * 4 -S j) .

*~~ * S zIN * * 4

'*~~ in -- Si U'

.4* * Z0U 40* * U Z * 4

Z I- 4 u z--X+.# -4-

4**0 Nl c I-=04 w J it 1.- 04 M I U

o- C a-* o I Z 7- 2 T S

.4m o 4 r - z -4 1 *I*

z* cg * -- -Z -M44*M ia N >=0IU cn "Inr- 04t Im Q0: -4 - U U ýý ,

0 C L4 40 x 0 ý-' 4* 4*-Ixw rX ON xX X .

-. rww N 1 *i c r cm : 0 Im.3%

*~ -j. 4- + * Z*Wuu oz 141414M140 0'- mN 141414

Izc. <( : OZ C4 1ll Q-i0 v 0 I U - 1-4n-S o -4r 0 p-*cr 0 :r -* .- Z Zj"i 1 q 1,WUUU >-

r 11- dý- X am) 1aC CX - fZ Z-'' %- 14M*14MM* *

2 0 m r*-, a ZZO- I

'.o N00- U 20C4* O **OII-3~. '. 4*144V1

N Nr4 j0r 4 4r r4N *C4r i r4 +C 4Z *r~j - r4 r II Lq i r r cII r-4-I jr44ci C400 0 0 0 0 0000. t4"I-*-ZCCOII00Sh-4+ * 14 I)fl .1

Page 219: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-206-

:> *

Ni *

-4.

r-'

+ ~ -, N. *L(n . .4- *nW3 4L

w4 4 Lo 0 *+. m4 * I I

V4 M- "* * +*+ 1- W4* ' T0 =

W4 * ý V ' Z :(n 4- =0 * o -2 q Nn- (SJU + M. *dl ýL ýx . --4- En0 d ý - Z *+O W O 0M U .4 M4~S * a 0 * 1-" O LJ

D.1 .ab.4U Ul- II ' + l'- -. .4-N 4m-j *oCIf = of1 1U I- LI 0 * .

+- Z* - . L ID * 1C--CWC 1Zý 4N I, o- l ,- " - ""4 e : " 1 4 -1 Z 1-4 *- G-zx ý 11 *U - 1ý " 1ý L 11" W - - -I 1W 1

M 0, 0 ,-4ý C N M v oN 'I 4NM 0 DOJ0- N V3 ITI.4W O0

.4w I-* w-%04O ýol0 . a, ~ Z-. Ofl L& 00 00000000000-00000000000 0000000

Page 220: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-207-

I.- Un< -f -~ >-

0- U * x +

00 M - W) X0U~~~ -**f '

%.~ 0 a-4 U-

Za -4 N. 1 +I-

C aZ z U U N z

w N 00 U + *N --.1. 1 i- #-- N~ -* UED +-4 + U 117 - ý-z r4 "*-4 ) -+4r+c N N'40 U z Z4+('J

-.17 N *- z ZUcci C-4 N ITJ'*4 w 7.>-

cZ x -- zz N NZ I--U --4- Inz z1 10 **Z -4

W 0D I- - w' -4+4. -l'- *0U U U12 U W-1z= - W-4 I- 10- + + I-- -UZ aC.' in I Z Z+ *X - -4x* i-4 .4 Z Z - * U U

00 a ) U Ox uu)-V-q'zZIII x * >-j >- * N'I- 1- * 0 -Z - zI * N U **-" U I I 0U-~U

Wo '0 a* ITI *UU 1 1 -*a M 0 Z + -+ Z -'NNZ *w4+..Ix-I- X o Z a 0* * ZOU.-4-" UW - * - Z 4.Z - +--w IINu I=oC Q U '--Z -U Z N - U -*N Z

ON xi I zui - I i _ -ta* 1 La001 *ri I UtI N UZZV4M~IJU r

W" m Ulu< IJ0xxZZI LI< N ice* )(.>* V-4 1-i- * 0 -Z -4 +0

X X - -4-N M M* U ++ - -aaU -U'I-- E - u, x X-.u >- rijr-4ri *- iOu>- ~ U aa

LI CL2 Z x0 Q N QJ *J-1.. I 0+I-*o 0LI kiDa- 0-i iI-4+ -a C z NI C

mN. ~ 0.4 N-' ZZZ<-.('JZ *ZOJ(J('J 0,4W ,I-- o -i I- * uuZ.JUZ-4CJ'-Lij~...i o '-NaZ(J

W iZ"O* I., M -- 1-- N'- -- U0 1* ZC 1 1-' M ***i

CLIQO EniD NO --.- +a- -m I QN.IF.-4I" L~j.'4.LI LIt 0,- I-I U Inllh,'0Im r i zm-r lm-ii ii n x: s 0.- ',

0 W m "w r0 0 &za a + . . . . - *+Oý4 i-4- IIf 'q .- r4- 0M2 Q'- "q(11 ' N I NI M~ -,i- Z -4X- -

II 0L"C- -40 -..-- U -* - -. -- -.ýa _j z z II i4-. 119- 4.~9a ~-4U ~ei(~' (I N(0-('5 4 41'4 x

0 N mJIT 4 '0 Nw 02 0' 0-4 N"1~ m v( 00 N M2 0, 0 V-(4 N M V( 0,0 NM 02

00 000 0 0000 000 000000 000 000 00 000 00

Page 221: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-208-

wIu

I-

w

x U.

zzz

U~~ ~ ~ 0u l L

*. * **C*I-- I% .fON N- . 'No Z 1--4

0 + -4- - . 1 +-x X4l'-. oo%ý- .14 % 0 1-4N-4 ft--

InV U OU f j j 3 N2 1-4U f0 x w 0**qICn - - InU X-*X-.-

-- UN~~N4nn MUU U. -.,.0 LL2Z.4 XX IV X - IN -X -N " " 'X V-4 C4 -o

.'0 ++I.f.J 1 f-1aZZ 1111 -* 1 22Z 1J+ 1 .- . .-

Ifl+ U "U .J.J.N~%N M Zý o..Jt "+e-,%-iox LI.-I

UC1 MO* 4r~ I I L' +U ++ I. x~1'-- I.~*ý Z -4 " -41 If Z 11 ZZ Z 11N1 11 Z Z 1 N 1-4 0-40 1- l- C-

-Oil II il'"-4-ZllNlOZ Zll -IIIZýlv~lit.%, W 004-N - - LLN n n -1- - -*LL M +X-- W WO - fLLXI"0*lXlXlXl-XXXXXX++Z2r)-++wwce3...-

0.4 no n*i 4%0111.-,00NNn NNNN mm

000000000000000000000000 00000000

Page 222: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-209-

I J. W4

* 0 N I 0* N N 0.. C4'

* 0 3W4 + 4

* ~N N l 9z

a z III-

* 9- ' LI ILI

* 0 3 L 3

*~ ED -

* * N C6 '. 0*+ Cfl 3In'

CD Wr 4 4m EL* X 3- x 4 N

*NO 4m<* 9-S1+ CO. N 1-- 0

* -~ X-) 0 N aU* 00 'L a 0x Zu C-I0 * 0 ILI

* N 04 W4.** 9(2* Cf- Ca. '.

* '0 10 I 0.L* '-~N '.N 0

* N -40 *L 3* 0

*0 3N %, 1% w w (N*~ 3 * Co.-<4m* N '-~~0 -f-'4- 0 * f*~~ ~ '-CZ 'I-- Z 0 '

I '4 CL XI090N Z f M f M aQ ( rn N *3)(CL)0I,-*'-U x x

* 3 3 * 0 *'I*I'C.'I < - O I*3MkMQ<EO=- w-* L

W.4 ' 3 (N *XO('JeJ4Z4*W4Wf 40-...CL.3

~ -1-00 .090 1Ca ***Z3xW< N-4< C -C0 30CL0 I MOZ'-'---40. I *#--3X -- * N

11lm N I-. +*La. I 0(N**X'4-II-44U3 *W* *DP>3-'.4Co0 M 2 M -30000(NCNWMCfl I I N 1 C43 -0 If If 11'--0

mZ 11041xItC 1 11 11 M OO MI 1I W4 II4 MI 1 it 11(O lz I- W 11 3CX.. -t r4 i it14 11 - - '---N M It 10 C)J~ - I - I - 9 I

3ZO U x3 0 mCLCLaa axx*x xX LX ->- > -N

* 0

000000 000000000000000 00000000000

00 wO 0w m00w'la 0' ý0%0 0.0 0' 0.0 0' 0000 0 00 000..444--

00000000000000000000000000000000

Page 223: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 10-

I &N4 NZ>.<Z Q~I -%'-rcg .6. >-I '-XN-M(fl II Z .4'Z'0 0I "-NEOOt &Z *ZI ON &I,-3 * f

(5, I U'-*-- w<Z *t)wi I ->-Nixlz &Z 3ý-

w Ix I W- ... NJfl)CN .j- '-,ZOI I -N00) bLIJO LJ*

U-L. I XN'-NMOZ 0-. W4I W'- X n. & N +iz U. I ft Q0 U X V-4 (m+- z Z

00 1 "-sCJUftlD0 WZ z zI Co ->. N ftZ 1,-Z -

ix" MNUX =I000 S. )CeI.4 I t ý ý W L .Ce ft I)- W

LL .x I -0=~0 iM-L -J - 0Ix I Q =o -40O M LM .4 2 z0 DO I ý- oku ft Z ut I Z

4T w I I- b..-NINuIa. - '-cr I- I X'-00 ftolN WZ IQQZ I UCO y4WCJx ce'-' >-A

14~~ I m

0 1 - .ý ),-. ft ft En( *LIZ I Z l-O 00.. U 1 M t0007n i I EWXN & Z z-

CA. C -4I U'-- WIMI,-Z -T a23LI Q~ '-~~aJ 0 '- 4 X

Ce ) WI '- a- ^0 WCfl 3- -

I.1- L XI 0- 0 1- W Z >- N ."" Ii- I mcm~ wc - I J

I. z 0 2l.~ 04 ft oz-m% > I-0 -~-M -4O O.1Z Q-

3 N i im t I 0 #ý~ 2 .J r0 -.( WiLI .Jcn xI x --. N~ M' X- >.0

3j 2 I- Ic 0O. - - U . W 0 -I 14T " I WUXCNN ftmN Z M

- X'> X 4m L IWI - QI-- - "4 1- 1 4f -l0.0..4..Co D I CO( &2 0 &XZ OCA. 2 2.4-2.ftx x c O eIxIIz I-- I W=O.- .. LZ W~-ZW"~4

c T4T l- *0 z-" I Xwr bON 0- * _,>Z* ý-* *3 " -4 .JO'L4CeCI U'N-C'CJ &Q0 Q M--M=O:3 3 -' Q% 01- m zI &<~-QNN. - M>- M * Q.Z

C 0 I m ' N I w '0 IQ 1 "IM43 FII - I U >-E''0 0 0 ix 11O -.1 l w=Q3"4C. z-. * N)I *-

" "q- .1--i- 94 z w - < I '-U ft w-WW WM L+-C" " ."4~ I-1- 100 I 3 -,-">-Z3 "Z4 x z I x-#In vO o xo x .- I-flmw I -NQ-. &>- & 0. - zzCZ

Z '-- W iJ'W U m in zz I ZOC13v4 -a. "-4V4 *'&*Zx)(wceL LI 1-40 091 0~--.3nv-iZ W--LhXtMI-II if 1- :3 - -j l--.1 jI . Ce~l) ix I Xl-Li. wX,- W> -3 I '-3X(

3I.--..'40 a0- I X "- ft & .& III I !f II if II: 1 1<<~wo<zmcw OQ-.NNJ>- 0.4ZNrM)-q-I0.Ce3Ce3u30LIll"W(,-0'-I UUNZQ>>ý>

N N

00000000000000 0 00 000

00 00000 0000000000000000000000000

Page 224: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

I&&I

w CA

w I-

~c

z.CQ -z

WI N

2++X I- -

x I.- 2nQi*0*

iL1-0 N +mx~+ 0 6NL -- 11c

z IL 002 x *zQ N X XX NXI

Q **, 0 c( nQI-t~ o " p oo

I 01 0 1U 1W - rINN ( = 94 ' I--C .I-y4 0 I-N N1 0 D 00 **1 ,->I

m *0 ifi no "r - fi C "4 N*~ * *0XQ0C 11 1 f1 1V 1 I

>%Oý--aC ZZ (flOM NU'4 OX**ZZZ+4Z-*++ >'* > .QQQQC 0 1- a I 01NxQP il II -4-I4Ib QI IQ

U) u

000000lIfl00000 00 0 00 0 00 0 000

0 II II N 0 0 0 C) 10 10 O a I 0 1 )1 0 IN N 110

0000000000000000ZZ0N000000'00

Page 225: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-212-

X~~c Z'r-4 &z .x ~ I m-4NCDO U -W

4,. -. (n I Q L r u r.-3

0 0 -# w I M .-t'*r %.Z

IQ in. I M 00I .-.. ftu ft&

00 WI -0 .- N IN11 f000 1- I -J (D a.a 9.

+ 0 I UMW- o

I. --44T 1I >> . _j Zz ~ ~ ) z -0e No > t

-- 4 In I (JO% a &Z~.)XX -4 -4 I XMM'4J a

04 X 1 2 Z a x C Z-'Uri(f I Z -0t 0 L

ri x wI CD t O ftx-lU+ lz 1 0 16- 4,Z Z

- Z- ( I U- -- x~ UC

in I w~Z Z - U " N:

XX-r.- OMOO- --- aI~~~ XI 7 4X P X>-CDC

(D zQ7zbl ýI I 0..O 0Q a £0o-rr44 N **r)*z I *\£JZ "=0'..~ --z 7- 0 - Zo o .4 f:7 -I U - -jC5 J -) - l

N C * a 0 0 4Ta) I.- I -*x QN(je ft U. w INN Xt~ X C X X LU m I ~-"03 r4 Q IM

N P- N Ix Ix0 x z x I car, 3-... zz *ON W N 11 1 z ix I '--U . w &''CI0#-N "J0 -'~'' m--4 1 3 -~- )->Z3 W.4-11 "4N Q CO -4 D~J- II ii trJM mI-- : I -N IM ft>- 0, It If - M~+CJ0-4-2I z -"-.Z Ucn I Z0C~r3"- &4. *-4 Q~

SN PZZrlhW.Z Z2Z Z Z~ Ce -40 I 0'.- -3,' 3 n q-

IfNWi : : Jcýr I X0I-.- W - X ,- C 0~N 1 I ) 1 1 I X " N I N 0 Z 30j0 ca

"4" "41 V4 "

0000000000000OOO~S0'0'0'0'000000000000.

