23
An application of physics: An application of physics: sampling and analysing air particulate sampling and analysing air particulate matter matter GNS Science, PO Box 31312, Lower Hutt, New Zealand GNS Science, PO Box 31312, Lower Hutt, New Zealand Bill Trompetter, Perry Davy, Bernard Barry and Andreas Markwitz Bill Trompetter, Perry Davy, Bernard Barry and Andreas Markwitz

13.30 o7 b trompetter

  • Upload
    nzip

  • View
    172

  • Download
    1

Embed Size (px)

DESCRIPTION

Research 5: B Trompetter

Citation preview

Page 1: 13.30 o7 b trompetter

An application of physics: An application of physics: sampling and analysing air particulate mattersampling and analysing air particulate matter

GNS Science, PO Box 31312, Lower Hutt, New ZealandGNS Science, PO Box 31312, Lower Hutt, New Zealand

Bill Trompetter, Perry Davy, Bernard Barry and Andreas MarkwitzBill Trompetter, Perry Davy, Bernard Barry and Andreas Markwitz

Page 2: 13.30 o7 b trompetter

GNS Science

• New Zealand has good air quality in general

Page 3: 13.30 o7 b trompetter

GNS Science

Masterton DunedinAuckland

PM10 2004-2007 at Masterton

• However, air pollution does occur in NZ• Some smaller towns have the highest levels of air pollution• PM10 has strong peaks in winter due to domestic biomass burning

Page 4: 13.30 o7 b trompetter

GNS Science

Particle size comparison

Page 5: 13.30 o7 b trompetter

GNS Science

Atmospheric particles: size and number distribution

• Two distinct size modes, coarse (PM10-2.5) & fine (PM2.5)

• Size range depend on method of source generation

• Coarse particles dominate mass profile

• Fine particles dominates number profile

Page 6: 13.30 o7 b trompetter

GNS Science

Atmospheric particles: health effects

• PM10 in NZ caused ~900 premature deaths and cost a total of NZ$1.3 billion in health costs and lost productivity in 2001 [Fisher 2007] .

• Symptoms range from subtle sub-clinical effects to respiratory and cardio-pulmonary disease

• NZ National Environment Standard was introduced in 2005 (50 g/m3 for PM10)

Page 7: 13.30 o7 b trompetter

GNS Science

Samplers – size selective inlets

Size-selective inlets define the particle size fraction sampled (Chow, 1995).

Direct impaction: • the impactor with specific dimensions.• small particles bend at the impaction plate• larger particles impact against the plate

Virtual impactor: • uses an opening• larger particles to one sampling substrate, • smaller particles follow the streamlines to another• ~10% of the total flow, drawn through the virtual impactor are collected with the coarse particles (corrections needed).

Page 8: 13.30 o7 b trompetter

GNS Science

GENT Sampler – stacked filter unit

http://www.nilu.no/products/

Air flow direction

Page 9: 13.30 o7 b trompetter

GNS Science

GENT Sampler – APM filters

Coarse (PM10-2.5) polycarbonate Nucleopore filter loaded with air particulate matter from the Wellington region.

Fine (PM2.5-0) polycarbonate Nucleopore filter loaded with air particulate matter from the Wellington region.

Page 10: 13.30 o7 b trompetter

GNS Science

Elemental analysis and source apportionment: Why?

Gravimetric mass ≠ source information

Masterton DunedinAuckland

Page 11: 13.30 o7 b trompetter

GNS Science

Source apportionment

Elemental concentrations in particulate matter are determined at the NZ Ion Beam Analysis facility at Gracefield, Wellington

Particle beam 1H+

RBS particle detector

Target filter

apertures

ion energy 2.5 MeV

X-ray detector 1

X-ray detector 2

135 o

X-ray filter 1

X-ray filter 2

45 o 135 o

-ray detector

PESA particle detector

45 o

0 1 2 3 4 5 6 7 8 9 101

10

100

1000

10000

Zn Kb

Mg

CuNi

V

Ti

Sc

K

Al

MnZn

Na S

Cr

CaFe

"Seasalt" Au0609

"Soil" Au0532

"Industry" Au0534

"Smoke" Au0610

PIXE spectra from Lower Hutt PM2.5 filters

Cl

Fe Kb

Si

Co

un

ts

Energy (keV)