00000000000000000000000O~O0o0oo

Page 226: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

213 -

0 oD

N N*

Lo 3*

N 0*

I-- I

4* N*

En 3 zx x: 0LA

N -4 0

0U C.-4 0 4*J 3a- LL

I-o I LO 0 0 Cr

N)4 0' Mi I ' 4 4 '4- 10 0 0 '-Cz I- '- '- z L

.4 *:) 330 > ZO .- - -'ZCIZ--Z ~ N (11l- u N T< 0 >\44,.~ ~C- C j ZZ 4 .*0 . Cl .4C I Li

M ~N M , NI-- CL- CJ-4 Z Z +.- 4-C4 +.-+ 0 l'--4-* CO *-'.4+* I . . Z "-i1Z7-" J %4:n-

1 -0 -4 4 =fM-' z - z C.J.4 0z I- z z z z- :t:COX '-I '-CflC Z'4 i :-ZI)-CZ'-z'--Cte I CL.MU I - CL -I-0 <+ - -4- ; X - W - X - - L 4T'N *3)< (fu I~-z~z+Xz=a*ITW NZIZ~I-ZI'- 4t>-CI CI I >- 021t-L

174I 0-1 NI *I II E11= E nC1.- 1 II ICi. II fi ll II * X

+ *a ON -XI-+ I'C~f~ I +- I '-+ -- I I + 4.I=)

COIX'-) :4 r40 .4LZZZZ~ZZCJ.4IZZZZZZZZZCC - -011M0M'4 1- -'-.LiZZZZZZZZI'ZZZZZ-7ZZ~Z -.10t

r- fifi 4CJCJ if w -4 - - - -- - - -- -4-+- -++- -+- -Z - UnWcLc

ýd 0 .- 4 Cr1 a o - ' iZ~fCL CL. 0- 0i 0 0 C U D CD D CD D GD D 0D D CD CD L3 U 0 CD LO C 0 CC Wi I- W) F-

.4 *

00000000000 OOOOO0oOOOOOoDOOOOOOoO

Page 227: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-214-

1 03xN cc Enx cr

I "Noox wx

I C4 a Z (L 0 NI Z' N24X0I -Nm S.m *I XNaZI-.3s -%0

I W% .b CS I d0 n ,f

I -- CD - 94 I

I W o"M(I L) a w ZI N NNCI M4N -o C

I oz F~ S.J + -W j0MO- -OQV<. g-.0

It " ý %00 +

I -ZA_ _I I-U-'NVNO.i.. I-

% W S.a Cfl0 I- 0 Z %I

(nI UCL- - -)J( N XI I +I

ZI aZ2uxt4 Z - N e -

1 01- r- X 0 C+ *

I &D.I-ý & 00 v4w -v 44" qe

I UV-~NCJ' *t X%%' + j_ j-P W

I~~ W N \%X

ZI mz ZWQO Z.-"I- '4NW>-I ZC)000i &0 0 - iu n -

SI X2'IW WX-ON MO H .- )4 >vvNn Z Z-wZR1

071 X "- ft42 1 0%0 mfI-l 0 0 .44 -'44yq4XX -N

01 V41 W~4~ WUU " V4 W4 .4.,4L

v vvv01 '- .0W WI I. *0 %a.0NP)0 %f No 0a.0NNN N'4' N K000000000000000000000000W~'~g.. n~000

Page 228: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

N e

* x

NN

NN 4. N

4 .)

z c.,w I

xx * (

N I-N N N* z I

I. . IJ 0 IXI-~ I- 1-

+~ I

Z~~ ~ ~ ~ I I e%w -, o% .WI

x A -w - in Na Ix I N~+NN + -+ " " I N*xZ 0 * i-i- +Ia-o I N

C.4 z z If - f I " .4z1-b4 N.l N 1Li NC -3 C X I N"XX w z) z I .- L4.W - -C - ZM m-- - %o CrW0- 1 J

6- nIfIf 0 xe- 0I R-* z i.. I.- .- W^ r *v ) P- ix%~ ~~ I o :~ *X4Iv 0 a i 4i. a -0-Q f'4N z N M4 W- f1 1x im z z z 4#* -- ' 6X4.4. "C Ix I z *f 1IIZ ZZ "M"" .I~ .1i- .Z Ii Nx (n01 Y4D+~~ 0 "04.. 1. %'. 0Zt.' "N0Xwwwcf *" -*'I-. '-iXX LeJ I "Z- It 0 Ci4.W'%-s..2u - w wIos I Qz md~o~OflI II.. 20 X iii ~ I

NI-L)L uuuouc ws-~Lo UZ U0) U

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00000000ý000000000000000000000000

Page 229: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

c I Z'N E - =

CA I '- N (Do X t~o 1 tQC-l ZXI-3

LJ -j I U -*N flXCZzzI w'-rixim -W

x z~ I -)- -U -00I

I.-0C W r%-N 4 Z0C: w I Lu ie -inf

0 LL. I '-UX'.4L.C M '-O >r- - Z.4&t 00 ý4-0 t0 )0

1-Z00ýI _j N ftC4 C.m.Iz < I M .q M -0xN

w 1l-i I L)0 4 &'-U .x :)LM i Q - U- L "LL

-j -L I >. a4u a z*crcn4Mi z--NN -z

4M$-I X 0r4IM<C3 Q

z Ls.w I ft Z0C) ft Z1. )Ix I Z-J 0s- zJ -

LZI- I Wý-> z-41--"~ " LI ý 0. . A

x I xW3(fl.CfaW IM I LJ%-- ZNU,re LL. I- 1 a Z Z Q W -

w ... W>I CI-- m qCJ 1.-

U% W I a.- o Z)- cn-~ I - X Id ZJ Z C%= O

w I CD I WU)(cn N-E-n m w4 i U - - m N -

- - I.-fm I -zt --) aa.I. I.- - C WZ I ~- - U N.d

N < Un I *--4I M0r'-.am4oz-*e I *j -. .J'' I - -ý .clCJin

m \i Ix4 U C- - L&J ft0 U -J3--ie0Z- u+-E- 14,0 1 T I W U3X N N

'4 ~ I ft' C X. u W' I r4-4 Q--~Cl I- 31 ft-

x.~I4~-~ % UýfU4 I OD - 3 wX O..%0 0i Lo co Ix Li~ Z4- 0 -'-' &=O4 f

*CI4u *ýZ~ * ~ Il'0 ~ .~f I LI-i.0 WU <4 x ý- Q LL Ll-II &<-QNN.~* 011wIMZ0 I 0OMIM3W>

a00 00 00 0 0000 000 00 00 000 0000I-C) -o0-04 V4 r'4 1 nn -1 1~ V4 9-4~ n - v- 4 -0. Ci z ~ 1 in &-o -. o-3

N 0 d X-4 It4 11 .4 '.4, 1 4 .4 11 11 11 CA 11 D N N 1 NN >. f~t)r~~t~ t4

00 x 000 1 1 -00 0000 000000000 00 0 000

0 r4* ý a M 4w ý 4T0% n & 0 -0 -1Ix n x T 1 X ý-LL.*.0 QU 6-4 n n IL " - M X" tý %X f

1101111-0-0-0-0-00-wZEMMC; 1 1Q-N W

Page 230: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-217-

x ** * n-W -

LD Ix * - .j-

-' *e Ln. --UUirU) U-- M N Iz -- -E

* ~ 4 * 'Zý -' -4 +- Z L

Li. C3 0 * * 0 )() f

t**-I1M* * x xz *ZZ - CUC N-LJ

a z-tw.z *-m U -- - ZQZl~ 1'-x'-x * (f-Cf **M**CZJo- **Z L *- N NN *I m U-

xc~.LxJ."a* if *U-*--

m < < o o LL miuu -- nm---in z rz+zz

- ---- 'crjI NU(LU)-4(jU -4CJZJ-4.4NN U ,- ý Z I ZOOO'UU<*L) C-+++-1-ZZ ZZZ 4DII7 L)(flU III

"i**ww~* Z Z-'Z-I.- - -0.4 O ZZ Z4- f-f ZJ~*""I- 0*0 Zw->--'-4+ U-4-flU ZZ+UZ4Z''0U 0Z ItiW*1 1-M1 *** Z .- 4 *-4 1fL2 11 11 7I I -ZZZ Z

I- * O .IN N* I -fI ---. U--'--'I*IWZ I I .-iC'J (Nt *JtJC.zzzzz1Czz JCN

C ~ LL I--++'' C &ý dXXý .WXý Cý CI dXY

v vv vIT v00003 W- - X ( + Z ' ' W0C a I 0 U!! .I aI H0. o ) N N*0 4 )3* 0 4 0 1 **ZZCZI Z ý a-0 1010101014 o1 0 o1 a.41 0ý000000*3 000000000000000000000

Page 231: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

*

*-4 &-*

*0m-4 " " 1--

44 *1 , u

* -z r

44 '-4 -"

44 c4 r4*

44 " U U U - -I- -En( ( 44 .4 14. 1-4- 1 -4. "-i

N4 U )Il'JE - '.4 X-U

44 -1-U un '*'U LI U) U)* C

0 , 4 U.9 0 U0-'o w-"44 Iý IE N. It * 1 *It 4 4" ,

ozc M-- 44- zm C 11. 1- V4 " N " C - -"ft ~ ~ ~ ~ 4 1* Z4)' l1 N c:-Z =- P4 -4- =+X Z

r4IW f 1-4 <. i$4 "-U C:

If4 *Z4 " U) U)* " 4 N 4 I-ox

Lo 0-t+ 3 -4 .- - --I 3 z:

if- - - - -S r'-

x ~ ~ ~ - '.4 o. <-4 +4-S w=r 3

.41-- N Cl U -Z-'4.4

-4-4I-4u)- .4 IC 14

000000000000000 -40 U O+U-S+-4)<.-C4 m p )UN m)-'. o 4 ' oo o ,0- +ý l-w tIo-"vto4 o .- F iIN N U~'.4- NI INIUNI)5 0MW0C -0 ) ý0,o ) y 1

ri** 1-l- C) 43 a~- 1-4 0aC - 0-, ' a' 'o 0,0 -I--30'.4IN N Io000000000 0(;0000000 0000000000

Page 232: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-21 9-

0i u

w -4 u4 u Z x. x .

*4 1*Z I Im IT V r :.I 4.

4 . -0 * -4- 4.4 0

* - " ~ " 4- ' 4 -4- 4.) 4. 4. V) .4.

* --) x- * c ( (D

N LI Ui M Z +

-4 :3 .- Q .- I24 a. I4L .4 Vn ri in - cD

C, 4. -- In4 + rj M- >- u .)

.4 (n s. L--E - M -.44 - P0 C- N -4Iz * u "u u~ Z M.~-o 4- " '-4Za X 0

W >- * * * - '~ +: N. (0 - X CA1.*1 : c -r -) .4 +~40f -M ZUd

3 1W+*- 4- U-r b-- -w b- - M N IT,-' -T Z* I--- 0. 4. = - 4.

X3 ~ ' 4: .n . . E84w . x u0 3 344 CA. -- +.~I~ Q4 44

cj~- U Z U'-

CeLJ-' QUfi C U +~.ZZ C U +

3 a it+ I 4. It -i 4*,ZC -. '.n Q* *0L 1 C' f" qIf 4.* +f a4 g4C*Z *W '. ' - " + W+Nt

w~~-.-Ca,-.~~~ - U- XZr~- U >- -Z Zu 4eI4. - V44 * + * Z )jCL-4 a.V4

0*-,)- 0 -4 N4 m 4 v ~ '-~ 04.~. a .0V 0I ý0W

000000CO * m-ClmmtC0" -UU*0 000*0Z000 00000t'0oo -4I000.4

I~JWO * II c~je U-4C.)-.-.~PJ

Page 233: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-220-

*Q Z

* -.Z -4-**~ +'z L)

* zzu NN <E

h* Z

* + IT z*Z +

*~ zzu*(, Z .-Zlw Ua-**z u -

zu N -q-0

aD < Cz +'- .

0 zzz 03o -~~Z' iCa-cI-C - -1

wa*-

w- ~J-f 4x) + -II

C4 o C'.I ZZ-~L. H If + 4-'C' N-OL

4c M.) - -Z ZZ - 0 1 z 1-4 :c

lx - zI ncw-z- 1,- +-.ý-'-O Q (D

ce * I CaU'*-* E C-4Z 10 L Oa,Lii~~ f-~ 0 -W I'*40I I-Z--D wI-IZI

u I. O-Z- le ~- - - U. D I -- '~Z Z -ICe Z I-ý-W -- XZZZ4L)C-- N--ULUZimf Li- I Z

Sz -l ~+ - - 4- I < 1 '.40 z x - -- Z Nrow ..

V4 11 V4Z'' *l-- -- ' - 1,J-'- C3 11u zz 110

o 1 -4+-II~-.U+ + *0o1:ci 1 1 -1 4 ^ + 11" c34 *t~3-Z* *x~dzzzx0z -zZZEZ0-4,- MX)

WOCDOCDZZU.LUUUCJUU. L.N0LUUUiLN0U0O0O

40Inl No To 0% 0* .

00 00000000000 0000 0000 00000000000,0 N M 0. 0 1- N~ M2 4T I -4 N' M~ 0, 0 -. N' fl V Ii -O N' M 0- 0 "4 Nl M~ V 0j 0 NIn7 m2 v) v. v v -T v v v v v 0 In In In I0 In) n In nA I%0 .0 '0 ýO .0 -0o '0

0OO0O0oOOO0oo0oOO0ooooooOoooooooo

Page 234: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-22 1-

- 4.Q

Z O

x xI x e w-~

000000000O>-M o- 0 "0 N M qr It0 'o%0 '0 N N N r. N N N 4mNNNNNNNNNLJ

Page 235: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-222-

aa * C *

I~ *T -ON-) I-~ a1 3 Z- ZXOi. CL

1 * -4 Z Ok a U W*I L * QWNNiNQZ*I L)cn En r*

I,_ I I L.Z lz CC I * O~ &O *(fl I 1 0: x I.A Iz 1 O'-'0.4Lsr

I- InlI~ =3 I -En n QZ -L&.(n QO n 00 m rMn l I * 4 ~U - ix>- ýd

I zI La w z * w-N.-z *

La IC.1 4T0 I .#. 1 * W-.O _Z(flm .Y IWaIZ= =Z Q * O'-m~W< *

0 CAI~ Z 3I * (fl40_fl u-40101 .% I -~(~E4

T. IZt)I (a 4 2 Ic * w.0a -On ZfJ I~I. (-9- I 4*w 0-O CJ'X

wC I Z 1 04 x x 0 IT 4 m* '-ZOCTZL) IN~.JI I * Z- UO.C 4LL II CL 03 2 0 W Q* Z~I~.4II-mf I I LL Q a Q LZ I 4* vq OO fl I-

I I a2 x~ Ix 4 I 4* -Z"Nix~ aI -I I wu L)I-- I.-. I 4* 2-*-Q -XO 4

o ixi z z0 ni,- I 4* w.3QOC)4

go>_ I I -4I MOD b0 X~O*o Iw I >- >- >- >_ I X*"% '- Z34

IxZI " IO cc f o 0n I N* Q ýl-Cx 4c 0 1 = n-= I * -=ý-43WnL 4*0.. I >_i~ I m4* mIcmC 0-'-3ZO-4~ ww x I .JI x z I 4* .Z-I~-9L3

< Ia < I I U* U~CO&N0 wN

w I< fI~L .CL CA.La1-0.. I X-- .~N 3L. I I u) im u).. (fn I O:NCD .4-X (..X

OMU7 Iw I II I Xj I 1 0 1 - - - N<.J~ &*W I~4 I I I m O ~ )U C-

LflM I X 1 *.4_j N~ I Ix -E-..)(= W>" -0 1 1-1If ItImII if 0If I Cl X 4* ý -(120 1 1 cei z TwI I . WN -4N r . -. ft

ix~I z 1 00110 0 I 2%- = 4 U MLU 0 4a 0I-" 1 EX0IQ -- 0 I "-co .Nm- . 4>

<r I I xxZxZOz I <M---)- &2 *Z-) 0 4201I0 I I1 I rz I I r*rm .,4-0 & ~J.4 - 4

,a ZI WI I - I I - I j ~- - U0UCZ U OLLL0O." I m12I .4NWtM2LaZ44 I Lar &4~ x ýx 0 -IT 4m

u z - 1 X W2 -I 1~-'41-4& - _j W vlo 0&I-.'-'La I -) -4 >_ 14 >_-0 I P ix m m-A2 10 ma- r4a w"4n-4 <X I C I Q a 0.J M -J " MZ I '-'u0(a u r. (LL - L. Q,ac I I--I~ m D _ I IL. 1- 3 ->-Q -~ - .4 NNO 'oZ Q I " (- L-0( 0 ý-~ -w 0"- - . .~a. Lco'.j

>- I z I n(n Zfl2U =(UOW I UZC qi

I I LawCeLae LaO I Z.1rI-.4OX zo *.;Ezzx

z2I I I I-Z004-2 *000LNC I Ii-- uuxuxs-UQ I'4~OCJ1- &LLWWLLaO

4*

4*0 0 0004* .4 .4.4.44"

.00000000000 00000,1)000000000000 00"( 4 (N M V 0f SO N W (ý- 0.4 IN M- V n -0o NWC) 0 ". 0. MN V 4 1( 0 N W 0~ 040 00 00 00 000 .V-4 " 4 V-...44 "(q" I-N INJ N' N N (N (N N (N MN M(fooooooooooo 000 000000000000000000000000000 00000000000000000000

Page 236: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-223-

U? W

U x

ý-* * QI,* *-U* **

Z -'* *

0* m* - -* *

*u.*Zi4*r-4

w*uX*-s N* b~t-~* *M

c..J*~-*.-..* *,-*0*I-C,.n cc:

I-*L3.-'4~** *

>-*-* cc *j *4*nz. *~ ix0**

X**Ua *wu = r* x11-W**-- W Q i A C * 0I-~ % -0- * ** qN xC

OC -J*OIO -I-u N *-IlQ0 2<041*x*l 4-qv* * Z vvX < l~ *Z X * f&4*'Zj - * WE ft* tIzI+ Z J * ar3 -xr omz r

0* * I* a nn n O + x *q* 1*4..1 1It1 4lU*Z ' -* W * - .C.r nI-ý - XI t1

Q* I*Z 4Z IMQ * 7 XC 1Z I 1I ' f1 1M( e001 1-C 1< * C C I--4* l - 1 NNWý41 " 1<WX: 4r Z M 0 (1-

LLI=)WOWWý-W=)WZZMMXQZFI-Oo mx zx~my3

ceI-* re x Ixi <x*Ixzz z *.ww1-4 C 4

u u u* u uc.JZ

ooo oob oo ooo oo oo0=o o **oN MV %0N *0,0 C*-~ 4MV0,NM0,0V4NMW00NM 0.NM

00000000000 00000 0.0000000000000000000000000000000-000~

Page 237: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

.- 224-

w*

* *

** *w* L

* *in

* *O3l ** *

cc CL* *C<rw * N* 01Z* 0 * *I

CC NOC.X Z -z. L) *L 3 S W *-

a 4zC -WZ*-> =*il &ZII*C.Q*WXý

9.- > Ix Wz: fILL Z 0 zILi -

ILU i *NO NM*P40" "4 W Z D L I--ý o4 m P 1I0U 11O*0A L) -#"4 W W-J. L) 0J10 1- f0 I

"- *r C "1 10- * 1-"I ,l l- x1 fM w

*q m

U -4

00000000*000000-0000000

10 *4 a o-UNNNNNNNNNNwww, ý0 ýo 1a0z0 * 0000000ooooooo000000000000000000000

Page 238: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-225-

*.*

*

Lo**

1 4

u

DoU)I

u) - > I 4-En ZIz* -zI

0 1 LO=> zý m * n3

L' c M0 - "+ n

=> *tf"lI.- --. +X

a (f'-i- Z n( *-r"

0 1 LJ 0 M- .- I - .J W N- oa *li4 Z *t-L)pUU- Z W X O-

oýrj u 1n -1 - --4- -I 1 1L M * ~ mr-Z1 0 4-4 -D 41 7 Z * +".-4n - - OCO 0i31

- <r z - !H 1 - 1 Z - - -_ I f Y-:; 1 X (1) X_ _LL 1 WO Z LL)-) lo ! t ZF-"Q U ZLOZ--'--I 11- E Z U) CjOW - LLCE4XILL

U i - > >14147 Wi *m,- U F- WWU 0 0 = b-4 U

* ~JC'0U~-4I ~ -~4Uf-4-+-' IT 111 U *0 L.*

uf ~ - 'i Z U i u u I L~~

*00 0 0 0 0 0 0 00 0 0 0 0 0 0

0 0000000000000000000000000000000

Page 239: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-22 6-

x z>~-.(, 4T 0.w~ 1- 0,N %.I & c

(Cc (n 0U!.J Cz 0 x

La~ I -(n &z ALL. , x >-

LII W WN. a z X4=

CD &%b W.~ 2 n- mtLL I W-J U)2:3rZ ZO I

L. 1 '4- Z Z L&ftft I wI U- En- 4.~- 1(4 . 0u

z I a-. ftX- . xo tN ft ftZ Ow 4-

"44 0 W O Cc:Z~ LI r'-Z z~~- a w- 0(j Z C 3

uoV " (J 4 - I.- " .4- Ixa. q o l nZ X 1-4 w

z z u I W-.De~ Pa X . Z" I: I 'Zp9"qcc .1Z -0 Z41P I ZD-'.-0 .. cea U 0IIt ~ce.I X:o. Q3 QID0 Z 1-4

EDU f U-IZ30 &;C orft. -- 0-4 -1~O

I . I - " :~- 3 (a &W .. J' M

fz U CJ0 a N0 -N .4'" Umoo.- I I '->N- fX3 Uo UzOO N C W I Ow )&&> LI" '-4X

=7 I .- L I W'. M I-xX 12 1 C a.0 aI- I.~U Z-. '-4>- mflO oW LI " I Z-.XX,1-0 1

WW 3 3 D T I XW .- ej &V" "4 " x 4ý1I-. 4 -%U -j - - 0 uCA. M 0 0 Iixr4 .- ' c 1 &q--r z m' X~j AX 0"1i

O0~ ar - QCew 0 1 wo*-rmC"jo 4 %jw w L ýw- (m F- z ce I -L3ou.ir a La.' \.

*#. .r (V * W"4 I-.-~ IZ 3 ý-=>- -- % 0*\. Q*0 rg IX -P- X'o > m x " z 1 - f ft (- 0 00-coo-00UI-D-o ZLI QmwAL t .LiWOO "o)00' "-. 1- 0.- N U u . 2C 1--Zx < <

F44--' I-.,, Z 40Oa "-" I X" -00.z wo~eU ccCeZIJ.LIP IILoc~zx:7x- I 1 v4- -ZOOZ 0

00 0

OO00oooeooooooooooo0oo0oQ00oo00o,

Page 240: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-227-

LI M

0z *-e * *

* ".1wI.

Iz ** w 0.

bz- 0IýI. V)*

* **1 *

* *. 0a) 0V)4 17* 1

Zl'- u *o ixcnI m o +*D (

* * 0I-u 0

* : * y-4II <*a *M 0 CDZ =

.. 0 Z * 0, - 1-4*4 "* , D -4- " -

a. 0 *0 >- - I1-0 0 L- * * b"- 4zQ 1- M

4 N *n 0 ,-Z 0 1 ti 4I- II CC * .* ML"-4 U- I-.

En- -4 '-4 *0 LI C. 0<o . 1ý4z z 0 o !0 * 0 -.J 11 "0Hl C"I-D -xI1> OX- *x If CLJ'* X x w 11 1P tI xW f 1IX f " Z '- f, " PJ C ,M<01- LL *< *- Z- LI WI

m21. 17- 4 m4

0 -4J0- N I M * 0NM(-0 joNM 0- 0, *j M.~ q*b *O NI W- I Iý- 0,q

"4Z O 1-1 0 . 1. -"-4 00 "40 14 -0 -4 I-4 4 -4 1 - 14-4 -

Page 241: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-228-

(-

cn I-

3%v 3

-IU 0

*~ -% -1 1in

=o(piJu+ N x x

b'.4 0.>w.XW

-I- 3 - * 0: U.ftý

Z-Z0II En ft .00 0 ft

I~+% % N I~w"c< If0- La.1- 0Owr---i *2ce Q - -L.J( 1-

Z(n-."~-4'---Q-'-$.+~4-*ý *--U)2L-4O- * -

n =p p, " uI "4 -+~ -) iW 4fi -- o: Do- 0o 0 * z '0 -) m- +n t-i ca) Q W 1

d 11 11 11 It1- U1 -4 3: 11 14 0 - 11 -I If " II M ~ - 1 1 N - -.

QI Q4 Q- f, UU U) W XJL~ Ce DO :> 02 Q r4 C *.U W 3 1- 0 "& 3~ 0

000000 000000000000 00000000000000N M T q0 -0 N W) O 0 -* N M) V 0I 0 N 0) 0- C -4 N M V W) 10 N M) ý. 0 -4 N M)0- Oý 01 01 0- 0)' 0 01 0 C) 0 0 0 0 0 0 0 0 "4 " V4 4 %-4 -4 .ý.4 "4 ".4 N N C4 C'j"4 -4 -4 -4".4 v-4 -4 r N N N r4 6 N N4 C-4 N (N N N7 N N4 N N CN N N~ N7 N N4 N000000 oc0000 00000000000000000000

Page 242: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-229-

* * 3

* *(L* * 3

* * *N 0

33

* * *

3 *3 *

* * *< *_ 0 3

M ix ** * * *

Q *. C4 *-I a * 0 I9. z x

* *SCo *0*

W *D Q =o3 M -*3) CN =0 * )I NO 10 <411~~ ~ 11 -N lo*A1- 1-4 0" Q ý Z i m

"" -0 -- * It *1 V 4ý _ + 4 -

N C* lp 0 C3

*u * *2u0000000000000000*0000IT~ ~ ~ * 10 N *00ý *N ý0 qr wU)0 3D 4NtTir-4ri ~ ~ ~ NC,471J *MM M M MI0 ,q TvTI rIO LUI1t,,j ~ ~ ~ r4 r4* 4r 4r qr ir 4r 4r 2 4 ~ 4rjrjr 4r jr ir -000*000 30000*00000000

Page 243: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-230-

x

z*

U N

4z +

*z .- ft

U C) Q *I iI- X-I

M * * N *N *NZ &*

9- Q9 *

*, L). a Ill * I.

00 2 XUlZ 0

0 xM c .I .*oo *%#+ -- *~ , nzi j 0%

I+4UM M N * *-< b

<r~. Z w . A NNz0- . -W1oor +- * OEUU-i~x 1-4 0**m 0 -** -0 O0,Z >XX XJ Z c x

0-cz*~c: -f 0m (-' 4

* 0 - -WU =3,-. . kb*.

I-- in 2--x - N ý4 w Q * * 9- 1- a WUWIn3C0.M)-M X 11 -ý4"N wO-9 -''*-Z

zo * 0-rn z 2^ u uu-* ZU 0* cncI- Cl -f 21 0NNN<C & 00*0.

.0 ix UI . X' m Z C - 1 11If1 _ I c A.<c n=otca-n If c4Q tJ.z4,-4.4N=W co M

LL0 "I-- U).44 Q4-4-MZ UU UU flL)ClLLJN w 'u. wc

0,0 *-'-Mv'l- NM0.0" 0(lfU- 0 ,0 4N M 0. 0 .4 NIMV 0-4 N-Ll WC*-- 4-a101 1 0101 * I IN NNZU NUU wwUww I n 1- .w w

rin0. . . -'0-e 4v .- ,4r 66 0U)-Z Ij N U X c( .. N rjNr 4 c !F NNF4e00*0 0 00 0 0 0 00 0 0000X+--Z0-0.939I-9 * 100

Page 244: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-231-

* * *

*cc*ix * ** *

* * ** * ua cc**r a

* * * *

z 4* 16 0

z * *L zwi * * 0 w 0 Z

Z.M- 2 cr x W

0O * I- IM.0- * U4 2 zZzz

2 w- to c I En CI 2 --

m Zi * 1-- Z-

W * C4 P-*0 a 0r ZZo-Li Li 4.. '.3 20 ý -< -CZ Li 0 UiIn c zzL= 4 9- 0l U e zaZZZ-Zz4 ri.) Lo. - 0 -(

w. 111 zL N i +nju4r -(D 11 ri 0fN ( t C4-L M -I ,20 L&. Z - .4 x - q" "ccal'-1. It1 w

LL. E0M4T I--4 wý-ý 4i Uý4 U.Ný --"Cm-& O Q-- 4 I

0I-.---U " - It Ij-1- C Ri 9 NU)- -4 .Z 01 <- x z !2z f - mI - - - f1WOW *A0 0 = - W iý-n L= -r -~ZL *1 .- 4 * Ill

0- X " 0 UCX -4 -. W Q22"220 4 Wýq

w2 ) .O -o lrU l 0 0 0 0 0 0 0 0 "Z -- 4 4ý,"-q--4..ri 4 4 -jr4r-jr- rj i 4 r44 N-- enmmm mmmm n

0040+ + 0 00 +00 - UZ'.Zo o o o

Page 245: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-232-

**T

Ck0

M *.* *j* c

It*

*n **

* Ck-#

x u .0-N w 4

Z-0-le L v4 Nn w wN I

I* ocC W Im - (D Z Z0 ý-<*

1 ~ ~ *"C. ý j . 1- -U4

a ~ ~ * &wv~ w W * -f-O -7)1- n 1 U * I- - 9- - V

QIIQCo -- 00- W Q w z x oo .- llct

CD1- OP 0-N N4 3 * 0

000000000000-00000000000)w~ v %N 004 *-.I-O 030 014ov VUO coo 0

00000000000000000000 0 0 00 0 0

Page 246: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

- -233-

w

.z

I LLzL

z u * z n * -% 0--

u~I- NII--.

I.- ~ ~ ~ ~ ' U - 4 0

U 4l - - C' C) 3u Z u *'C j.~- j bX---4 0

I' X 0 X N i-'- Cfl Z Z - '4"* 0*I -4 U*Il -1-*' -4- X 1-4"";-"~N'4 NNUNZ m 1"00 .. J M0 V

X"1 - -4*X -0 4 04 UN 0* C .14 -41 I-..>- 'Z- r-WZZ-- -% J -'--o- LL0 lMrJCX-0X0'-if -4 Vfl+ 11 l1CJ --- NM im P-4 . Z 1190-OOL -

" -4b '-IL z -111 zz 1 N -Ib. I -'- *- =--c 1M I

",-4eJ I CJ-'+L3++X3311- ýL 01- -. " -

m- IT Ln ON40 W 0.. ~ 0 (5 N

N .- 44 M V' +~ * > -0 N-4.-'00 "q N *T0 0, 0 04N

0 .(--LZ -- *(J- X-'0 IL 11 0I 0 N 0 010% % * 010NN NNN Nmw

000000000X00000000000W~e000000000000i

Page 247: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 34-

*CIA*co CD +

u U u 0 V4N N0 N

*CD :3 + V4

+1 Nc N*a 4. (L

M1 to 41

M1 * C, 3N1 0 1.