0 500 1000 1500 2000 2500

100

1000

10000

100000Proton's scattered

from elements heavier than Hydrogen

Hydrogen "peak"

Energy (keV)

Cou

nts

Kowhai PM2.5 06/15758

Page 12: 13.30 o7 b trompetter

GNS Science

Black Carbon (BC)

For atmospheric particles, black carbon (soot) absorbs light very strongly (Horvath 1993, 1997). Hence, to first order it can be assumed that all the absorption on pollution filters is due to BC.

Page 13: 13.30 o7 b trompetter

GNS Science

Elemental relationships and source determination

Seaview PM10-2.0 Al vs Si

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500

Si (ng/m3)

Al (n

g/m

3 )

Seaview

Baring Head PM10-2.0 Cl vs Na

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500

Na (ng/m3)

Cl (n

g/m

3 )

Baring Head

Plots show that elements are related to each other

Page 14: 13.30 o7 b trompetter

GNS Science

Initial source identification by principle components analysis: PM2.5 at Masterton

Element

Factor 1 Factor 2 Factor 3 Factor 4

Vehicles Soil Combustion Seasalt

BC 0.16 0.03 0.97 -0.08

Mg 0.02 0.97 0.09 0.03

Al 0.33 0.92 0.10 -0.05

Si 0.76 0.56 0.06 0.15

S 0.71 0.30 0.12 0.37

Cl 0.14 -0.06 -0.06 0.95

K 0.23 0.18 0.93 0.08

Ca 0.69 0.26 0.21 0.52

Fe 0.84 -0.08 0.35 -0.07

Page 15: 13.30 o7 b trompetter

GNS Science

Wood Burning

05

101520253035404550

Jun-02 Aug-02 Oct-02 Dec-02 Feb-03 Apr-03 Jun-03 Aug-03 Oct-03 Dec-03 Feb-04 Apr-04 Jun-04 Aug-04 Oct-04

Co

nc

en

tra

tio

n

g/m

3

Sulfate

0

1

2

3

4

5

Jun-02 Aug-02 Oct-02 Dec-02 Feb-03 Apr-03 Jun-03 Aug-03 Oct-03 Dec-03 Feb-04 Apr-04 Jun-04 Aug-04 Oct-04

Co

nc

en

tra

tio

n

g/m

3

Motor Vehicles

0

1

2

3

4

Jun-02 Aug-02 Oct-02 Dec-02 Feb-03 Apr-03 Jun-03 Aug-03 Oct-03 Dec-03 Feb-04 Apr-04 Jun-04 Aug-04 Oct-04

Co

nc

en

tra

tio

n

g/m

3

Soil

0

1

2

3

4

5

Jun-02 Aug-02 Oct-02 Dec-02 Feb-03 Apr-03 Jun-03 Aug-03 Oct-03 Dec-03 Feb-04 Apr-04 Jun-04 Aug-04 Oct-04

Co

nc

en

tra

tio

n

g/m

3

Seasalt

0

1

2

3

4

5

Jun-02 Aug-02 Oct-02 Dec-02 Feb-03 Apr-03 Jun-03 Aug-03 Oct-03 Dec-03 Feb-04 Apr-04 Jun-04 Aug-04 Oct-04

Co

nc

en

tra

tio

n

g/m

3

Temporal variation in source contributions at Masterton

Page 16: 13.30 o7 b trompetter

GNS Science

Masterton PM10 : Average mass contribution to ambient particle concentrations by sources using positive matrix factorisation