41 C CD CL&41 Z4 U .

1I- + CL .

E1 CD 3 41cDM41 0 41x

41* N C3 + 1.

to * 3a- N NED I~ CD w 0

41 14. UCA 0 (fl

N1 CCD -'. 41 0 CQ1 X1 0)N4. 3T * 1

41 k)4 N - NN 04+ *C MC -U 0

41 IN '-N * m41 IN '4C *33 1.- 0. 3 NT41 Mxcu Xi~ C I- x If .

41 N I0 4.'4-N wD x 41 3 coa1 wZ w 0- * C -- , * 0

41 '4 I- N10 NiC 0- 0+ 4m 0.~ 3( 3 e - 441 %W-M *0 1D N.3~C3 .U 4 *X-- <X I. w

4OL1 3 - N, IýCW %S -04 %Z 3. W

I* I 001413"411-0 N0JWMV41-.'-. ..

If 3 X .mD 4 11 11 N11 If *- - 0I3-NNm -.1-- 333. 4 1- . Z -IO<-Z)('441--N-0..** --- ~C*-%-(N-ZMWD

U 230ZMM0.0..000>->-'4XXX*)<Nl-(fU3XWU-4C

41 '4 '4'

04000000000000000

vi '0 %aN w 0.. 0 W4 N m v In %0 IN w 0. 0 '4 (N m~ v I 0 N. Nw 0' 0 V4 (N m~ v I

00000000000t~000000000000000000000'

Page 248: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 35-

Z X 0 (CJ *2 U * CO J

Q Z'-Nl><I N 1:4 *

u C),, XPX n Z 0 U L

M04U ft -.1 ~ uCZ UZOn Itm - s -LL. II in =

W- I X U -Ix>-:0 d Q-4M WI W &N .ZZ Ix.

zwi I *'.'.4'.4UU ft a Ix W00 I -W WZf *C J W - L

I -- J- ' X(fl'<LEn %0u 0 1 ft-~.I-~ w .1 CA :

U.-4z I -OD wo qx, -. 1 l'.-4 a:Ix- I W-C-NMJE - U

0 0 1 - Z X ý- X U LL- 9.C La 1 1,- Z MW QZ 0J N U,ce l- I :cl-U & ý . LlJ 0

Qz I U I-'- I-4 4-1- ck C inU Iulb4 I -- "00 U -( <w I x

Un I CO -nx 3 Z l'- 4 1.-=0 1I 0-N -1x< Z cfla

00U I '-Z.-qNx -X 0 (n zU Z.-I zlý-'-0lC '-g -o

" " < 4I U'-Q30 -M -Z cU, TI I--

b0En1 -M':-3 0* Q 0I Ww x I '--O 0~ Zo N a- 0-Ix w I - M wq3 ILI) LL Z Z z 0

34-I X'.L& ft CL3 f- -.- -- xcn x I UWD -1740 -N " - 4 Q 0-4 I- 0 0w -T LL 10 I -U 2 -ý.u U)- z)-U 0n1n-- - zk1zI 0 -'>NN &X3 0 0 ux ZI- w

>- I OD *'.4 .>cLX _ .- * -4 * *0 m.j Q U I '--'.-CNij & 0Z w m Wzýex<= " I Cfl0)UX4- =0 U In O , 0 Im uUO)(n I X'- oXX . * U* U -0 * l

c 1-4 I -WJNv-'NO - x~~,4 0 IA.

coZxI O.-N Ma -) I uIO ch Q 0lz I-- I )> ft UZM w z * z* * Q* 4

Z " I XOWy&4-0 " Z Z 00 0..l9(iL C CA: x

m ~z I -- aNXCQ .> WQtWfl0WW<U 10 coM Q0 I ".i-'F4 a _ .JW 1- - - - -0 0 W* cr in = U0 .. it W.-MNQOl0 ZI*I***QC m zz OnNir> l -U=Unu- W - C.0'. - L Z~ 0 *1 in00 1 3 .- >-Q- a.-' " M xM X , MW c U 1-- -'4Z *

= w ICs_.M UZ<ZC I I Cd* * ,UWU0e

0 1 O- u u ý w o :W-:C - - 11 ->Q II It zOnNEnI 4I X ~-0 Xu M w~ LL .'-ý3 - 3 If 11 0 0010 CIwe N if xZQ

"-4< I x'-'- & p >z wI itifif iIO WI m nw ififi-Iw it UUw n itifX CL. C I 000.4-,4Z '0-4'N4-14.0X00I-U,'" I uuc0unI-ý

u uU U U uL ) U0000000000000000000000000C000000

%oN W 0'- 0 '.- C N M 4T 0f 0 N M 0ý 0 V.4 N) M IV 00 N M 0'. 0 V.4 1N) M IV blO NN N4 r44 "- NJ N' CJ Ni Ni Ni mi Mi M' m~ m) m) m) m) M) M) V) v N v v 4 v V

00000000000000000000000000000000/

Page 249: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-236-

I z

lz LL I a)Ld i I id

LU 0 I L

CC - I

C' lz IU.1 ILL + I Cco I

CLx. 9 LU

ir I -%LUC I

X' I- I .J

En #-- I 0

En 4z 1 z

U. CC U I Lo

w** I X.

*U l 17 1 O IN 6 I X U,

0 - I- ECL. QLU1LnL I U4.^ C' 4ýQ M.C) I 'I- * 7- x Io l - r a U- 1 00

N C) u - .)c'> LIII I)3N~~£fZ N lzN Q* * 3"NI X0 - z 0 I Oj= "= w I.J0ZI

Iý 0 <t *-- ** z * WmWý z L I CýD

xW LUU z- 4-mQ---+ 6-z00=u 1 9 A I z~i '+)Q<' Z-',11ZN14 ZX X1 QD Q' 9- IX D "0 i.! 0

3: cD-.--- ý- ZI 0 I-C'--- U WZXMX LiQ4X 0 QNC40* Zi Q.-N U *C'MM CC QX 04 +ý CUCL C I 0

* II -N C' r9.~z (f N ' * Cf9Z CL U 9

V~'. V I v ! v IC VT v -'C vI v-I- I vI 4, v IV vvv It q, v C O -v I00000000000000000000000000000000

1 L

Page 250: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-237-

>-QI~>- *. OCJ z

z **

N "q* nCL-Z M. u Jwl* I *Z ED *

Nn rN c,- N4 Q*4ý

o.. x CD a: *h z- +cn

U) C4 Z U-L u I * 0 *oU C> mN 0 *4- *0

.D ZC ZC xD -0~In z~ c- -4 ci *l"-J tI Im -4 + D 0n M

C) En - CL-4 m I + r 4 *Nft U N x 2 -I z *4 I

CD O1zl- cn chlf z + 1

z - p *e '-xx 4 x2Z - U)Ce 0Z * N EZ2 ErC)I, U .. - +)-I -C w 4 U

I,- x 2* = *"0-ac 2c 0 01.- > '- *

m - chx3Z z '-0 -4- (n VU)* N . -<&U 0 U *

Z - 0 I -X 3 -4 '.4 041 =0 *qý- Q"yoU~ 14 1- X W4 ~

Q ~3 0CD 0 N m 0 * CD n00 t2X0 ftX 0 * - 4f * C

14l x )M W '.' " Z V *QU I:O CDCDTu m 0 2 *N

=0-43(n -W *N 0-4- U) U inIflr". * 0 - 14LL * I *Z*-

-L C30CD I 00 IDZ l- '4 *2OD &NJO -N 0u 'U 0 02 2 4 *CD E

ýO~ux~m . N N rn U U 0 U) 4f * **ONN -X3 * -I -~Z- -U * 2 (10

CO X UZ 4T C4 MN M ',U I--i. CL W ZUU-4-4~-1--I- -X 7: . 4I-* MD #N~4X 0. w-* I Zej-

C' t. 1-~ Zi -o0 4i-41 I = r * *-4 *'4 Z ZW C-ZW N-4 -j 0 - 0 (M= I :ký0 L -4 94 1 0 Z Z -Z 4TU0-'CDU I- gou UI-'O.I-OWC ZcLL~.cLD-Z>-*

'N CD -. > ED -N *ý&XCD'-, M U) Z-f*X7Zft> z=:r * I M? L.W2 .21- * If -(nD ED- I! C (L

CO V-4.4 0 &. NO N*0-ý4" 11 0 2: U)CL 11 X: LL*

,CNX.Za &X L.L L-. goJ C* XO -4N I- En 4 II,9-4 HIX 11 I'W4 0

p - M N Q0 ZZ .0001ý- *0 ! C25~ZZ Z2-Ii -4222-UQU-)U- -- 01=mom ---- WZ Z2 I -- Z4222-HI

>Q -~ .- "-4 11 *'- .* *- - w--222"-.- -Ift C -- O.1D 1 l-cDN~*** --4. C'JU.- V-4,4Z Z Z T"-4 L.L T

I I I & . 4.4-4.0 I-. N U 7 u--),zMM ddQMM -D 00 L. Z Z2ZZZ2z2 2

I-"lm0) -= W.-4-4" 11 II m 110C I-- I LZ .Z22ZZ Z 1z-Z"4-' ". 0O=Z 1-C* NI I II r4 1 11 QW- - - ---- -- CC-QQ".4m MXXXXXC

U00000000000.000CCCCC.L00 CNUD.-'0CD00DCDDC0C C0

000-04000000000000000

Page 251: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 38-

4 *0 0I

V- 1 "0%Nft % .WM

E-*n (n) I imcD N ~j N mz* *L L I U

- *I *ý X I-1E.4 *- z I' I M-W" CDZ

-4 *Z LO I L I - t'.ft &'.' Z -

z ** * >_ 1 I cc:>- 14 I* z~ CD-4 E I W WN zz

* z-4 - . * I . - v fln L jj

Efl"4 1.4 CL. ix I&C.0 z M) 0 1 I & ClD En & CL 4Li wU Li u ce 0 f t - Lic-lIcN x* * CD I -'CD- '<Z1 1-4 "4 1 1 I. x - f

I'_ Z E) LI 1 - . 0reI- E

x 0* * ZI x I- I " ft . fP- I-- w) I Li U a 1--.4 - I--

.4 LI0 0i 0L I ft ' ccft3Z(n Li+I + -)z I CD'N ce.c fo Ix" V4MU I - Z. JC - -xaci

1-4 LaLi U (D xI- I X ft 3000C*0 * I--U) I 1 Ui-1=30 ft

=0 Wfl4 -41 1 .U I fc D.f.0~ fU () Z - * a I tMtD IM4L I'_1- LI I w 0NQýxx

Li -* *C J (D In 1 =0 43 En - WN <Z ZOX I ft%',3b- ft

* -0 a Iof W -I ZXl4.L fCA3 94 CsIE4 (fu u " = (n I U CO a JO-ftN cn

(n 0+ -4- x I--Z I ft ý x~ 0.4 *Li c. .*- Z 0 1D -=NN .3 *Z -

* 0.4 .4 *0 N &n I O a 0.4XCAX W4 LC1o7- >- C* I w I'_I ý N~ 0*~ * *0-1 0 i1-O1 CD0>(LrI.4 XW4 >(

Q (nD z+ rq =0 I UiCG. - - - =0 W4> X N4 U W CD- -' I I.Liu I W N V4C4 0 a 0Z 174*

4M -'-Cfl * < M -4 1 Q .4 U M U 0 I-CD. 4*Li x -4 x- I OD m-NMw> *(no-.-'

* ZO *0 C3 c _w < I -- >- - aZ 0LiI--U".4 00 0 4* *)Z I z C z .I 440 ft CDU**L I-*. CL -. 1 w I U - -U M .)< C~- N -4 0 '

C- * CZ IT X I 4Mz_1 I -TN-4. X N.J 4- U LO-a 01-~ < -a* I w 0 (n I CD .M N C40 0 4 4- 4 Ce~-u If " * * C41Id z Ix - I 'UQ-L0 IUL - Wi I - -0 q4

'- U 'LW W 0 3 m -41.4 1 3 ->-Q>- a--- *Z Z 3U)-11 Vq ) 3 3 4* 'I- * =) I. t. ftC *COU ceZZLOx

-4- +W* - * - WZ U M M 0 I ZCD-'lrJcJ-Qo--- - 11 If

Z ZW~tJ3Z3II~ =3 j I V)-" I XlI-V4X -> Z1 11U IZ-4.4-'0- -~ = 1 0 If 0 3 1,-0 M.CL m -qCs: I X"-4'- ft>-414 ý

.P4Q P<3Li3LixwzxD= I 000.4.4Z *Z.)nL.4C+Q0C3)< I N I JýCt:L'-4uf--Q I Liui0LiI-Xw-.4)C-"-U1LV4 94 " 4 .4 1-4 -4 v4 "fi

000000000000 00000000000000000000

Page 252: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 39-

S I

WI

CI

x U-.

* xI

Cl X' z I

* .4 _jI

X -4- x zI Ml (I-' N ZI X - az

Cl Z> n -XLi. Ix )-(I Io I o l

'iXxc iý -4 WI

II __j- L)CZ Z o -4 WIcx -4 -45 - ý - ,- - . '- - L

5=ý- + n -- -j z iil II' C-4 XI -AX 11 N1! l 7 X > L

X4CJ~ 0 Xi M 'ýr -4 HI '-

ZZZ -4 -- Z~ CZ ZZ L) o-4 J __ Cfl (C.4' CA If<.J. Z IJN C4 tT H

Z .j..JZ0 C- Z ) -lfI~- -j nz0 L"L -'I-- co N 0 N L LM H ,-i U*'sN Wl o-N- u w "-. x u -40U ýq

V M~ ('. 0I >) N M 0- 0-4 0 N ,0 N Tno .o qm4T q1qrIT *t h W)'- in I'4'4' Vfl b<El V )L U)1 0 01 3 010a 0I NN N

V~) 0 0L OLZ U )1 ' * L-m -') .)l- W U" b ~-) - 0i - ')0DI Lý U-) ")U) UI '0000- CJL)'-00000-4 '- 00-'-- * 00WI

Page 253: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-240-

I.- . I2L I

ia

zw

I-LA "I

01:4 1.1h

Z2 I

~DD3

'z )Im mI

IZJ~j I

iziI

"to

w wwI

4-1-oxx Ito 0: w I

-I I-- W I-Ib N C I- II •.-12-

9.4 z) I

U U " I •IZOI 'ft ft 94 XUCa-4Ile '.94 I-I

0% s-o 0: 0 1~( O9 .4 " I U I " I-Z IJl I

S0 W C I-- L .IN z * '. 9 3 w W cc '0I02 X ~-I- z.-IMOo-x Z+-X-I'.i ixO 1 I

I a s a ".a " I I ii f I , aI ft ii z cc cn IW49V4 94 94 " "4 94 b 944 1 94 V4 n 4 1 "9494U I.- "M z II

If 11 u l x 11 ifn 0.' < I)~ .J- IW44 9 4 II II a y :W " II II ) " E4 M c I--It W4 " 94 90 inU~ 9e 4 7) 71) -0i m ~O IZ - C11 -O'-- - I II I 1 1 O- O O- C O' 0 -O W 2 MZ i.J C 1

C)U UJ UJ{

o0000000000000000000000000000000,Q IN M 0k 0 V4 N" M v IA 'c N" W %. 0 W4 N' IM V IA N M 0% 0 "1 N' M IV 00 N

OO0O0OOOO OO0OO OO.O0'00O0O O0IN K N IN w w w Iw al w w w w IA IA- IA 0% IA . I0 a. 0% IA0 0 0 '0 0 0 0 000000000000000000000000000000000

Page 254: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-24 1-

'.14;. LO CLL.

o '..4cl CL*

- 4Z ML Z *

W &~ ZZ*

M M W -Tw*

-- '- w~~ 0 *C0 0 "L u

. w

:r Z *L: & Ze UM-rN. a.~ < * ( w 4Z

1., - -- jc ix -*r zcZ *- Q - Cc = .4

U --- 30 X~ En N*

~. * 3 I z

~- :.3 =X 0.4 -' -' Ci)X 'LLA- -CL 3 U 0 M-

U c"N0-N1 Z- N ('~-Jý>NN.= 3 -a w * iz i-U) >< * C'-X b- -'-ZZ

CfU)r~4 C _j . LO = * * z*0 Cir<- c4 4m. -tn & wCiJ

M L- ' w> Ix- ce T'l4 vU-'4 C- * NN*UON-- j . a* 0 " " M M.4~lt ZCO -14ZZM

.WN4Ui-40 - > - U)U )**'O-'-O. 0' '- 0Nza) *'-4 U > X4U0xMW**-

* ^ >-w 30.-,.4"Wuum~l-I- W-WooXM 3tvC MOXUUNN**ý4 0 1l~eI I I C

&<NXX4 -x z-I) --< Z-tCJ+ -+,-q."'44 " r f 0'- ^ --ý^"'4 . *-JW "-.-qum *E.4.4ZZ - - - - M).f It eqN1U)Q'-I)cNJiC' I-UPUO WMMO)U)U)-,4ýZ I -+44+ZM

UQU7u t 1-4Q+QWWiUU**WLAJ+ - *ZZZZZ %Z3&>-I>- w- U 11 311 *C)*¶-C 1 Izac~zzzzzc'i *

0-Nunuzoz I 4-OCLa.X> I I - -WXMMM .+.w> *wzzzx.u- 1 111 11I.4.4zz~zzzz(,JI4"1-4

U U00) -. ; * 3ILLWLL~w<<U)o "" 0'4- 0000Q " s4-4.44..-4.44

UU u000000000 00 0000000 0000onooooooooM * 0. 0.4 N M It U 0 N M) 0- 0,-4 NJ Mr 0 ') o N w) 0, 0 N, 0~ % I0 N M) 0-.0 0 -4 -4 "l Cj "l 4l v-4 -4 Nl N' N* N~ N) N: N N t mmm000000000 000000000 0cn~00oooooooo

Page 255: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-24 2-

* *

* CA* c..JV)

w *z *-

X (n'. a*

* u *

x 4. *- c*r U, 4 ý-QUZ* +Wnz-- " *Q e* J'4.4 Zx " *ý I cn

m xLlU "...J 'Z4- M -4*WU -CA" ll n -~

UU*,CI< (-- -:--3W

1- 4 *z If +0 3

's.1U It 0 X44 ~ *' U*I '.- 3z M1

Z M.~ N4 W C -4 a&'. 1-I- a If ,4 -4Cfle'

M"4 1 ""ZX WO-4_U 114Z1"43- -f 11 O ý -e'Z '.* 11 .07*O

1-4- 6- '- + 11 V -II I 1 ' -W W. =d Y- W4~4- 11 11 -4 1**If *+'11-4 1-

"o 4 'oW%-L %0'o'o%0-0' %0 'o '.o ' o- c W.0 o- oQs o' o' '.o4-.4.Z* %'-0 ý**I'.41 I 0000 I 0 'I II -30 '.4--'++---*Z

Page 256: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-24 3-

U z

3~ UNI * I

1-4-

'1- XC.

* *0

zz

ZI

z *zcn*1-*~ U -

*1- *40c

0+ N'-'U4 X NiI

II'-

1- 1- 4L,0 n Z-n If -Z I I- -'- 0

OWA U- . NI 1.'- z N.3 rLUr- L.4 0 Z*L4'0 7-,' 1IZ& N C)

W3* * X-'1Ct C W *- Z - 1-,0 0

:3* r- Z 'ý-4 'eZ'-+-- . f- * j N LZ0 , ~ f m z:3W z -+ _-j m'-ý- I Z,4~0 Zxý---z NEW-I* 3 a '-- OZ * Z Z 1111Z *WL *~. - 1L Z'->.-4 *'4

IW3-m 11 Xi Lo 11 I-k4 111 II .-4-UWCC if 1,- "q ll W NZ E xI ý1I1 Z Y 1- 11I-.4 -... I.f-++ i-.-o I rifIII- + !I E -

* 0Y-'Z+ *Z.eZ~+E0Z -~ZZXZZ- MENCN 0,0 1--Z-'Z4 Z01,ZZEX.-4.1xz zrz0 qx-jV'4

0-"-oOoooz ZL&.4000uzLLNouuuLLNo0coMO

M T ~IJO '0 N ~ 03 ' V'.4

0 00000 000 000 000 00 000 0000 00 00 000 0N M ' vf 00 N M 0, 0 i- N~* M) vq If) N w 0, 0 9-4 N~ Mq) 0 f '0 N w ION 0 -4 N

10 % % 10 10 10 %o0 10 '0 10 0 10 -0 10 'o 'o 'o 'o '0 '0 0 q~ ' 'o 'o 'DN rPNN000000000 000000000000000 z'.c,.)0000

Page 257: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-24 4-

+L

u-

I.-n

-* z a

'-Z

if > &Q .' -+.aIf>-><LiMOOC CZ

a1 a11I N 11

m---mzoowz

4-

00 00 00 000 000N m o o~ - jr

OO0O000000cJe

Page 258: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

4*3mfx~.,W ~ * C Z 3 -'4 > **

Ix * -04T0174 3 .*4 *x I *'-L "Q-4 LCL 4* *w~ c 1 4*0 -- %-)-wh 4 &* 4*

I- C$ 1~ *4 *

>-uQ I *...ICJ-'M-' 4 * *In x.I.f- =)t * 4* Cfl'.

0 l- I *mc'wriom.z z cnzu

~IL -4 I W .0'-.x~ -ft x* m-;c ..J I *N.--O'~f co4* "

0I- W I *-0t ~-'- C. (L*4* U~ý- -I * '-0..I-o -" 4* 4* 1

*wi-'.-~ 4* 4z m-4'u'- C. I *~--"-S 4 * UT Imz I ftLmcetxtr 4*w LLi.

wow" I *0-.c 0 ' 4*ý -NW Cfl*cl -0 z *r0 -0.I-i =* M* 0

(f) Il *- *j- w-'4m, 4n 4*o~

toZ Q0- - ~.- Im * - i

o cfll *UL)l,-.JQ- * * cr- .JU. " 1)1-" I W* -"=Q>-C.". * 4* *WL.Z0tf(n-" I *-.- . >. tz * *ch - 1-

z w I *OOU- - -Z~* eIxmZWJ I *mr~j -m-mrcn:2* *WW2ZO

-1.4 " 3 1 *Z-'oz%ý--* *w!1- NQ ~LL. I * " 0C.1 =)0 QCL X * * x Imfloowl *au-.n~x<4* =ýQ

x w ce:u I *o U -- '-~ *Z -zz(flLIJCL < I * -'3Am- -*- ~ le4W

* U.L I Z-~0U --. 1-- M -1,- 4* 1,- X "0Zx- I 0CON -0Qr'm3N~Z 4*CL0.xZZ

wl'J-I- m I % -I-LI * ce- wce Nix m Enfli Cm &JO &)-OU % m '11.20u I -or'Co~ j- -. *'Z1,-W &* Cj).W" - NCC-1--Mý - -Q1- *'4 z cn cf3 -1 < I I C..Lj. .-J'.0N - -< *Iz lx -O1LWlCi 1 0 *--cflzr1j- &LAJ- *L&1-4 W L~J_.jZ > " I &2-.0 '.U.-4-3UW .* IQ- .

o OI 1 -"0CJ-- -r4>-Z Q W W t'~.W mw (nl 1 I <?Mý0--3 * CI-*Zzl-xI- 1-~ M~ 1Nlf-~~ *, -c IxZmCl~ In z-~-% i~- -(* WZ"-0'xJ- I)n *X-flZUOONMO4 ZUi-c Dnin I 4Z.-00JO4 ~ -

o.4ncn I .Im -- &* In z Z ICfn < I WLLMN0lM3NWJW.Js & *ON0NinI~- &.W<

qmQ I l'- Q- Q V)3 " QCA ( 4TNi'A-P4N .4,-4 0 9-4 in i4m4TQwZ I ~ U-Z &=->-A-ZO-..-. bl U

O"-ULAJI CA..0XN02J W--<0ecCdajCe~acZo..<< "-ixxzcei I wO-NQ30W'-iLIoo00o0IIlwu-4.D

La. ** W44 " 4 .4 .4%4 -1**UuuuuOu U uUL U 00 00

V4MOOOOOO0OO 0000000000000000000000= -. N M~ V I '0 N Wn 0. 0 -4 N M~ V IA 0 N Wn 0N 0 -14 4 M V IA 10 N Wn ION 0 -4CA 00 0 0 0 00 .' ~.4- ,4,r4 W.4 " 9-4 "4 N N N N N N N N N N MCA000000000 000000000000000000000

000000000 00000000000000 00000000

Page 259: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-246-

z IL

*L W

u* * *

C U * *-1 * *

b- LL 00 c*0 ~ I *N Z -C*

0 <C L.-4Z *

3 (3~.- N w w

04Lo '4- *.1 Ic *.W W M _j - * W4 02Z-4 ' "30 V4 *3 1 I I.-

x 0: 0 .' A.0 U) 4xN ozu"'-'- N%4

LaLIU.~ '. 61 LuXy '.4

WW Z0 00 iX Q* XWU) ~ Z 4' to- " 'rl C L

C 0 ' _j 0 - Wf "I- M IX Q0: m -4 c*V-4 zw -O w 'X fZ1.-)1C-N. "'.J IX '-o 4 '.,0-14 (1) ft v2(

CLCfL4-.JQ L 'W-4II'.J 0im. '02 - Z'-4-0. 0:

NZ4 LIow '0 -J--''~L OW -0 C W C (zC.IIU

wn*ý LI"~nP *'.4 *~.4~- - 0 It* 3 , v

W .4 W.4 Iy%3 0 11-

0 0000000-a00000 0001-0-%0 O00f0000"'0

000'44~00 00,0c000000.-0000 I I II'20211 i i

Page 260: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-24 7-

* * 00

-4 **o In w

'~- * *

0o z

. -4 InN *

r l'-41

r- (ii *4"" 0 M

W ui z

im z *_*z 2 * * X%

_j 2 - * 1 1 * IN- Z W- * 1 4 0 1 qý4 .

4-4 '4 n _'j C 3U 1I -4I fý I 1 1" I -"M I

1- (n 111 It W' " I-M-jz 0 1 11 - " cn .. 4..Mw~ um o

<M 04 Mf- LO4- " 0 ~fX 11 XM Z 1 -4-4 4~ C ' W 111-0VjV 0 0 0 . rE

V O ' - NMV01 -4 4NMV01 W Oý 0 V-0 N Wýo%0 %01 %C c -'- %a 0N 0N N NNNN wI wwww f.0 % %0.J 0000N- 00**0I0*404 Z * HO * "0 *1-2CL40 0 Nei .. "- >- 40 -'II 0 ooot'II

Page 261: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-24 8-

I C Z 3-'-> La0 ~00 1=-3 w*

1 0 ý-"--w" w .- "I ri* *-' m iz w 3 -j

I -0'- W- .*I . 'J ja ' -~ -% to ccI .J'-'I- w0I- 2W*

I cr0I . : ox*

I N. - NX-0 M4CJ-.0 - '-.

I <-Xr'J-094 -4

I zo'~"- . Ca-l*

-'t-I- NW CIxf *I 0'-U70 & w*e

i MO -eC.L)-sW wu*I I-*.-0- **I W

I C~-1 ---J i MIN ZC*I Ulz 0 - C - -- Q* E

I -- "Cr->*Z- ~cn (nI .> zf Z 0

I M . n4 ( Z- I-qI Z'Z-~ - M4,-I ZV-4C~~.) OZ -I "i C N = 0 a 4 -~ ZXL

P*-0,%I -oQ< < .j

.1 0ON *0 ?73(1 ~cLI - ii *.I )-0 3 I- Li

.1 tM~crJ- - M . ý- Z Z

I La. ft4% o.Q(J- -4-

I O -0 *17'--9I3 Z - CD l' -.- 3 .oe-j-' -0>-Z f oce 2 Z Z-

I ý)%Q 3 . &CX "-W §--q "-4"-4(

I 940-' -M-'* LLm 0 -'**L)

Nft ZQOONM-Ounf wflZI-*33*-- r-jm=-r~j~fL~L 3 *W<<~3 .

*I 0-.- a a -. * .w.w3**< +PIrj0I 3 JOM jrLa -j0, 0' CLa.O3 - >- * >

I '%-.'-3I-04&Z If X '-2acc>- WI

" Z &Z'-" *- -X7- X-->- C9-4Cl" I- Ia ~09-

CJ..J' -p - an f g 4 0-*l- Z ý

&=o-00 *Z IIIIII 0 0

-4. *- 4W fL j l

00000000000000000000000000000000N0 M' C),0 0 "4 N M V In %0 N W7 01 0 V4 N1 M V 0 % N W7 0' 0 9-f N M V Nf 0 ýCN

0'% 0'. 0" 0&. 0 0 0 0 0 0 0 0 0 0 v4.4 -4 " " 4 V- 4 W4.4"4 C%4 N N N N (" N N

00000000000000000000000000000000

Page 262: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-24 9-

* * *

* 4* ww Ix*

* ** ** Z*n n U) Qw *L *

*~ ** * * ** * * *

LA U C *

* *- * 0

L* 0 -4 (n u 4Tz w *) * I cc* E *j C3 . =

f z 00 * 0 Im

W. Wn * 0.14(1z * .x QJ Lio 1 * 0 4* 0T

"CD * to 0* Ua L C * C4 Li' cn

U, w 1-4 X*f j W 4 uUix Loi )= 0 * -* WZ_'- 0 (

W ~ 4T V U( C * - CL 14zWn 0 r - * - 0 In -I 4 *LZ- 0 00 * - (fl- '-u"Z- 0'- *U '-no+ 'TU W- w

cL. .4 9- * owO- -J" in 0 XmW> C* * 00 L O" *L LiM +' F-" I- U

w ~ C Li -4L Z NO 0- 0 Z% ý m ' 4CL-1ftd "ý -. * " Ix

11 ~ ~ 11 IZ4ýc~ -z j-- Q I- *l, Li0 .4wuoc-4 '- '-0cO* 0C % 6L- Mx'- CQ

I- -4- -1 09N L N" o-* Li mull

U).. CnOX.I-<0*J 4C,*UZCI cn--

0 ~ 1 ww<ý-0*-ww t-0 w.wCl -4"-41

www 11 W-4- -9 -*L *CflW-ýO 1 (fW' WLI*Li1 )4T1 ý%1 .x I wwU w-* * >0.- I.-4- wL+-- 0 9-I-U w" "N0 w _

I-- *-Qz Q u .9iu-r~zn- . H

w ý0"Nmv0N oCf * i0 V4-Im-v0O.JNw 10 C-4ZN m ii v S0Nwo

I-9-4 94 " 9. 9W4Lý i V'- -. W. V .. " -"4 Cfl .4 " "4 ", W4 "~ Ut 1-4 .4 0-4 V4W4-4 V4

00000-0Z000000000000000000Li>

Page 263: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 50-

IxI

C-4 *

3 *E

u, 071 (.3

ej w X5- 0 M

Q Im E

t4- 0 zI U -ZI

_jC U * -1- ýNO M N r-Q' E

* '- 5 ý-+t- - t.I

*CD - V

P) V'U- -0M Z Z <JI-> U N- + U 1- V

W ~ u%- u . - 0

U~~~~ Lo-'- Lo+ -

WW -"-1 -S-S * * 11 1* It -QIxzu1 W 11-M-W 4W3 N U- * X C U W e4- CA. U O1U 1: . n X - 11 >. m":3: M IA. 1-01-

ct b.. 1!- C -fl 1--*1 I I C "0n - - Z ~ q u -.4 U* =.-4-M. >-I.4Z -Z .4 . Li- C

X *j 0,U c i 4 it 4"V - . u nt I-i .