Average source contributions to PM10-2.0 at Masterton

Seasalt40%

Soil26%

Wood Burning27%

Motor Vehicles7%

Average source contributions to PM2.0 at Masterton

Wood Burning72%

Motor Vehicles5%

Soil9%

Seasalt7%

Sulfate7%

PM10-2.5 PM2.5

Page 17: 13.30 o7 b trompetter

GNS Science

Source mass contributions to Masterton PM10

Masterton PM10-2.0 source contributions

11/07/2004 - 12/07/2004

Wood Burning

51%

Road Dust6%

Soil33%

Seasalt10%

Masterton PM2.0 source contributions

11/07/2004 - 12/07/2004

Soil4%

Seasalt2%

Sulfate3%

Wood Burning

91%

PM2.5 = 32 g/m3PM10-2.5 = 19 g/m3

Wood Burning

77%

Seasalt5%

Soil14%

Sulfate2%

Motor Vehicles

2%

Masterton 12 July 2004, high pollution day exceeded national environmental standard (PM10 = 51 g/m3 24 hour average)

PM10 = 51 g/m3

Page 18: 13.30 o7 b trompetter

GNS Science

Auckland (Kingsland) sulphate sources

Biomass burning

38%

Marine aerosol19%

Motor vehicles30%

Sulphate13%

0.8

1.91.2

2.4

0

2

4

6

8

10

Bio

ma

ss

bu

rnin

g

Mo

tor

ve

hic

les

Su

lph

ate

Ma

rin

ea

ero

so

lPM

2.5

ma

ss

co

ntr

ibu

tio

n (

g m

-3)

Directional studies (CPF) and mapping (PSCF) of the source apportionment results can add much more value for the end users.

Page 19: 13.30 o7 b trompetter

GNS Science

0.0

0.2

0.4

0.60

30

60

90

120

150

180

210

240

270

300

330

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0

30

60

90

120

150

180

210

240

270

300

330

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.80

30

60

90

120

150

180

210

240

270

300

330

0.0

0.2

0.4

0.6

0.8

Hauraki Gulf shipping lanes and port area

0.0

0.2

0.4

0.60

30

60

90

120

150

180

210

240

270

300

330

0.0

0.2

0.4

0.6

Industry

Directional (CPF) analysis of

sulphate sources

Page 20: 13.30 o7 b trompetter

GNS Science

Kingsland PM2.5 secondary sulphate sourcePSCF back trajectory analysis

• secondary sulphate source areas are oceanic due to phytoplankton.

Page 21: 13.30 o7 b trompetter

GNS Science

Regional sulphate ‘event’ – 28 September 2006

Sulphate - Kowhai PM2.5

0

2

4

6

8

10

Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06 Dec-06

Mas

s C

ontr

ibut

ion

( g

/m3)

Sulphate - Takapuna PM10

0

2

4

6

8

10

Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06 Dec-06Mas

s C

on

trib

uti

on

(

g/m

3 )

Sulphate - Khyber Pass PM2.5

0

2

4

6

8

10

Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06 Dec-06

Mas

s C

ontr

ibut

ion

( g

/m3 )

Sulphate - Penrose PM2.5

0

2

4

6

8

10

Dec-05 Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06 Oct-06 Nov-06 Dec-06

Mas

s C

ontr

ibut

ion

( g

/m3 )

White Island

Receptor modelling results for sulphate Air mass back-trajectory

Page 22: 13.30 o7 b trompetter

GNS Science

Kingsland PM2.5 marine aerosol sourcePSCF back trajectory analysis

• PSCF analysis results indicate that the PM2.5 marine aerosol source areas are southwest of NZ – southwesterly sweep over Southern Ocean

• Consistent with CPF (inset) analysis

0.0

0.2

0.4

0

30

60

90

120

150

180

210

240

270

300

330

0.0

0.2

0.4

Rel

ativ

e pr

obab

ility

Marine aerosol

Page 23: 13.30 o7 b trompetter

GNS Science

Summary• Pollution has

– different size distributions – mix of natural and anthropogenic sources– collection methods

• Elemental analysis allows identification of APM sources and their contributions determined.– individual filter samples (1 day or 1 hour).– analysis by day, year, season, weekday, weekend … – information assists with air quality management.

• Directional analysis can provide addition information for:– local sources (CPF).– long range sources (PSCF).

An application of physics: An application of physics: sampling and analysing air particulate mattersampling and analysing air particulate matter