N1J1 Itlr~f Q- X* I-' 0-'Z Z W CfN *-.tf-Q Z-+0*ý-NZ Q Z Z',~O .. 4- ox5-E 0- L

x Qm >U-*3 3Jm -4UQ-Q _n,* m .Q *I*. eu - 0w1

0000000*00000000000000000000W)0000

C.. N4 -'.40' 4-4 " I- 14r4 -4S M ZtV4l*'. 44 P41-4" W4*4v 49 4C V-4 "00000000000000---'.30C. U'00000000000 00

Page 264: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-251-

N N,

U u

1-40 1 0

b-4 P-4 -

.1-4 .4b-

J.-4 '-4

0 _j 0 ) -1 -

0.4 ~ ~ ~ ~ ~ - -'-4L e (- -4 l

N 1-41 P-41 -cc 1 - - 1 .4 X U l -j4

0 F I-4J 01 x -. Q X CJ-4Q-4 - - ~ >- 11 >-C . Ob ~ '. -'m

0- " -0u- " 114' ý- 1 X 1 0 ' - I-00r~ Ic M" Z Iz l- M Z 11 X It. Li-40 )(

0D- -XLCD- )(0 )<0-, ft ' 1-4L- %L) P,

LL -40 '-4 x-' Li II-4 u lI )C14 frXHOI-i---1 O*Cfl11 1 11H 1 - "4 1Z- i -' "I- riz 11 -'Zit -'00- 'X4

X ' ) W (n-'S Li LA -I L) -' .4 *- . Li ci Li U q4 r- tr M f

" " * IXfO -L-'i-- - = N N 'o -j Ni4 "Cl *f o *. I.-

oW >- z '- i14 x- - a- "4>~'+-

'-4I- -4II - -I ,4 IZ V4 -4 _j C4 '- "- 1- I- Nl C 4 '- N -4 - I- t- I- #. I-

10 NW 0 ' 0 N4 m~ IT.. I "4. .4 C4 Nl Nq C4 (

000000000000000000000000000O00000Nl M Iq '0), N 00 0' 0 -1 rCl M -T in '0 N Co 0' 0 .4 r4 MT loo ' N OD 0', 0 .4 Nq M

00 000000000000000000000000000000

Page 265: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 52-

I C ZZ34Z *

I u -4Olz I CL *

~ JN-M~-3 *

(fl 1 0 X - 0 - "-z I -CL -o94 M *1-4 1 0 & < .

Ix I *oL I C XJ N>- 0 -"4 *

I -- r W W*w I 0ou.- W-- -1*

u. I MN 'J-- .4~ *

e. I -. -' -J ý M - Z " *

u -*-'- " >- .Z -*

t.- I -ocn- -j r -p'LCJ I ON~~ &Q tm~flIw*

ce I M - tQ= a W16* -Io-j i>o -0 C-1-

ii. I I-4imcl~.X *-_j.I ILL. &- I-ON -) *ý

= I I U Ln'.'-i)- Z 1-4 C-4

u1-* 1 -0 *u- " 0 u )Un0oj 1 0 - a 3- -CJ LI m.

En I 'JT <r -%O 0 NW- I-. I &M l ý , -1 - *n 0

N4 mu I MUXM- &&-Oi W UU VJ

o -J.a "0 --- cza *J WNMXýZ I- .- - m 0.C L U16 1 o U2ý''. &"z 4 UL Xf '-) 11 -.-

N w = ON- I0-~. m..4P.j" z -i4 M- W*-3CAI e ~0 16O-3 ~ I 1-- -) Iu +W W z . I -z l~ O -zn wxW-n ~ cw i . I

%- I - 4w L4113'' &-MN- 'C< If C-I- M-. I W 1 0*W i>- I--=1 I U -L) >Cfl - 4U E)1 11 X-' L W - -(JU :-

LI *cZc MW I *-U OJL Z-14l'-wix .JO-4 1 0- .CJN Z-WO- L)--f'- 1- 091 - M _ LIX - I XO-'- *-M WWWV-4 +>(X- .. *-i

V-4"N QLI "L I X ~ Z - <x li _j f1-4 Z -

LI~~~4 ZC.~ ~~v- I4 .- 4 - 4~l- 4 X.J-4 U-4~lI -V4 "

N-04 '.- ~ I U tI4 tlUI I) -- L .~~

v-~ 0 '-4M0.0 " NI 0-.o *tN -. I J MJ- -'0- 01 NM0 0W

II 000000000000000000000000000000...U'JU--Cl I

Page 266: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 53-

W Mi I-> Q 'IN I

'- C

N c I- co I+ LL (L C I

cn u I

N -4 LJWlj-

L.JL - I

LL N + . LL-

U 1-4 m>O

+ .- Q '- -. 1~

* " * * N w0 InLoLu* Q * IIIJ a

U - f-- .. O ice IU) + QU Ni UU 1' I-.1 I.

U *1- P-2 1- -Z '0 )wC Im -r.4 I X 0w I

(n +. N Q i x~ .1LL IU l-I-- uuN L -- +m I- C I>.J I

+ = - U -' r4 - c -4'-' w I+ n f * * c-4> N Qi (l'- Ij. I

M U >. 7 Ir- * co w w- "i 0 IU N- ci- <c m U * w z--c I

(f * 0U. I- 1-- N1 CC -I ~ - IU) Q im.- '- Z 174 C' c (n- -.1 I

m-4 Qmr t'N1 I-f -4 . U-W> I&*U oUUI-M- UUN rfI 4 & 1 a 110>c 1

W- If Q T4 1 ý- - V4* U-' N -W4 U)-Wl: 3

1, 4= I-UC + '- m X I- >- W1- U " m II IL)1 IM L 1-4*%V U% 1-1 OV 11- *M-4U C JI-- O M * I

(1 -uml-v. -um un- C'- ~ C) _-j C IM 0 i I-itoz . I~. U t N "-- I-- C Q 0,1---m -1I I

UllCU~l'>-'~U~IC I *cUF- 4 1~-4Mf-<IW= I

00 000 00000000000000000000IW

Page 267: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-254-

4 Z3- "X>-0~ <- 0 =1--

0 ft.%>-J

'~0 X - 0 b

-~ (iL 1,( 0 -~ Zo

<.OZ -Nfl-,-

oýMn & -8MO -. L)- . N

0 (f0 0--- .. w C

>. C(. N- a. z4

I.CI(M NZ~ 0

mr4 wm-mJ0- l' n ( -

Z"Ozfý-ftf 0 w

-3M 8 90 Z +

ý~~ 0f U) +P_ %r ,4

M ýýzjm 0. ý- 0 ( 0

0LN - &~M3(N- 4 - II.L. ~ ~ a0 -1 -- -

ft.JOW 0LJ WW MI 0 -0

ON^&Ck-Z 0 x 0Pn JO (N3 w.. m-I In- + 4 4

*W (N~ M w MM ^1 0 0 oi

"Q-~- &MI-i w( O-'Z * 4 W4

a. ZU00(NM* -~* 9

a.^% & WQ<-~ 94 V-4

"s-s Dm.2(fls-I."(0.. 94*n* -, niLOM3 .0(N &X) IfwIWIIl'- %- -

Z ->-O0 - &Qs , Q * If if II2zz

X0 -J%- -3 MM 00 Z 01- X- X- X + ~ 0ýU I&,IzIzI.

W4 W40 4 (" "f 9in " O4 .9 fl' % 00 4

0000 000 000 0000 000 00 00000>

Page 268: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-255-

0J Z M3~- n~*

LLLLI w *0~-- z

WOO I *-O~ * * *Z-.> I * -. (j ý-i- " * z * -) _jcn z *-i .1 w -* * .Ill cI CN t- - .j~ U * *ý *Q-lzL > I * wrc~m-z ** *(nl-*-'ce- 1-4 1 * * Cfl. - w(a:- I *0 zXI * I.LJ u0 Ic

0 0. *.

u*I C-~ * * CJ*-Z En Zrjoz I*10ýcw<" *X - - 0LL. = I *-'0I-4 " * -4-U 0..

M -DI *MO(-Jr * * UO . o"cn- I*'-r~j(I-W4 *L * u-1 Zm z I * - 1-4 .- *r * -2 ýi.-i,.

02z a *0U -. * *c l'- Q- 03"1-41 I *uU -i-Cn * * T U ILL 0OLL *0c- Z * 0 0L.. I-0Z

-1 OZr-~~b.q - zO0 c 0 *x .4 cli III j" Z *-32z* ZO0.-'.- Ce-C Z I * QU - Q * C*.I- QfL LLZ

Il LI * U . *w* *M1WZ.Z LL.wI* *--ori:,.-qun *Cc0wz- "Me*"-4J1- I x: -'0o'n.- .- 0I-- *14 -10 .. iO0 Q0cV) I <rorj-c Lz -ý 3awi -j I c~rm-.JQWcW *1 W14c 0 .ccWLiW I .0 -)o..---Q-.X * Z " 1-- Z LL 0Ill

Ox- I X- - " 2'*0.-. * Z 16-xJ0. I 2-0' -0-0"< CL * " LL~-- 14ZZUL I Z -0oe W*0ým *c~Wo III.LLJ4-4 I "OE C *CeZI-m Ir .jI- WI 3'-1 --p~.Z *< -- la-- w f0..zri- wno-M.. .cro *LJxOLA.x cn

x < I x - *'-4uoI-O.4 -- '''* - ZZ x m(0 zc: I 1--- .- -riQ0LLL--00o - rjr*O.iM"". CL C.1Wu C)W 1I ON -'.-0 Q o 0 0 . . . t2 2.- . 2z00Z I l.i-mri wm:3 SLL.ý -oNoNcof-,a-w".. wC0-Ce ". I W *-i x * N ZI-. -.j I 1-42W)z02 I"4LLLOL0Ll~OO0f..OI.wo --0 I M CLQ CO3 w - LOW) N U').-ir, , N Q4 Cf. "4I"no Z Ci--M ---- *~z

0 4T 0 I OX O -C~X l~xe zL < -< If CCcleZzog 140-NQ3zw00oooooww1 4 1 4 w4 .w"CL C " x I M LJ'- "3 wiLLLLLLLLLL.LLLOQC iYeO..C &CCQ

ce **0000000* * *0 * V-4w4 .. I..* *LLCJLWUUUc.,L u Cuu uCJ CJmoooo~ooooooooooo

w nvI bNmo nvnoNc ,ov - vior oa

Page 269: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-256-

I- ii

Z * L

1- " 4 * :* * *

-. * *- i

14 -1 M - Z

<U *3 *0 Z

I'- *C*

z- j * ** I z

_..j1 ?*. Le) *- W

<. * *0 ft

u.3l L) CC WCO-. -3 & CI f!1, Z

co -CA * 4 '-' r-4

()-4s W U -1 L")

4-1- Z 110 L - WJ 2j

CC 3 al LLD N 0-4 I4 Cl .o:o or u 04r i jL CJ CZ -r ' "* - CD,-ý L nz m m

zf14 Z-s u 14 -4 Z1- 1-x CL t

0 U- s z - CL W 0 i_0 0 a-*cz 11 - 0< - -~- _j "' 0 J 0 - - _j.1C _ :

0J0 0~ -4 *- 0 I-C 1- (Z, .U141-.-4.C. WZO.-4 *. 4T 00, x 1

0' -ZP - * OL-4- .'- W *-I -'-4-JZ WCIZI--4 W-1 -V-4 N 0 0 < N = '-41"41I'- "- -Z-1C4 1: 1z0-a - *z If If M ( ! -l XCC11 N Z -4( _

m.< < C <<M<"0i Z f-4 Q fU- _ j 4

M Oc M0 0 " - T00 ) .0 0 N-1.1 MJ V*0,0 N M 0, 0-4 N-

mmmm'1I m In.0. m * 4 11, v--Z-.Z- V, V000 on 0 01-41-4Li

oo o II It 'Ioi, Ie_-4CA.0Cc II 0

000W00000000000bWW0000000000000

Page 270: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 57-

:3 (n

00 ZI .4Cji-- i *

I- ~ ~ C I '~.-0 *

1 0 -X z

0 I '.-0 - a'--cc I wL-O *

I *co

14C -4J MLi w <

0 LL) N-f *

por 1- .0 C)

z I w-0J~f4 .>- z 3 zI-- r wT I-- IL

M =) C -. 4e'-tu -. czw ~- oe z :3 w -j

Co I - C ~ -. 1-

wU I - eO -Al I-- (n Ic CA: ixI 0 N - *CL Z L) !6

cn I M )-Z_-.3ZW 0 - Wn e

l- Z I M.. *.4UI- . l 0a14- I L.&0 01J-4 i2.1 NI-U

f I 00 i''-eji .z CL.~ U.14 zuOEn I '-O--0-3 & -4 0- 16-

'-.1 ý I ONi0W3 X * Z~ X- ED'III 0<EzI M i'- Z -f--- 3 W W N~-'4Z4L

0 l- I " .. ý-.0 i 00 00 0 14-' I 0 )0 ( I 0- to *0C*~Z 161 .11~*tz zlL~ I w0--"4'-I- xil'.-4N--.tO0

w 0 L-. I L.-0- 3c~ CA ý

c UU Li w i - , )--

m 1-4 '0 I W " 0 .. *Jt .1(1' CL X' 0 f -4 C*Jr4 if < 0 NL Cd W ' 0f Q4 rj r

00000000000000000000000000000000

Page 271: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-28

* * * *

* * *w* * *e*< * *

* *I*,** * **L *P-4

*, U.*LU * 7

* * * *

*Z *- 0

* LL 0' - *

Li~0 * 1U

0 0 -4* 0

* C-4 MCO-' 0 rL

0 - * o 2>_j- 0- UC ce U LO. <,-4 0. toC T= -q ý 14

0 -4 0 *r -a 0 t-o0 * +- MCL LUý . nL

4-i . (' -J 0 - = W j - I-)*:0 * 0 . Z4- CO+?-c : r I "0 : o ?* No '- 4- -4+

o z L. * N.0 Lr. Z6u 0 *,u -4ZJ j * '.- *' Il *C 4- -4 0 " ciL

-1- oqt 1c - ,-C. b) L)C - Zi x M*j1 1xM - LU J 130 N 'o ei c i- a -. -4 - -~0I !f* L- m w c i n-.

*<-zfr UUi* U~l UI- -~-~- -*

U - 3J* '-~. Jý-cZ MU'r-"1--MUZs X4'U-I 4 3 3Z 1:

%aNmo ,o qNmvn o ,o- imq " o14- N-'- a)W)~.. 6iIij-4 o*'- j -)bCD-.0- 4- 0 0 0 0 0 0 0 04 -N " --4 14--4--+ -. *Li C-. '-j I' 'jC+0 - '-' " - -4 "CU "4-- i~'- -4 "-I l 4 "1- " "-4~ " -4 " v4,4

'-00000000CD0.J000000000 ---. I L 0i 0

Page 272: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 59-

* I C ZM~

c x-

*QL I Cj W im QI ll I -Om -sZ

Il I- (nC4

z I -'J'%aa

0

Z 0~ r~o-ia:3 z '-4j -W~J L

u LI Q --.-. 0 L I aa-Z _LA_ I ~

C-4 *1-" m I M rJ - M 4* : E- cc I - '-4T -ce* zz I- 1 Z V.4 3Z -I

*~ ** 1 Im U-0m w I L)Z )4~ 1 0a- 0M16 1-1 -~ 0 N - 16-

1 0 l Q-cn u LU I w 0 n - OM

* N fl LI w it~l*- - I- I- x -1 - I r-g aa

lz oc- z z It j.e u0I--.IM -'~ -4 IN(n(n u I -I- -M W-2 En = Ut- x W0L 1 6 i-

(n N, f 16- - U ~ Li U)U 0En0+ 00 ix .4 ixI %"quo'wC* *.- f.- U)U.".jI - . . C.ITCt x- z'' (3 0m -L _ 1

Q ~ ~ ~ ~ ~ L M zM0.ci, m= nI m4-I WM3 ). I- 1 . rI , -aa,40

*1-4 1. LI,-I N - 0c Z -'- 0'40 z .aa(IZ %J E*~ 11U M1~. f-I 3 xNIM WMLU I ~'CL mC 3 47cr) C-4 U 11 W u 1"M mW-1-0 - I - 0 :3 =)I-I --- 0'-3Ix"-O -- Z e 11CDLL0 X -- Z Z cie I 'Z "Z- 0I*ll I l~ UM '--OLI 4 WO *C C1 If t "Cx 0L 4L o- MN3ýWw"a~eoI- 11-. f 0 1, f r- 0

116- -z -WZZzwQ.-.j 0'42NOZI4ULIIIOZZOZXOII 0ZL.4To0 Ix 0 Illz =xz I 0 - Cl143Q m _-#QQI-u0 u0Il3uaw0 1 UJ- -3

Y4~1 -4 *4 -444 .

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00000000000000000000000000000000

Page 273: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-260-

*0*o*1

*o*N*O

*'.

U S.

*m LA.

*nI 00 - 1:

* 0 - 0'C4 .

*A 0A 0-4'

C* U U 4

b-4J M2JCA.* z NS * - - UCs

IX1-4* U Cl (Ow ý * -M u ~ *-. E al&~ *T - C 4 - 1 1

w~- cc CC 0 N - 2(nO 0 rý, F- - . o n(

X m *0 -Zr I + 20.

-4- U) - i- * - * Ie-

%-40. U." Z * * i - ms- -$- im 1

CZ1-j 40 U0 cn W p-- 0J --4 174 '- -W- C 1 U I *-1- 1 r 1 M 01-1 Z U It - Ii 0

.. 4 --- 2 I- " -- aC 6-4 0 - 1Ce U -Zn "mc~ 00 Um+- UU) U13 a-XI 0

I-U WU-x if " UCJ Ifs _-* - XPI- c 1 11ýQ 0ijZ N- Z UW)-LL C L Z0- '- *-~ 1- - I-ZZ -Q 0 X 1Z& "Xu"=21ýI D--4. a.- "n Ms -- > 0,4z C4 U)n c

-C~~~~N MITz- b-'U 00 NU 0(, UO o-'C

2 Cl020)-0L0 C 00L&. 00001 ~022000U000I 20020- N M) v 0 ,0 N> M- 0, U 14 N M V 0 ,0 N M .O ' 00 1 NM 0 1- N M- 0% 0.-)

*0 '.0 ('0 1*2 10 C)N 101 01 NN %0

00000 000000000 000000000000000000

Page 274: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-261-

3 I n03 -0 .I-..L

Li. I '-O0Z z

n,4 C-

-W 1 LnC r

I & C M- Zo I - ."

x 1 ~0 -X<-)

IU -'1

0- i -Cj~ rim

I MCI-'. "1W" I C0Ucc:*w

'.0 I w '' - C-4~NiC 00N - 0. c

cc: . I 1,N-4 iý-4I0-w I -4C41-CM

.ji I Q C U 0"W I '.0Cl-'.n(tia. I ~ -M w N

W c I oo0r-44ýýI-CL I M r4-0J- u M+4

rji I 0CN- 4 -crZU)Q I Z 1-4:3 Z IL < 0WW. 1 - 0 n M(0 0

CL (fI MU ~0-0ý-p -~W LLJ I & Z(N . " )CmwJLJ~l ft-~OMM- 0 :

~z'-e N I' -%3~ 10 (n +*n 0 N - '-S' 0LZ -1 x

En ~I MfC)0 ) 3' _j 94 W-0

0- pI M C-3 A .- 0 Z &

c - I U'ý- --- U M.JO ý(flLO in ~ ~ 0 )** LL &0-0 B

=1w I 0- r42C z r4 c0-0-.----'u cz I O0-'-.-- & = =+-ý-Z--I--i- wW1 0 N0ZJ L- X -, Q- .- )z1-1<-- M c..I- Z- 3 Wt -'0 o +c

U cU U I EnUt-ý *j-C X -

00mI 0000 00000 000 000 0 00)(N ' qL .N 1 ~ 0 i- NI)~I 0 N 0 0' 0 r( -a*IA'0 00 0 00 0 I m-4.4M3..44-

Q. 4' '- 4' '- (N (N (N 0. QN (N (N (N id( N( N( ( N(OOOO Zoot o00oZoWooZ 1,-4 c

Page 275: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-262-

*I w *(fl w f I * i m*

inz_ *- -0 - 0 * * * 7En~- :1- *0 0---i 4 m C

W O I - *L *0 - nC4~ ~ ~ ~ *u -, 0-Xr-: z

0 (.1z *r4- -Ifl-~-* *0 b-Li.= " I *'.- 0 -' o * (fJ tn .

Xcc I M 0 j - Z*(n00o I <QJ *.eN.4 * 0 L

w o I *'0-.U-(l**ZU"x I "MJ~ M0-Z * -U

4L 1 CI * ~-C--i -o* LL ~ 0LQw I *00oý '- w* 1-4~ C Z

re z I *a-Cr*JU~0*-cL* u U u:3 C I *0-.*-- * WZ

CJ~ I *-C~~ '4~~* * CL. I-q

V) z0 I Q*". U -4 - 1.-W* * e rti0 w~ I *UU .- JZm * < ft. --,

L"=o I *0 U -' W * ftI o t LC W (J I *-L- I~0 ->-w * * _ W ' C3

ziIi I *Oo-~0>'f-1* * m CLL LMz u -E I M*-1 -' M m .0* a I.j0

0 x .i I - M-( * w cc n" 4-W I *Z'-13Z .I-Z* * =oI0 c I *"Ocomol00 .* *CflI- 2 x

oI *QU ft -Lo 'fn* *x I-1-I Nxww I *0 s¶-)Z *WWZ

W J I *--ft _O ---- En *I- QW.ce1-4 I ~ 0 N .- _ I *W -Ex n

c;LA. i < o J '-00Qm cL z *mY-=Nw -O I l!'m'-.JQ -ZW d ~ce xIx CA: I q -. j~n &>-o0w *21 ý-4- NLLZ L I omi f- -V-M W * -4tnlZ

- . I ce i-m Sw w- * IZN .3 >_ C I Ci.Li. .o0'-0N'4 *W IL1-4 110 w.I)-Lw I J NZ N - Z *c z *_.j Z 14 - I z'~0~cf-"- Wc *4 -=crJn.-4

OcJ 0n1 "-ONZ &>-Xe * cnwwi-rmWO Iz 0 ~ -' 1-t- *XzI-W"-

I- .. wa I X'-I- ftnn -t0 *W -~-Z

CL 1-4 -4 I wiflU0cfl &*czg 1OZ.1 lZ LOx -I =ftft'4000 .- 4- -.. _ý*Z wZ

u " m x 00 - -I 0 r4 U"3 Z -U) L UI LLVr~)cj &M3N w'L w.' ONON'CDt- u-W CL.-

>_ OzCO C0 IO( W N-i- -N_j " w I Z 0 Z W 1- *----4 0 LL.0U ' - a-4W 0

<D )0 04TZEnWC-I0"Z.-0'4

0-Cec I OXNOJZ.J -4ICxxow WO~-NQ3O0WOOOOOOOLP..L.WWl-40W-)

CL .I-IL ix I MUJ-, w .DCC0.C

I-~~~~~ M * 0- s~Jr ~i o N* *a: *0000000* *

0*-0* *~" -1 "t* 4 *wLuuCuuuuuu u UC.) 000

tP 000000000000000000000000 C0000000 " N m~ v in -0 N wO 0'ý 0 'N m' -T 0,4~ N MD 0, 0 -, N M~ V If *4 N CM 0, 0'Mf 00 00 0 00 00 T4 '44''44 " MV' 4 " "N N N N N N N " N N m~ m(fooo 0000000000000000000000000000

0000000000000000000000000000000

Page 276: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-263-

*w CL

*1- Ix*

* W 3- *

*-L 1"z **-4 *

*cZ-00 1-* -Z LL.Z Z 0

0:3uII- *1 0 *1-0~~ * *-4 *.

0. IM64 -4w %, ** nZ _j - *n -- Z

Z "3.WI0 *W ftZ- Z

W < *.-4 11W 1 I030-'- * II *0 C

Zn 3 N U- z N l'*N Cfl

I- &U Z x 3* 0J*0 0

LLX 1-40 l'W 4m Z* 2q>Z.. -0.1 *f -Z 1NE -1- 0 0

Cn Z '-j V4 wJ to 01 < Z

W a CL Ixi w4 0* 0 00W%.4 _jU 3Z 1 f LL4 Z-4 W-

W .J -1 L. 4Z. 0j 0 . Nxf2-4.J LiJ. - =n 0 1- 0 -I- -C n-4.1fl Lo . 0 U-~- _j X -_j j

~c Enz " 0 ".-4'X i* 0. OW .1J-0 ",, Z** I0.W=Qa WQ 0IJý '-'- * *C0.- -0N-

NIZ *WO0.-'--' owa- ,oZ 0 cu IIw - j 00.'-0-4--a0=2 M~in 'ý- X ~ i *r 0 *XL J Z- J-

"4 V4 11 1-I- CA:t)l0 0 W4 l.-0 0 '-'--I 11 ll)- -_j --. 1333%11i1-" 0 -4 T4 w zV4 - ECf. X2 T ~ Z I- " M- j C3(M94 Nr-S. " "- -4 00* C-4Jx lI-W " - 1-N-1 - (n It

w 0 0 1,(l~nn - I) 0i- * 0 -11 Z - -2 -'j Z1-4 11-'11 -Q'.'. W'-'II -v4N4C~-4 0<<CfW .W 1414

'-4 Q'4 -1Jz Q 0 Ix Q - QI If 1 E2Cf 11 C01 .x 1 "I f).Z'4-'

o0-w'-oww W W-W"XaOL&.WLfl.JWOZL.J333Q QW a0 L i W- WQ aZ 4 i a0 U W 0-4 L CL.4W 0 b Z W W

0000000000000000 00 000000000000000000000000 00000000000

Page 277: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-2 64-

0 0 c~~- 0 l

W IMI*iriP - m -40 c

*~- -, 0 8I'>- '.* I C) M - Ul

* ~~~ I iCL*JI---?'-*~~~ 0 I. x~C -

*. 1- 6 r-4N -0 cn

*~~1r 0 _I -0--- ZCf

* I "o t <I-0.J'&* e I ~-0--XME".0* z I 9- "Oý-' -N"L

* Iw I IMO - Q

* 4-4 ~I L) U-' Qi &* ~~J I ft L~lJ'* 4-4 I -'CJo

* I o-o'.4- fts-U

* Ix*1 0 N - a-44 M - ;.0

*l Cn I 0 0 CIZ-' -Z

* z I -'2~.I.-

* >- I Z- Z Nl-((2 z m0 I-1 9-0 N X- C2

co zi IZ V)-.J00 -

* fnI I tn o n-w

0. W- W4040 LL l I *- -~ 0 C4 3 Z M

&"0 Z CtZ I "~ZnzwW3 .''-1111z T J "- Qc' I '.i- Q CO 3 -Q

0* 0. "i C 0 0-' IM - <ý

.J~ '0 II 0-11 ecwi X 09494 '-'- C J ~ '9-4 ~ flu .4'0I .4- EI*-m~ I ONO ZJ'- Wý-CIZ

0 I 0'j- .3CmJ-L.Q

* ~-4 14 V4 "-4 14 .4

* 0

u U )UU

00000000000000000000000000000000v i 0 N W 0- 0 W4 N m vn '0 N. a 0, 0 N- mI v~ 0 Ifo N. m 0 .4 0 mI -r' ?,000'0O''o N NN. N NN N N N N w w w m 0,0% 0, O .(000000000000000000000000000000000000000000 0O0o0000000C 0z~00000000

Page 278: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-265-

* * * *

* * *U** * * *C

* * * *Z*C * * *O

* * * *0*<I * * *

*r *r * -4*D * * 0

l' * L * Q*~ r

*~C * *

* - * -j

* * Z LO * F 0 LLf -

0 U-, 0 L! 'TN.-* r -U * +

* -O* * L a3-4

LJ Z0 E Z * *0-0 1: - Z4 I Z 1-L c j *Z_

'-4 0- C0 cL: * ý -C-

-~ ~ v--1 -HC -E O *O-JL - ~ CL0-4C4r L , +-L 4i 1 CL u- U* 0- 1X--

0 0 eD 0 Li -. - LO C4OL )L 4WL i IC_1

-- a<T-4r0Z Ln 0 , r t a0c 1 * UO '-j

LD 11M - - 1W L d i I -- -~ - cl"' Z Cf-' H 1 r !

M 4XX )F -- 1-s4 7 ý4' 014 *- M MLDM D

U u *-Zu- CI

4-4 ý0 0 0 0 0 00 - -4~ "C -4 .*(C f -4- 1- * - lC

0 ~ ~ ~ ~ J 0 .0 00-W4ý - 14- 4- 4-44- 4- 4 -4 -4-4'4ý

Page 279: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-266-

* :3

* :3

* CD

*X

*C 3

* ** -1.*ý - rj- -x*4 uu M n:

cn z 0- ý-4 r 4

w~~- * -%-- M-

X- I-,-.- .'J -=I-x00 l- - _jI -

0*~~~~ 1 " M U VOZýce Z n U LJ Q - >3`+ýL- >" - - i 11

U i "* 0 nL-4 - 13 - QI' n- 1ý-,- N Q11 '1 1: U %3 * 1 -~ Z3 1- 1-> . L

Z 4U tXZM-C 1UI 3 >'*-~ LON ) U 11O U1 *":3

"4 01 M- - LI - U - ' jN 141 1 1 W0 - 11'

M ~ ~ ~ LI1' M u zZ> 33 Q i I- =0 Im Q U, Q:

C 0 N-' 0*-b * *~

" " 4 -4 - A 4 -4" 4v - 1ý 4ý -''L ' -'- - 4 -+ "4fl 4 4" 4w -4 400 00 00 00 '-iO'-O C*OOOOOOOOO--' ILIOLI

Page 280: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-267-

z3

E* I*z I -

*~ 0 U* 4I Ni

L Im00

00WMc I m'o0 00 1a n

LU N, m0 I 0C. 00 00 14 I

0r ctON 0 IIL Li -.. I

Wa Q-4 " cex- z4- I um Ax4 U IL I 1

W 4 . 1""1-4 I 0u U- & ft.- .4't - _j I C.

Ca -7). Ca "-.1 u ZlNr )(x- J0 Q- Q - 140 I-- Iix m, W v>- ft) >- 0

4- C=~a C~~0 I" I N I INC4

z ec-0 _lj Ca -j-- Ca---- U w ILI3 - Q0 I-.J - ' a -4I-C*C Q L) I -n

<w MM" - U-- (J)- rn I 0)X U X- P "I 1 "" ft .lC"J-l.-4 -41 "o . xz IC, ol%' IM af-u . 1 4 ft r ~ . W C*2a IIII (w2,-0 " -oc "" " -ljJ. ". ri N " " N-4. = I zx I -

OW ý X-i. "Jý-4 w .- 4 . -4-.">W"->.0 m (n I z

'-4 *i 0 CLit )t T "4 V04 a a-C~l-o~l.- 4Cc 10N e IxI-U n-J - >- '- U -41 1-4.4 N -41-- M Zc Z I S-0 *- J~ QM-4-Ca '- C - CJC- W-iI

N ma

Ca Ca U W JO000000000000000000000000000000000 "4 N4 M~ V I 'a N W0 O .P0 4 Nl M~ VI In N M0 0 "4 Nl r'n V 0,0 r'-. M C), 0 W

00000000000000000000000000000000

Page 281: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-268-

-. w0 474

>- c W i

o M -0 N

.~+

NMI- *N-4*

e-o0e*J -- 4*

U i *1.0 *

&0.- .0* +~OiNZ *- *

CNJ-Mi-M N*N

.- 43Z-l'-Z* -~u*

OU)=OQ -* N~ -U & -j0innlj I * LI M

-Om w- *= -'0 -0 N J- iC r Mi U, nN aMC -0 '-N u -I-~-~j00 ZU 0 IN Ol N *

.. J~fl>-o -0 0 + * 1:4. -

&0-0r 0 M . En +1 M- *zuN Z N -Z i Ij U ý >. " w

0-W-ý-q- .0 -- -N, 0C' N - M N -' I -

-Z-'3 .- "I-. --44 *M C- u uUI--I--ý u U+I--Mcn- -C -. 'Z - 0+ z4 17-4~ l4*~

-0 ~ .- 1M-lCC <X -1-4-U LO -l '*

*Y4U00 -W WLjW-i- ** .**' .- J+ n'

0r3 - 0 + 11 -fU *-ILJ'-11U I '-0 -INU&-' r - M-UU I - =I L~-C.CU-MU 1-'N U M -)-M-4 U ZI

C'10ZJ~ ~ ML 1-"ij "4 If-4.4. It~'-4 0 1 0I- 0-Z M:3 0 t 10ZW -Q LL 4T If LLO U 0 - 0 0 0 0 1- 1- 1- u 01 Z1 Z=

* - C M IT

00000000000000 000000000000000000N~ t~' "W In a. N M 0. 0 " N M~ Vi 1 CI0 N M (). 0 N4 M' v~ 0 -0 N M 0- 0 N4 M~0."r- 00. 01.0.-o 0' 0 000 00 000 0 0-4 ý4 "4 "- '-4 V-4 "4~ " N" -4 -4" -f-4"4V4 -4 N' NJ NJ N N~* N~ N' N' N'. N. C' ~ N "1 Ni N' N'~ N' N~ Nj N~00000000000000000000000000000000

Page 282: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

:3 -n

I0 .- 014l-:4I-

0 f0t ý-- >-W

mLI I inr iom4

I-'4 I CL- 0 " ii > a-

u ZC-J NU~- rI* In oJ- -- zN.

LL o I a - - ri- o o'.4 I . CJ " 0 . 0 .

IX. I O-4.4 M' -t IL

N ~ LLCL I M -00 -0% .0 I -r4< -0 - 'N'-

0%x Q I ' J .4-1C-% CLI W F-4 IN Q In NJ Z w

I-cl UU ft.4l' 1-L I - W-=C0>-lP-N

U "* I- 0 - 0 ->- wim0

X -. 0j I - - < - M - a-

Z*wx I Z,-43Z '4-Z 0*I ,-M0U f -0 Q

m ~ IlW w I U) .-- ,4>.ZZ mIxcn I -0rm-- .-

ZOQO =) I 0 r4 - _j +0z Q ý x 1 0 N- aCiM Z

O*N IIW L."-4 I "40' >-O ftU -* I-- LoC I ML0.-- '11i

+I- * N 'I I- 1 -'-' 4l- I U. w0-0C J'-4" .4

u : el, U ~ CL.M I .- - NZ NJ- Z MID*X4% '. U, WN I -ý0'-0'.' ft4 '

-N 0 -.100% 0( 0rJ x t n - : 0t0 0 01 C 9-'I 1 M-Z-'3-'. I- 0U - + Q U 3- I -I-'11U-' & 0 C4

*UCN - Q LIW 4T 1 "-- wmc~rj 0-- -4--. n4 wfW LLL. Ce I EU)UO~f- *- C 0-*4 :c P4

-i U CL.'-4x 4x1 -- " w('JMLI 14- z0'4 ce En- xI 00C*-4---'-- -11-4 ~ -V* mcmI-XI M1COJ -rM 3C* N N- - S.

-W Q m II W0 xU I - -0 - 3 - .000 0a z004. ixe I 1.4 z 0zUw4"fw .4 * 0 .

II- - 11U '.40>- 4 I Q- 0CO3 .0 Q IIllII- %U 11*I-U ". =1~I I Uý -.- )-"- Z-100 V-> =

b- -'.ý 14' Z M W -4 I Z WP-O . -~.* 1 i-7' cZc4C 0c Uo u I 0- .Nc*-A-4x NNNV40-0-

II M M M-ct (n = I X ~0 Z. - .-Mix 0 m Z--.- I-- -

OQNLIOZII LZ~xLI0 I 0-CJO3O0fII OWWWIIO IIQQ I I-I~e~I-~I U4-.1F~b4-'40

IO N 0 rq In

00000000000000000000000000000000Vq 0 0 IN M0ý 0~ 0.4 N~ M1 vn 0 N w 0, 0~ -' N1 M V 0,0 N 0 0'. 0. cj N m v n

00000000000000000000000000000000

Page 283: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-270-

11zz :

z --I I

V) 0 " 0<

00000>-

Page 284: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-271-

REFERENCES

CHHABRA, N. K. (1973) Mooring Mechanics aComprehensive Computer Study, Vol. 1, C. S.Draper Laboratory, Inc., Report R-775.

CHHABRA, N. K., J. M. DAHLEN and M. R. FROIDEVAUX(1974) Mooring Dynamics Experiment-Determinationof a Verified Dynamic Model of the WHOI Inter-mediate Mooring, C. S. Draper Laboratory, Inc.,Report R-823.

CHHABRA, N. K. (1976) Correction of VectorAveraging Current Meter Records from the MODE-ICentral Mooring for the Effects of Low-FrequencyMooring Line Motion, Accepted Deep-Sea Research.

CHUNG, J. S. (1976) Motion of a FloatingStructure in Water of Uniform Depth, Journal ofHydronautics, Vol. 10, 65-73.

GOODM4AN, T. R., and J. P. BRESLIN (1976) Staticsand Dynamics of Anchoring Cables in Waves,Journal of IIydronzutics, Vol. 10, 113-120.

LAMB, If. (1945) Hydrodynamics, Sixth edition,Dover Publications, New York, N.Y., Article 68.

NEWMAN, J. N. (1963) The Motions of a Spar Buoyin Regular Waves, David Taylor Model Basin,Washington, D.C., Report 1499.

RUDNICK, P. (1967) Motion of a Large Spar Buoyin Sea Waves, Journal of Ship Research,December 1967, 257-267.

VACHON, W. A. (1973) Scale Model Testing ofDrogues for Free Drifting Buoys, C. S. DraperLaboratory, Inc., Report R-769.

VACHON, W. A. (1975) Instrumented Full-Scale Testsof a Drifting Buoy and Drogue, C.S. Draper Lab.,Inc., Report R-947.

WUNSCIH, C. and J. M. DAHLEN (1974) A MooredTemperature and Pressure Recorder, Deep-SeaResearch, 21, 145-154.

Page 285: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-272-

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, & FINAL REPORTS PUBLISHED BYOCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF

THE OFFICE OF NAVAL RESEARCH

1 Director of Defense Researchand EngineeringOffice of the Secretary of DefenseWashington, DC 20301

ATTN: Of:ice, Assistant Director(R'osearch)

Office of Naval R,-searchArlington, Virginia 22217

1 ATTN: (Code 460)1 ATTN: (Code 102-OS)1 ATTN: (Code 200)6 ATTN: (Code 1021P)

1 ONR Resident RepresentativeM.I.T. Room E19-628

National Space Technology LaboratoriesBay St. Louis, Miss. 39520

3 ATTN: (Code 400)*

DirectorNaval Research LaboratoryWashington, DC 20375

6 ATTN: Library, Code 2620

12** Defense Documentation CenterCameron StationAlexandria, VA 22314

CommanderNaval Oceanographic OfficeWashington, DC 20390

1 ATTN: Code 16401 ATTN: Code 70

1 NODC/NOAARockville, MD 20882

Total Required - 35 Copies

*Add one separate copy of Form DD-1473

**Send with these 12 copies 2 completed forms DDC-50, one self-addressed

back to contractor, the other addressed to NSTL, Code 400.

Page 286: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-273-

DISTRIBUTION

C.S. DRAPER LABORATORY, INC.

10 Library 1 Prusze-;ki, Anthony S.1 Araujo, Richard K. 1 Reid, Robert W.1 Bowditch, Philip N. 1 Scholten, James

35 Chhabra, Narender K. 1 Shepard, G. Dudley1 Cummings, Damon E. 1 Shillingford, John6 Dahlen, John M. 1 Toth, William E.1 Lozow, Jeffery 1 Vachon, William1 Morey, Ronald L.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1 Abkowitz, Martin A.1 Milgram, J. H. Dept. of Ocean Engineering1 Newman, J. N.

1 Wunsch, Carl I. Dept. of Earth & Planetary Sciences

1 Heinmiller, Robert1 Mollo-Christensen, Erik L. Dept. of Meteorology1 Stommel, Henry M.

EXTERNAL

1 Christensen, Thomas, Code 4501 Gregory, John B., Code 4501 Lange, Edward, Code 4101 Wilson, Stanley, Code 410

NORDA,National Space Technology LaboratoriesBay St. Louis, Miss. 39520

1 Director1 Canada, Raymond1 DeBok, Donald1 Kerut, Edmund G.

NOAA Data Buoy OfficeNational Space Technology LaboratoriesBay St. Louis, Miss. 39520

1 Brooks, DavidSperry Support ServicesNational Space Technology LaboratoriesBay 3t. Louis, Miss. 39520

j //

Page 287: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

II V I..

DISTRIBUTION (Cont.)

Silva, Eugene A.Ocean Engr. & Constr. Project OfficeNavy Facilities Enqineering CommandChesapeake DivisionWashington Navy Yard, Bldg. 200Washington, DC 20374

1 Beardsley, RobertI Berteaux, Henri1 Briscoe, Melbourne A.1 Eriksen, Charles C.1 Fofonoff, Nicolas P.1 McCullough, James1 Moller, Donald1 Saunders, Peter1 Schmitz, William1 Walden, Robert1 Webster, Ferris

Woods Hole Oceanographic InstitutionWoods Hole, Mass. 02543

1 Collins, Curtis1 Jennings, Feenan D.

IDOE OfficeNational Science FoundationWashington, DC 20550

Swensen, RichardUSN Undersea CenterCode 2212New London, CT 06320

Baker, D. JamesSchool of OceanographyUniversity of WashingtonSeattle, WA 98195

Halpern, DavidPacific Marine Environmental Laboratory/NOAASeattle, WA 98195

Page 288: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-275-

DISTRIBUTION (Cont.)

Wenstrand, DavidJohn Hopkins UniversityApplied Physics LaboratoryJohn Hopkins RoadLaurel, MD 20810

1 Mesecar, Rod1 Nath, John H.1 Niiier, Peter1 Lmith, R. L.

S(hool of OceanograihyOregon State UniversityCorvallis, OR 97%31

Savage, Godfrey H.Professor and DirectorEngineering Design & Analysis LabUniversity of N~ew HampshiireDurham, NH 03824

1 Kirian, A. D., Jr.1 Nowlin, Worth D., Jr.1 Cochrane, J.

Texas A&M UniversityCollege of GeosciencesCollege Station, TX 77843

1 Bonde, LesWashington Analytical Services Center,Inc.Hydrospace-Challenger Group2150 Fields RoadRockville, MD 20850

1 Bernstein, Robert L.1 Cox, Charles1 Davis, Russ1 Sessions, Meredith

Scripps Institution of OceanographyUniversity of California, San DiegoLa Jolla, CA 92037

I... ..• /q ' II - I __= __ -'

Page 289: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-276-

DISTRIBUTION (Cont.)

Ibci:Lson, Norriari 11.

U ivil Engineering LabPo. atie, CA O03

Kalvaitis, A.NOAA/OMTTest and Evalua:, n L-,)Rockville, MD 20P2

Harvey, R tDepartment cf cUi. arw qrapnyUniversity o" hrc*?i.!Iwaii

McGorman, Robert F.Bedford Institu'cv, R.c,,, 602Dartmouth, 4¼w,ý crot i,CANADA

Sourgault, rh o.7 IyIUSC,

Earle, iarsh.HUSN Ocaic.,,rarphic Ofi ckýCode W11GWashington, DC 20373

Bedard, Philip P.Oceanography LabNova UIniversity8000 North Ocean Drive

"Dania, FL 33004

Coudeville, J. M.Centre Oceanologique de BretagneBoite Postale 33729.273 Brest CEDEXFRANCE

Page 290: 4 IThree Dimensional' Dynamic Analysis of 1I Moored ...T're aut4&r ,•.Q!onnthis op•o7.tmicty to thank all ijtse at the L~a-les.M1gar).. Ui-avon IADre.tm:r.y, ic who had vail-,able

-277-

DISTRIBUT1ON (Cont.)

Froidevaux, Michel

Aerospatiale

Subdivision Systemes, SYX/E

78130, Les Mureaux

FRANCE

J. E. Bowker Associates, Inc.

Statler Office Building

Boston, Mass. 02116

Evans-Hamilton, Inc.

8100 Kirkwood, Suite 130

Houston, TX 77072

Leedham, Clive D.

General Motors Corporation

6767 Hollister Avenue

Goleta, CA 93017

!